Plug-and-Play-HOWTO

Plug-and-Play-HOWTO

Table of Contents

Plug-and-Play-HOWTQ. 1
David S. Lawyer mailto:dave @Iafll.org........ceeveiieiiiiiii ettt e 1
0 0L Y6 LN Tod o) o WSS 1
2. What PnP Should Do: Allocate "BuS-RESOUICES"........ooiiiiiieiieiiieieeeeieeeee et e e 1
3. Setting up a PnP BIOS ...ttt ettt b bbbt bt h e be e 1
4. How t0 Deal With PNP CardS........cccoiiieuiiiieieieieieieeeee ettt e e eeeaee e e e e e et e e e e s eeanaereeeessennaneeeeesennns 2
5. Tell the Driver the Configuration 22..........cocueiiiiiiiierie ittt sttt sttt e bt e st e b e saeeaes 2
6. How Do I Find Devices and How Are They Configured?........ccccoevieiieiiininnienienieienee e 2
2. POT TIEEITUDES .. eeenvteenuteeniteeniteenieeette ettt ebte ettt esuteesubeesabeesabeesabeeeabaeenbeeenbaeenbaeesaseesabeesabeesabeesabeeenseeenanes 2
8. PnP for External and Plug-in DEVICES......cccueeruieiiiiieiieie ettt ettt ettt et et 3
. EITOT IMIESSAGES ... eeuteeeuieeeiteeniitenitteeitte ettt ettt ettt e sttt e s bteesabeesabeesabeeeabaeebbeenbbeesabeesabeesabaeeabaeenbaeenaseesabeens 3
10. Interrupt Sharing and Interrupt COMTTICES .. eeveetiertieieerieenieeseertte ettt ettt ettt sae e 3
N 013)5) 16 £ OSSPSR 3
) 0L Y6 LN Tod o) o WSRO 3
1.1 1. Copyright. Trademarks. Disclaimer, & CreditS......cooveereerienienierieneerieesieesiteee e 3

(101571 04 1SS ST SRUS 3

| DRI P11 101 ST PRSP RRRRRRRRNt 4

TLAAEINATKS. ...coevveeeeee ettt ettt e e e e e et e e e e e e aaaa e e e e eeeeemtaaeeeeessennssaeeeesessnnnserneeeessannenes 4

(@5 =16 11 1SRRIt 4
1.2 Future Plans: You €Can HelD......oeorieiiaieieeieece ettt sttt sb et sb et sbe e 4
1.3 New Versions of this HOWT Ocooiiiiiiiiiieeeeeeeiiee ettt e e e e e eeeaaae e e e e s seeaaaeeeeeeseennnaeneeeas 4
1.4 NeW 1N RECENE VEISIOMS. ..vviiiiiieeieiiiieeeeeiiiieeieeeeeeeiteeeeeeeeestaaeeeeeeseeaaaeeeesssessareeeeesssssssasesessssanrreneeess 4
1.5 General Introduction. Do you need this HOWTO?.c..coiiiiiiiiiiiiienieieieeeecece e 5
2. What PnP Should Do: Allocate "BuS-RESOUICES"........coiiiiiiriiieiieieeeieeeeee e 6
2.1 What is Plug-and-Play (PnP)7.........cooiiiiiiieieeee ettt ettt 6
2.2 Hardware Devices and Communication With them............ooevuuveiiiiiiiiiiieiieiiiecieeeee e 6
2.3 AQAIESSES...eeeeeeeieieeeee ettt e e e eeet e e e e e e et e e e e e e e e e e e e e ————eeeeaaa————aeeeaa i ————reeeea e barrreee e e e raaaeeeas 7
2.4 1/0O Addresses (principles relevant to Other reSOUICES t00)eerueerreerteerieereenienieeneereesieeseeseeeneeennes 7
2.5 MEMOLY RANMEES ..cevietietiiiieitie ettt ettt h et s ht e sat e et e s bt e satesatesatesatesseesaeeeatesaeesaneeas 8
2.0 TROIS —mOVEIVIEW ..eeceuvviieeiiieeeeieieeeettteeeeteeeeeetteeeeettaeeeeetaeeeeassseeeasseseesssseeasssesesnsssseeassseeeasseseenssseeans 9
2.7 DMA (Direct Memory Access) Or BuS MaSIEIINGeerveerveerteerieenieenieenieenieenieenieesieenieesieesveeneeeneeas 10
2.8 DMA Channels (N0t fOr PCT DUS)....vvveeieiieiiieieeeeeeeiieeeee e e eeeeeeeeeeeeeessaeeeeeeeeesssaeeeeeesesssraseesesssnnnnnes 10
2.9 "Resources" for both Device and DIIVET.........ccooveiuviiiieiieeeieeeeee ettt e e e e e e esiaeeeeeessesnaaes 10
2.10 Resources are LAMIEEA.veeeevieueeeiieii e e e eeeettee e e e e eetae e e e e e eeaeaeeeeeeeeesaaeeeeseseennsaaeeesessennanes 11

IA@AL COMPULBTS. .. .veeueeeuieete ettt ettt ettt ettt et et e et e et e e bt e teenteenbeeabeen bt en bt enbeenbeenbeebeenbeenbeeneean 11

REAL COMPUIETS. .. eveeeteeriiee ettt ettt ettt ettt sttt e e et e e bt e e sbteesbteesbteesabeesabeesabeesabeeenbeeenmseenanes 11
2.11 Second INtroduction t0 PIIP............oiiiiiiiiiiiiiieeeeeetieee ettt eeetee e e e e et e e e e e enatareeeeseennnanes 12
2.12 How Pnp Works (SIMPLEIEA)....ceveeieeiieieeieeie ettt st et 12
2.13 Starting Up the PC....o.eeiiee ettt ettt ettt st e et ettt e sateeaeeeas 13
20 BUSES .ottt e et et et e e et et aaaaaeaaaeaeetaaaaaaaaaaaaaaaaaaaaatanarara———————————————————————————n 14
2.15 HoW LinuX DOES PIIP.......ooiiiiiieieeiee ettt e ettt e e e e e et e e e s eennaaneeeeesennanes 14
2.16 Problems With TANUX PIIP.......ooouiiiiiiiiiiieiiee ettt e e e et e e e e e enaaareeeessennnanes 15
3. Settingup a PnP BIOSottt ettt ettt ettt e b et an 16
3.1 Do you have a PnP operating SYStEIMZ.....cc.eerueerieerieeriienieeieerteente et enie et e iee bt esbeeseeesbeesbeenbeebeeneeas 16

Linux prior t0 the 2.4 KeIMEL.....c.eeiiiiiaiienieiieietee ettt sttt ettt e st e et e i 16

Windows 2000 AN XP........uveeiiiiiiieiiieieeee et ee e e e eeetaee e e e e e e e eaaee e e e e e e e esaataeeeeeesasaaaareeeesaeaaraeeeeeaans 16

MS Windows 95. 98 (ANA IME D) ..evvvviiiiiieiiieeeee ettt e e et e e e e e eeabaee e e e e s e esaaaaeeeessennaaes 17

3.2 Assigning Resources by the BIOSccc.iiiiiiiie e 18

Plug-and-Play-HOWTO

Table of Contents

Plug-and-Play-HOWTO

3.3 Reset the configuration?..........cooeereerieriiereeteere ettt ettt et et e e bt e bt e bt e bt e be e bt ebeesbeebeebeeneean 18
4. How t0 Deal With PNP CardS........ccoiiieuuieiiiiiiiiiiieeie e ettt e e eeeieee e e e e e esaaaee e e e e seenaaaeeeeessesnsnreeeessenns 19
4.1 Introduction to Dealing with PNP DEVICES.......certeiieiiiiiiiieniesitesieeseei ettt 19

4.2 Device Driver Configures. Reserving REeSOUICES.ccueeruieriierieriiniienieniesiiesiie ettt 19

4.3 /sys User Interface CONFIGUIES evutertierienientieitieit ettt ettt sttt ettt e bt e sbeesaeesaee s 19

4.4 BIOS COMEIGUIBS . .ceuveeuvteteentienteentierttesttesttesttesttesttesbtesbeesteesbeesbtesbtesbeesbeesbeesbtesbeesseasbeesbeesbeesaeesseennes 20

Intro to Using the BIOS to Configure PnP........ccooiiiiiiiiiie e 20
The BIOS'S ESCD DaAtaDasE........coeuvvveieeeieeiiieeeeeeeeeieeeeeeeeeeeaaeeeeeeeeeaaeeeeeeesesanaaseesessessaneeeeessnans 20
Using Windows to set the ESCD......ccoiiiiiiiiiiieiieeee ettt ettt 21
Adding a New Device (under Linux Of WindOWS)......ceoueerueeiiieriieniieieeieeieeieeie e 22

4.5 ISA cards only: Disable PIP 2. ...ccoiiiiiiiieiee ettt st 22

4.6 ISA Bus: Isapnp (part of iSAPNPLOOLS)...ccueeruiertiertieitierieestie sttt ettt sttt 22

A O B 0151 ST RN 23

4.8 WIiNAOWS COMEIGUIES. ...eeveetietietientientienttestte st te st te bt e sbtesttesttesbtesbtesbeesbeesbeesbeesbeesbeesbeesbeesbeesaeenaeenaas 23

4.9 PnP SOftware/DOCUINENLS. .. .vvvveeeeeieeeieeeeeeeeieieeeeeeeeeeeateeeeeeeeeaaeereesessssssaaseesessesssaseeesesssssaneereesssons 24

5. Tell the Driver the Configuration 22.........cooeiriereerieeiieeereest ettt et e et e be e bt e sbeesbeesbeebeeneeas 24
oI I 001 (0 Ya LU o35 o) o WU 24
5.2 Serial Port Driver EXAMPIEcooueiiieiiieieeie ettt ettt et ettt ettt et be e e s 25

6. How Do I Find Devices and How Are They Configured?..........cccovieiieniiiienienieneeeeeeeeeeeen 25
6.1 Finding and How-Configured Are Related.........cccoeiiiiiiiiiiiiiieiieceeee et 26
6.2 Devices May Have Two "Configurations”..........ceoueeteeierieeieeie ettt sttt et 26
6.3 FInding HATAWATE.cccueiiieiieieeie ettt et et ettt et eat e st e et e et eeateeaeeeateeaeeeas 26

6.4 BOOt-1IME IMESSAGESeeuveeuvientieteerieentienteenteenteenteesbeesbeenbeebeesbeenbeebeebeebe e bt enbeenbeebeenbeenbeebeeseensean 27

0.5 THE /DIOC TTEE . ceuveeuteetietiettetee st ettt et e bt et e e bt e bt e bt e bt e bt e bt et e ebeebeenbe e bt enbeenbeebeebeebeenbeenbeensean 28

0.0 THE /SYS TOB . ..eeuveetietiettettet et ettt et e bt et e e bt e bt e bt e bt e bt e bt et e e bt e bt eabe e bt enbeenbeenbeebeebeenbeenbeensean 28

6.7 PCI BUS INSPECHIOM. +.c.veeuteeuteentieteenteenteestterteentte st este e bt e bt e bt e bt e bt ebeebeebeebeenbeebeenbeebeenbeenbeenseensean 29

6.8 ISA BUS INTOAUCLION.vvvvvveiieeeeeeeieeee ettt e e e e ettt e e e e e eaaaeeeeeeeseastaeeeeesesnnsraseesessannneees 29

0.9 ISA PIP CAIUS. c.uuvvvviiiieeeeeeeeee ettt e e ettt e e e e e ettt e e e e e e eaateeeeesesessstseeeeesesnsraseesessannnenes 29

O. 10 LLPC BUS ..iiiiieiieiiiieee e ettt e e e e ettt e e e e et aae e e e e e seesaaaeeeeesseesaaeeeeeesesnssasseeessssnssaasseeesssssraseesessannrnens 30
(T D o TSRS 30

.12 NON-PIP CAIAS. .. .eeeiiiiitieieiieeeeeeee ettt ee ettt e e e e e e eaae e e e e e eeesaaaeeeeesssssssaaeeeeesesssraseeeessennreees 30

6.13 Non-PnP Cards With JUIPEIS. ...cccueerteertienieeitienieerieerieesteest et e bt et este et e b e bt e be e bt esbeesbeebeebeeneeas 31

6.14 Neither PP NOT JUIMPEIS . ..ceveeteetienttetierttet ettt et et et e bt e bt e bt e bt ebe e bt e bt e beenbeenbeenbeebeebeensean 31

6.15 Tools for Detecting and/or Configuring all HAardwWare..........cccceeveeneenieneenieneeneeeeiceceeeeen 31

6.16 Tools for Detecting and Configuring One Type of Hardware..........cccceeveereeneeneeneeneeneeneeenn 31

6.17 USE MS WINAOWS.ccoiueieiieeeeeeeittteeeeeeeeeetatee e e e e eeeaateeeeeseeesaaeeeeeesessssteeresssssssstaseeeesesssraneeeesssnsnees 32

7. POT TIEEITUDES . eeuveeeuteeetteeniteeniteeniteeetee ettt ettt e sttt esbteesabeesabeeaabeeanbeeebaeensseesabeesabeeaabeeenbaeenseeesaseesaseess 32
7 015 (0 Yo LU o35 o) o W 32
7.2 History: From ISA 0 PCI INTEITUDLS. .. eeveetieteeieeieeie ettt ettt te ettt et et teebe e b e b ebeeneean 32
7.3 Advanced Programmable Interrupt Controller (APIC)........cooiiiiiiiiiiieieieeeeeeeeeeeeceeeee 33
7.4 Message Signalled INterrupts (IMST).....cccueeuieiiiiiiiieie ettt et et e eee s 33
7.5 Sharing PCI INEEITUDES.veeuveeuteeteeteete ettt ettt et e et et et e et e bt eteebe e bt enbeenbeenbe e teenbeenbeenbeenbeensean 33
7.6 Looking at ROUHNG TADIES.ceouiiiiiiiieiieie ettt et ettt ettt ettt eb e e e s 34
7.7 FOr More INfOIMALION.ccovvvveeeeeeiietieeeee e ettt ee e e e ettt e e e e e eeaae e e e e e e seeasaeeeeeesssnnsaseeesessennaneeeeessanns 34
7.8 PCI INterrupt LANKITEG . eeuveeuteeuteeteeteete ettt ettt et ettt et e bt e bt et ebe e bt embeenbeenbeenteenbeenbeenbeenbeensean 34
8. PnP for External and Plug-in DEVICES.......ccueruiriiiiiiiiiie ettt st 35
oI LG 230 21 RS 35

Plug-and-Play-HOWTO

Table of Contents

Plug-and-Play-HOWTO

8.2 HOE PIUG. ...ttt ettt et et e s et e e et e e bt e s bt e sht e sheesatesateeaeeebeesbteshtesheesaeenns 36
8.3 H O SWAD . .ttt ettt et s a e et e a e e bt e bt e sht e sht e eh b e eat e e ateebeeshtesheeshtenaeens 36
8.4 PnP Finds Devices Plugged Into Serial POILS.........cocueviiiieriiiiiiieiie sttt 36
9. EITOT IMIBSSAZES evteuteriieeiie ettt ettt ettt ettt et e st e et e s bt e s hteshtesatesaee s bt e sbtesheesheeshtesatesatesbtesbeesaeesatenaeeas 36
9.1 Unexpected TNLEITUDE. .. eevueeeuieiiieeiieetie ettt ettt et sat e st e bt esbteshtesate s st e satesbtesbeesbeesatesaeenaes 36
9.2 Plug and Play Configuration Error (Dell BIOS).......coooiiiiiiiiiiee ettt 37
9.3 isapnp: Write Data Register 0xa79 already used (from 10gS)......cceveerierienieniinienienie e 37
9.4 Can't allocate 1e@ion (PCI).....ccuiiiiiiiiie ettt sttt st st e st e e e s 37
10. Interrupt Sharing and Interrupt CONTIICES .. eeverrerieriieiieie ettt ettt ettt 37
|0 0500 e 18 ot 7o) o F PR RRRRRERRRN 37
10.2 Real INterrupt CONFLICEeeteeieeiieieee ettt ettt ettt sttt eeeeaeesaeeeas 38
10.3 No Interrupt AVailabIe:......cooueeiieiieieeie ettt ettt et ettt ettt eaee et ea 38
L1 ADDEIAIX ettt ettt ettt ettt ettt ettt et e bt et ea bt e a et e a b e ea bt e ab e e bt et e eateeateeateeabeeabeeabeenteeateeateeas 39
11.1 Universal Plug and Play (UPIP)....c..coiiiiiiiiiieieteei ettt 39
11.2 AAAIESS DIELAILS. . .eeeeeieeeeeieeeeeeeeeteeeeee e e eeettee e e e e eeet et e e e e e eaaaeeeeeeseesaaeeeeeesssnssaaseesesssssrraneeeessanranes 39
AdAIESS TANGES. ..ceeveeiiieiiiie ettt ettt ettt et e et e ettt e bt e e sbb e e s bt e e sabeesabeesabeesabeesabeeenbeeenaaeenanes 39
AdAIESS SPACE ... eevteeitieeiiee ettt ettt ettt ettt e ettt e b et e sbb e e bt e e s bt e e st e e sab e e st eebae e beeenaaeenanee 40
PCI Configuration Address SPACE.......cereertierieriieniienientee ettt sttt ettt sb et e bt e sbeesaeesaeenaes 40
Range Check (ISA Testing for IO Address COnflicts)......cueeruerrueerierniernieeieeieeieesie et 41
Communicating Directly via MEIMIOIY.cccueecueeueeieeieeiteeie ettt ete ettt ettt e esteesbeesbeesbeebeeneeas 41
11.3 ISA Bus Configuration Addresses (Read-POrt @1C.)......cccuertierienienieiierieeenieesie e 41
11.4 INterrupts —mDIELATLS .. .eevietietieitieett ettt ettt e sttt e bt et e bt e bt e bt e bt e beenbe e bt e bt ebeenbeeeean 42
Serialized TNEETTUDES. .. eeuveeutieuteeieeie ettt ettt et ettt ettt et e eate e beeabeeabeeateeaeesatesateemteemeeeaeeeaseeneeeas 42

) DAY PR RRPRT 42
SOt IIEETTUDES + ..t euveeute et ettt ettt ettt et et e et et e et e eateeaeeeateeateembeeabeeaeeeateeaeesateeabeembeemeeeneesnsesnteeas 42
HardWare IEEITUDESeeuveeteeieeieete ettt ettt ettt et et e et e bt e bt et e ebe e bt e beenbeenbeebeebeebeenbeenbeeneean 42
11.5 How the Device Driver Catches itS INIEITUPE.eeveeiiriieieeie ettt 43
11.6 ISA TSOIALION. c.uvvvvvieeeeeeiiiiieeeeeeeetieee e e e e e eetitee e e e e e eeeta e e e e e e seeasaaeeeeesseesaaaeeeessssnssaaseesesssnsssaneesessannranes 43
11.7 Bus Mastering and DIMA TESOUICESueeueeterteeieeteeteeteeteetesteeteesestesatessessesabesmsesnsesasessenns 44
11.8 HiStorical and ODSOLELE........ccoeeuueerieeeeieitiieeeeeeeeeeiie e e e e eeeiaaeeeeeeeeeeaaeeeeeeseessssereeeeesssnsnaareeeessennsnees 44
OSS-Lite SOUNA DITVET.....cceeieeueeeeieeeeeetieeeeeeeeeeeeeeeeeeeesraaeeeeeesessaaaeeeeessesssareeeeesssessreseessssssrraneeees 44
ALSA (Advanced Linux Sound Architecture) as of 2000..........ccoovevureeeeeeeiiiiieeeeeeeeeeieeeeeeeeeenanes 44
IMS WiINAOWS INOLES. ...cccveeeiieeeeeeeiteeiee e e eeeee e e e e e eetaeeeeeeeeseaaaeeeeeseessaaeeeeeseesssbeseeeeesssnssasneesessenssnnes 44

Plug-and-Play-HOWTO
David S. Lawyer mailto:dave@lafn.org

v1.15, August 2007

Explains in detail low-level resources such as addresses, interrupts, etc. Covers both the PCI bus, which is
inherently Plug and Play (PnP) and PnP on the old ISA bus. If PnP did it's job right, you wouldn't need this
howto. But in case it doesn't, or if you have old hardware that doesn't use PnP for all the cards, then this
HOWTO should help. It doesn't cover what's called "Universal Plug and Play" (UPnP).

1. Intr ion

e 1.1 1. Copyright, Trademarks. Disclaimer, & Credits

¢ 1.2 Future Plans: You Can Help
e 1.3 New Versions of this HOWTO

e 1.4 New in Recent Versions
¢ 1.5 General Introduction. Do you need this HOWTO?

2. What PnP Should Do: Allocate "Bus-Resources"

¢ 2.1 What is Plug-and-Play (PnP)?

e 2.2 Hardware Devices and Communication with them
e 2.3 Addresses

¢ 2.4 I/O Addresses (principles relevant to other resources too)
¢ 2.5 Memory Ranges

¢ 2.6 IROs --Overview

¢ 2.7 DMA (Direct Memory Access) or Bus Mastering

e 2.8 DMA Channels (not for PCI bus)

e 2.9 "Resources" for both Device and Driver
® 2.10 Resources are Limited
e 2.11 Second Introduction to PnP

¢ 2.12 How Pnp Works (simplified)

¢ 2.13 Starting Up the PC
e 2.14 Buses

e 2.15 How Linux Does PnP
® 2.16 Problems with Linux PnP

3. in PnP Bl

¢ 3.1 Do you have a PnP operating system?
¢ 3.2 Assigning Resources by the BIOS
¢ 3.3 Reset the configuration?

Plug-and-Play-HOWTO

mailto:dave@lafn.org

Plug-and-Play-HOWTO
4. How to Deal with PnP Car

¢ 4.1 Introduction to Dealing with PnP Devices

¢ 4.2 Device Driver Configures. Reserving Resources
¢ 4.3 /sys User Interface Configures

¢ 4.4 BIOS Configures

® 4.5 ISA cards only: Disable PnP ?

¢ 4.6 ISA Bus: Isapnp (part of isapnptools)

e 4.7 PCI Utilities

¢ 4.8 Windows Configures
e 4.9 PnP Software/Documents

5. Tell the Driver th nfiguration ??

¢ 5.1 Introduction
5.2 Serial Port Driver Example

6. How Do | Find Devi nd How Are Th nfi

¢ 6.1 Finding and How-Configured Are Related
¢ 6.2 Devices May Have Two "Configurations"
¢ 6.3 Finding Hardware

¢ 6.4 Boot-time Messages

® 6.5 The /proc Tree

® 6.6 The /sys Tree

¢ 6.7 PCI Bus Inspection
¢ 6.8 ISA Bus Introduction

® 6.9 ISA PnP cards

® 6.10 LPC Bus

® 6.11 X-bus

® 6.12 Non-PnP Cards

¢ 6.13 Non-PnP Cards with jumpers

® 6.14 Neither PnP nor jumpers

¢ 6.15 Tools for Detecting and/or Configuring all Hardware

® 6.16 Tools for Detecting and Configuring One Type of Hardware
® 6.17 Use MS Windows

7. PCl Interrupts

e 7.1 Introduction

e 7.2 History: From ISA to PCI Interrupts

¢ 7.3 Advanced Programmable Interrupt Controller (APIC)
® 7.4 Message Signalled Interrupts (MST)

¢ 7.5 Sharing PCI Interrupts

¢ 7.6 Looking at Routing Tables

e 7.7 For More Information

¢ 7.8 PCI Interrupt Linking

4. How to Deal with PnP Cards

Plug-and-Play-HOWTO
8. PnP for External and Plug-in Devi

¢ 8.1 USB Bus

¢ 8.2 Hot Plug

¢ 8.3 Hot Swap

¢ 8.4 PnP Finds Devices Plugged Into Serial Ports

9. Error Messages

¢ 9.1 Unexpected Interrupt

© 9.2 Plug and Play Configuration Error (Dell BIOS)

¢ 9.3 isapnp: Write Data Register 0xa79 already used (from logs)
® 9.4 Can't allocate region (PCI)

10. Interr haring and Interr nfli

e 10.1 Introduction

¢ 10.2 Real Interrupt Conflict
¢ 10.3 No Interrupt Available

11. A ndix

¢ 11.1 Universal Plug and Play (UPnP)

e 11.2 Address Details

¢ 11.3 ISA Bus Configuration Addresses (Read-Port etc.)
¢ 11.4 Interrupts --Details

¢ 11.5 How the Device Driver Catches its Interrupt

e 11.6 ISA Isolation

¢ 11.7 Bus Mastering and DMA resources
e 11.8 Historical and Obsolete

1. Intr ion

1.1 1. Copyright, Trademarks, Disclaimer, & Credits
Copyright
Copyright (c) 1998-2007 by David S. Lawyer mailto:dave @lafn.org

Please freely copy and distribute (sell or give away) this document in any format. Send any corrections and
comments to the document maintainer. You may create a derivative work and distribute it provided that you:

1. If it's not a translation: Email a copy of your derivative work (in a format LDP accepts) to the
author(s) and maintainer (could be the same person). If you don't get a response then email the LDP
(Linux Documentation Project): submit@en.tldp.org.

2. License the derivative work in the spirit of this license or use GPL. Include a copyright notice and at
least a pointer to the license used.

8. PnP for External and Plug-in Devices

mailto:dave@lafn.org

Plug-and-Play-HOWTO

3. Give due credit to previous authors and major contributors.

If you're considering making a derived work other than a translation, it's requested that you discuss your plans
with the current maintainer.

Disclaimer

While I haven't intentionally tried to mislead you, there are likely a number of errors in this document. Please
let me know about them. Since this is free documentation, it should be obvious that I cannot be held legally
responsible for any errors.

Trademarks.

Any brand names (starts with a capital letter such as MS Windows) should be assumed to be a trademark).
Such trademarks belong to their respective owners.

Credits

® March 2000: Daniel Scott proofread this and found many typos, etc.

¢ June 2000: Pete Barrett gave a workaround to prevent Windows from zeroing PCI IRQs.

e August 2004: Ross Boylan found typos, etc. and pointed out lack of clarity in telling the BIOS if it's a
PnP OS

1.2 Future Plans; You Can Help

Please let me know of any errors in facts, opinions, logic, spelling, grammar, clarity, links, etc. But first, if the
date is over a several months old, check to see that you have the latest version. Please send me any info that
you think belongs in this document.

I haven't studied the code used by various Linux drivers and the kernel to implement Plug-and-Play. But I
have sampled a little of it (especially some of the comments). Thus this HOWTO is still incomplete. It needs
to explain more about "hot swapping", "hot-plug" and about the new PnP software for kernel 2.6. The history
of Linux PnP is not well covered. Also, it doesn't cover firewire. It likely has some inaccuracies (let me know
where I'm wrong). In this HOWTO I've sometimes used ?? to indicate that I don't really know the answer.

w Versions of this HOWT

New versions of the Plug-and-Play-HOWTO should appear every year or so and will be available to browse
and/or download at LDP mirror sites. For a list of mirror sites see: http://tldp.org/mirrors.html. Various
formats are available. If you only want to quickly check the date of the latest version look at:

http://tldp.org/ HOWTO/Plug-and-Play-HOWTO .html. The version you are now reading is: v1.15, August
2007 .

1.4 New in Recent Versions

For a full revision history going back to the first version see the source file (in linuxdoc format) at
http://cvsview.tldp.org/index.cgi/I. DP/howto/linuxdoc/Plug-and-Play-HOWTO.sgml

Copyright 4

http://tldp.org/mirrors.html
http://tldp.org/HOWTO/Plug-and-Play-HOWTO.html
http://cvsview.tldp.org/index.cgi/LDP/howto/linuxdoc/Plug-and-Play-HOWTO.sgml

Plug-and-Play-HOWTO

e v1.15 Aug. 2007 Revised interrupt sections. Removed 2 redundant and confusing paragraphs
containing a mystery function "h()"

¢ v1.14 Feb. 2006: Revised "How Linux Does PnP"; LPC was intended to be config. by the BIOS.
Balancing IRQs. Linux can find drivers for detected devices.

e v1.13 July 2005: IRQ conflicts. Better clarity in resource descriptions. /proc/bus. PCI configuration
space accessed via 1O address space. More hardware detection tools. "Can't allocate region" error
message.

¢ v1.12 March 2005: /dev/ethO doesn't exist anymore. Info in /sys and /proc changed for kernel 2.6. PCI
Config. address space is "geographic". scanpci may find a device that Ispci can't. Kernel may assign
addresses at boot-time.

neral Intr ion.D n his HOWTQ?

Plug-and-play (PnP) is a system which automatically detects devices such as disks, sound cards, ethernet
cards, modems, etc. It finds all devices on the PCI bus and all devices that support PnP on the old ISA bus.
Before PnP, many devices were automatically searched for by non-PnP methods, but were sometimes not
found. PnP provides a way to find all devices that support PnP. It also does some low-level configuring of
them. Non-PnP devices (or PnP devices which have not been correctly PnP-configured), can often be detected
by non-PnP methods. The PCI bus is inherently PnP while the old ISA bus originally wasn't PnP but had PnP
support added to it later. So sometimes PnP is used to only mean PnP for the old ISA bus. For example, when
you see a boot-time message from "isapnp" and it reads: "Plug & Play device" it only means an ISA Plug &
Play device. In this HOWTO, PnP means PnP for both the ISA and the PCI bus.

As time goes by the Linux kernel is became better at supporting PnP. In the late 20th century, one could say
that Linux was not really a PnP OS. But the claim is made that with version 2.6 of the kernel, Linux is now
fully PnP (provided the kernel is built with appropriate PnP support). While the PnP system is not centralized
like it is in MS Windows (with its registry) the decentralized Linux PnP seems to work OK.

Linux does keep track of resource assignments requested by device drivers and refuses any request if it thinks
it would cause a conflict. The kernel also provides programs that device drivers can call on to do their own
plug-and-play. The kernel also reads all configuration registers of all PnP devices and maintains tables of
them that device drivers can consult. This table helps drivers find their hardware. Kernel 2.6 provides better
support for "hot plug".

The BIOS hardware of your PC likely does some plug-and-play work too. Thus if everything works OK
PnP-wise, you can use your computer without needing to know anything about plug-and-play. But if some
devices which are supported by Linux don't work (because they're not discovered or configured correctly by
PnP) then you may need to read some of this HOWTO. You'll learn not only about PnP but also learn
something about how communication takes place inside the computer. If you have a modern computer with a
PCI bus but no ISA bus, you may skip over or skim the parts about the ISA bus.

If you're having problems with a device, watch the messages displayed at boot-time (go back thru them using
Shift-PageUp). If this doesn't also display early messages from the BIOS use the "Pause” key. See Pause

Check to see that you have the right driver for a device, and that the driver is being found and used. If the
driver is a module, type "lsmod" (as the root user) to see it it's loaded (in use). If it's not a module then it
should be built into the kernel.

This HOWTO doesn't cover the problem of finding and installing device drivers. Perhaps it should. One
problem is that a certain brand of a card (or other physical device) may not say what kind of chips are used in

1.4 New in Recent Versions 5

Plug-and-Play-HOWTO

it. The driver name is often the same as the chip name and not the brand name. One way to start to check on a
driver is to see if it is discussed in the kernel documentation, in another HOWTO, or on the Internet. Warning:
Such documentation may be out of date.

The PCI bus computers (no ISA bus) have significantly reduced the number of things that can go wrong. For
the ISA bus and the lack of kernel support for ISA Pnp (before kernel 2.4), there was much more that could go

wrong. Remember that sometimes problems which seem to be PnP related are actually due to defective
hardware or to hardware that doesn't fully conform to PnP specs.

2. What PnP Should Do: Allocate "Bus-Resources"
2.1 What is Plug-and-Play (PnP)?

If you don't understand this section, read the next section Hardware Devices and Communication with them

Oversimplified, Plug-and-Play tells the software (device drivers) where to find various pieces of hardware
(devices) such as modems, network cards, sound cards, etc. Plug-and-Play's task is to match up physical
devices with the software (device drivers) that operates them and to establish channels of communication
between each physical device and its driver. In order to achieve this, PnP allocates and sets the following
"bus-resources"” in hardware: 1/O addresses, memory regions, IRQs, DMA channels (LPC and ISA buses
only). These 4 things are sometimes called "1st order resources” or just "resources". Pnp maintains a record of
what it's done and allows device drivers to get this information. If you don't understand what these 4
bus-resources are, read the following subsections of this HOWTO: I/O Addresses, IRQs, DMA Channels,
Memory Regions. An article in Linux Gazette regarding 3 of these bus-resources is Introduction to IRQs,
DMAs and Base Addresses. Once these bus-resources have been assigned (and if the correct driver is
installed), the actual driver and the "files" for it in the /dev directory are ready to use.

This PnP assignment of bus-resources is sometimes called "configuring" but it is only a low level type of
configuring. The /etc directory has many configuration files but most all of them are not for PnP configuring.
So most of the configuring of hardware devices has nothing to do with PnP or bus-resources. For, example the
initializing of a modem by an "init string" or setting it's speed is not PnP. Thus when talking about PnP,
"configuring" means only a certain type of configuring. While other documentation (such as for MS
Windows) simply calls bus-resources "resources”, I sometimes use the term "bus-resources" instead of just
"resources" so as to distinguish it from the multitude of other kinds of resources.

PnP is a process which is done by various software and hardware. If there was just one program that handled
PnP in Linux, it would be simple. But with Linux each device driver does it's own PnP, using software
supplied by the kernel. The BIOS hardware of the PC does PnP when a PC is first powered up. And there's a
lot more to it than this.

rdware Devi n mmunication with them

A computer consists of a CPU/processor to do the computing and RAM memory to store programs and data
(for fast access). In addition, there are a number of devices such as various kinds of disk-drives, a video card,
a keyboard, network devices, modem cards, sound devices, the USB bus, serial and parallel ports, etc. In
olden days most devices were on cards inserted into slots in the PC. Today, many devices that were formerly
cards, are now on-board since they are contained in chips on the motherboard. There is also a power supply to
provide electric energy, various buses on a motherboard to connect the devices to the CPU, and a case to put
all this into.

1.5 General Introduction. Do you need this HOWTQO? 6

http://www.linuxgazette.com/issue38/blanchard.html
http://www.linuxgazette.com/issue38/blanchard.html

Plug-and-Play-HOWTO

Cards which plug into the motherboard may contain more than one device. Memory chips are also sometimes
considered to be devices but are not plug-and-play in the sense used in this HOWTO.

For the computer system to work right, each device must be under the control of its "device driver". This is
software which is a part of the operating system (perhaps loaded as a module) and runs on the CPU. Device
drivers are associated with "special files" in the /dev directory although they are not really files. They have
names such as hda3 (third partition on hard drive a), ttyS1 (the second serial port), ethO (the first ethernet
card), etc.

The ethO device is for an ethernet card (nic card). Formerly it was /dev/ethO but it's now just a virtual device
in the kernel. What ethO refers to depends on the type of ethernet card you have. If the driver is a module, this
assignment is likely in an internal kernel table but might be found in /etc/modules.conf (called "alias"). For
example, if you have an ethernet card that uses the "tulip" chip you could put "alias ethO tulip" into
/etc/modules.conf so that when your computer asks for eth0 it finds the tulip driver. However, modern kernels
can usually find the right driver module so that you seldom need to specify it yourself.

To control a device, the CPU (under the control of the device driver) sends commands and data to, and reads
status and data from the various devices. In order to do this each device driver must know the address of the
device it controls. Knowing such an address is equivalent to setting up a communication channel, even though
the physical "channel" is actually the data bus inside the PC which is shared with many other devices.

This communication channel is actually a little more complex than described above. An "address" is actually a
range of addresses so that sometimes the word "range" is used instead of "address". There could even be more
that one range (with no overlapping) for a single device. Also, there is a reverse part of the channel (known as
interrupts) which allows devices to send an urgent "help" request to their device driver.

2.3 Addresses

The PCI bus has 3 address spaces: I/O, main memory (IO memory), and configuration. The old ISA bus lacks
a genuine "configuration" address space. Only the I/0 and IO memory spaces are used for device 10O.
Configuration addresses are fixed and can't be changed so they don't need to be allocated. For more details see

PCI Configuration Address Space

When the CPU wants to access a device, it puts the device's address on a major bus of the computer (for PCI:
the address/data bus). All types of addresses (such as both I/O and main memory) share the same bus inside
the PC. But the presence or absence of voltage on certain dedicated wires in the PC's bus tells which "space"
an address is in: /O, main memory, (see Memory Ranges), or configuration (PCI only). This is a little
oversimplified since telling a PCI device that it's a configuration space access is actually more complex than
described above. See PCI Configuration Address Space for details. See Address Details for more details on
addressing in general.

The addresses of a device are stored in it's registers in the physical device. They can be changed by software

and they can be disabled so that the device has no address at all. Except that the PCI configuration address
can't be changed or disabled.

2.4 1/0 Addresses (principles relevant to other resources
too)

2.2 Hardware Devices and Communication with them 7

Plug-and-Play-HOWTO

Devices were originally located in I/O address space but today they may use space in main memory. An 1/0
address is sometimes just called "I/O", "IO", "i/0" or "io". The terms "I/O port" or "I/O range" are also used.
Don't confuse these 10 ports with "IO memory" located in main memory. There are two main steps to allocate
the I/0 addresses (or some other bus-resources such as interrupts on the ISA bus):

1. Set the I/O address, etc. in the hardware (in one of its registers)
2. Let its device driver know what this I/O address, etc. is

Often, the device driver does both of these (sort of). The device driver doesn't actually need to set an /O
address if it finds out that the address has been previously set (perhaps by the BIOS) and is willing to accept
that address. Once the driver has either found out what address has been previously set or sets the address
itself, then it obviously knows what the address is so there is no need to let the driver know the address --it
already knows it.

The two step process above (1. Set the address in the hardware. 2. Let the driver know it.) is something like
the two part problem of finding someone's house number on a street. Someone must install a number on the
front of the house so that it may be found and then people who might want to go to this address must obtain
(and write down) this house number so that they can find the house. For computers, the device hardware must
first get its address put into a special register in its hardware (put up the house number) and then the device
driver must obtain this address (write the house number in its address book). Both of these must be done,
either automatically by software or by entering the data manually into configuration files. Problems may occur
when only one of them gets done right.

For manual PnP configuration some people make the mistake of doing only one of these two steps and then
wonder why the computer can't find the device. For example, they may use "setserial” to assign an address to
a serial port without realizing that this only tells the driver an address. It doesn't set the address in the serial
port hardware itself. If you told the driver wrong then you're in trouble. Another way to tell the driver is to
give the address as an option to a kernel module (device driver). If what you tell it is wrong, there could be
problems. A smart driver may detect how the hardware is actually set and reject the incorrect information
supplied by the option (or at least issue an error message).

An obvious requirement is that before the device driver can use an address it must be first set in the physical
device (such as a card). Since device drivers often start up soon after you start the computer, they sometimes
try to access a card (to see if it's there, etc.) before the address has been set in the card by a PnP configuration
program. Then you see an error message that they can't find the card even though it's there (but doesn't yet
have an address yet).

What was said in the last few paragraphs regarding I/O addresses applies with equal force to most other
bus-resources: Memory Ranges, IRQs --Overview and DMA Channels. What these are will be explained in
the next 3 sections. The exception is that interrupts on the PCI bus are not set by card registers but are instead
routed (mapped) to IRQs by a chip on the motherboard. Then the IRQ a PCI card is routed to is written into
the card's register for information purposes only.

To see what IO addresses are used on your PC, look at the /proc/ioports file.

2.5 Memory Ranges

Many devices are assigned address space in main memory. It's sometimes called "shared memory" or
"memory-mapped IO" or "IO memory". This memory is physically located inside the physical device but the
computer accesses it just like it would access memory on memory chips. When discussing bus-resources it's

2.4 1/0O Addresses (principles relevant to other resourcestoo) 8

Plug-and-Play-HOWTO

non

often just called "memory", "mem", or "iomem". In addition to using such "memory", such a device might
also use conventional 10 address space. To see what mem is in use on your computer, look at /proc/iomem.
This "file" includes the memory used by your ordinary RAM memory chips so it shows memory allocation in
general and not just iomem allocation. If you see a strange number instead of a name, it's likely the number of
a PCI device which you can verify by typing "lspci".

When you insert a card that uses iomem, you are in effect also inserting a memory module for main memory.
A high address is selected for it by PnP so that it doesn't conflict with the main memory modules (chips). This
memory can either be ROM (Read Only Memory) or shared memory. Shared memory is shared between the
device and the CPU (running the device driver) just as IO address space is shared between the device and the
CPU. This shared memory serves as a means of data "transfer" between the device and main memory. It's
Input-Output (IO) but it's not done in IO space. Both the card and the device driver need to know the memory
range.

ROM (Read Only Memory) on cards is a different kind of iomem. It is likely a program (perhaps a device
driver) which will be used with the device. It could be initialization code so that a device driver is still
required. Hopefully, it will work with Linux and not just MS Windows. It may need to be shadowed which
means that it is copied to your main memory chips in order to run faster. Once it's shadowed it's no longer
"read only".

2.6 IRQs --Overview

After reading this you may want to read Interrupts --Details for many more details. The following is
intentionally oversimplified: Besides the address, there is also an interrupt number to deal with (such as IRQ
5). It's called an IRQ (Interrupt ReQuest) number or just an "irq" for short. We already mentioned above that
the device driver must know the address of a card in order to be able to communicate with it.

But what about communication in the opposite direction? Suppose the device needs to tell its device driver
something immediately. For example, the device may be receiving a lot of bytes destined for main memory
and its buffer used to store these bytes is almost full. Thus the device needs to tell its driver to fetch these
bytes at once before the buffer overflows from the incoming flow of bytes. Another example is to signal the
driver that the device has finished sending out a bunch of bytes and is now waiting for some more bytes from
the driver so that it can send them too.

How should the device rapidly signal its driver? It may not be able to use the main data bus since it's likely
already in use. Instead it puts a voltage on a dedicated interrupt wire (also called line or trace) which is often
reserved for that device alone. This voltage signal is called an Interrupt ReQuest (IRQ) or just an "interrupt"
for short. There are the equivalent of 16 (or 24, etc.) such wires in a PC and each wire leads (indirectly) to a
certain device driver. Each wire has a unique IRQ (Interrupt ReQuest) number. The device must put its
interrupt on the correct wire and the device driver must listen for the interrupt on the correct wire. Which wire
the device sends such "help requests” on is determined by the IRQ number stored in the device. This same
IRQ number must be known to the device driver so that the device driver knows which IRQ line to listen on.

Once the device driver gets the interrupt from the device it must find out why the interrupt was issued and
take appropriate action to service the interrupt. On the ISA bus, each device usually needs its own unique IRQ
number. For the PCI bus and other special cases, the sharing of IRQs is allowed (two or more PCI devices
may have the same IRQ number). Also, for PCI, each PCI device has a fixed "PCI Interrupt" wire. But a
programmable routing chip maps the PCI wires to ISA-type interrupts. See Interrupts --Details for details on
how all the above works.

2.5 Memory Ranges 9

Plug-and-Play-HOWTO

2.7 DMA (Direct Memory Access) or Bus Mastering

For the PCI bus, DMA and Bus Mastering mean the same thing. Prior to the PCI bus, Bus Mastering was rare
and DMA worked differently and was slow. Direct Memory Access (DMA) is where a device is allowed to
take over the main computer bus from the CPU and transfer bytes directly to main memory or to some other
device. Normally the CPU would make a transfer from a device to main memory in a two step process:

1. reading a chunk of bytes from the I/O memory space of the device and putting these bytes into CPU
itself
2. writing these bytes from the CPU to main memory

With DMA it's a one step process of sending the bytes directly from the device to memory. The device must
have DMA capabilities built into its hardware and thus not all devices can do DMA. While DMA is going on,
the CPU can't do too much since the main bus is being used by the DMA transfer.

The old ISA bus can do slow DMA while the PCI bus does "DMA" by Bus Mastering. The LPC bus has both
the old DMA and the new DMA (bus mastering). On the PCI bus, what more precisely should be called "bus
mastering" is often called "Ultra DMA", "BM-DNA", "udma", or just "DMA", Bus mastering allows devices
to temporarily become bus masters and to transfer bytes almost like the bus master was the CPU. It doesn't
use any channel numbers since the organization of the PCI bus is such that the PCI hardware knows which
device is currently the bus master and which device is requesting to become a bus master. Thus there is no
resource allocation of DMA channels for the PCI bus and no dma channel resources exist for this bus. The
LPC (Low Pin Count) bus is supposed to be configured by the BIOS so users shouldn't need to concern
themselves with its DMA channels.

2.8 DMA Channels (nhot for PCI bus)

This is only for the LPC bus and the old ISA bus. When a device wants to do DMA it issues a DMA-request
using dedicated DMA request wires much like an interrupt request. DMA actually could have been handled
by using interrupts but this would introduce some delays so it's faster to do it by having a special type of
interrupt known as a DMA-request. Like interrupts, DMA-requests are numbered so as to identify which
device is making the request. This number is called a DMA-channel. Since DMA transfers all use the main
bus (and only one can run at a time) they all actually use the same channel for data flow but the "DMA
channel" number serves to identify who is using the "channel". Hardware registers exist on the motherboard
which store the current status of each "channel". Thus in order to issue a DM A-request, the device must know
its DMA-channel number which must be stored in a special register on the physical device.

29"R r " for h Devi nd Driv

Thus device drivers must be "attached" in some way to the hardware they control. This is done by allocating
bus-resources (I/0, Memory, IRQ's, DMA's) to both the physical device and letting the device driver to find
out about it. For example, a serial port uses only 2 resources: an IRQ and an I/O address. Both of these values
must be supplied to the device driver and the physical device. The driver (and its device) is also given a name
in the /dev directory (such as ttyS1). The address and IRQ number is stored by the physical device in
configuration registers on its card (or in a chip on the motherboard). Old hardware (in the mid 1990's) used
switches (or jumpers) to physically set the IRQ and address in the hardware. This setting remained fixed until
someone remover the computer's cover and moved the jumpers.

2.7 DMA (Direct Memory Access) or Bus Mastering 10

Plug-and-Play-HOWTO

But for the case of PnP (no jumpers), the configuration register data is usually lost when the PC is powered
down (turned off) so that the bus-resource data must be supplied to each device anew each time the PC is
powered on.

2.10 Resources are Limited

Ideal Computers

The architecture of the PC provides only a limited number of resources: IRQ's, DMA channels, I/O address,
and memory regions. If there were only a limited number devices and they all used standardized bus-resources
values (such as unique I/O addresses and IRQ numbers) there would be no problem of attaching device
drivers to devices. Each device would have a fixed resources which would not conflict with any other device
on your computer. No two devices would have the same addresses, there would be no IRQ conflicts on the
ISA bus, etc. Each driver would be programmed with the unique addresses, IRQ, etc. hard-coded into the
program. Life would be simple.

Another way to prevent address conflicts would be to have each card's slot number included as part of the
address. Thus there could be no address conflict between two different cards (since they are in different slots).
Card design would not allow address conflicts between different functions of the card. It turns out that the
configuration address space (used for resource inquiry and assignment) actually does this. But it's not done for
I/O addresses nor memory regions. Sharing IRQs as on the PCI bus also avoids conflicts but may cause other
problems.

Real Computers

But PC architecture has conflict problems. The increase in the number of devices (including multiple devices
of the same type) has tended to increase potential conflicts. At the same time, the introduction of the PCI bus,
where two or more devices can share the same interrupt and the introduction of more interrupts, has tended to
reduce conflicts. The overall result, due to going to PCI, has been a reduction in conflicts since the scarcest
resource is IRQs. However, even on the PCI bus it's more efficient to avoid IRQ sharing. In some cases where
interrupts happen in rapid succession and must be acted on fast (like audio) sharing can cause degradation in
performance. So it's not good to assign all PCI devices the same IRQ, the assignment needs to be balanced.
Yet some people find that all their PCI devices are on the same IRQ.

So devices need to have some flexibility so that they can be set to whatever address, IRQ, etc. is needed to
avoid any conflicts and achieve balancing. But some IRQ's and addresses are pretty standard such as the ones
for the clock and keyboard. These don't need such flexibility.

Besides the problem of conflicting allocation of bus-resources, there is a problem of making a mistake in
telling the device driver what the bus-resources are. This is more likely to happen for the case of
old-fashioned manual configuration where the user types in the resources used into a configuration file stored
on the harddrive. This often worked OK when resources were set by jumpers on the cards (provided the user
knew how they were set and made no mistakes in typing this data to configuration files). But with resources
being set by PnP software, they may not always get set the same and this may mean trouble for any manual
configuration where the user types in the values of bus-resources that were set by PnP.

The allocation of bus-resources, if done correctly, establishes non-conflicting channels of communication
between physical hardware and their device drivers. For example, if a certain I/O address range (resource) is
allocated to both a device driver and a piece of hardware, then this has established a one-way communication
channel between them. The driver may send commands and other info to the device. It's actually more than

2.9 "Resources" for both Device and Driver 11

Plug-and-Play-HOWTO

one-way communications since the driver may get information from the device by reading its registers. But
the device can't initiate any communication this way. To initiate communication the device needs an IRQ so it
can send interrupts to its driver. This creates a two-way communication channel where both the driver and the
physical device can initiate communication.

2.11 Second Introduction to PnP

The term Plug-and-Play (PnP) has various meanings. In the broad sense it is just auto-configuration where one
just plugs in a device and it configures itself. In the sense used in this HOWTO, PnP means the configuring
PnP bus-resources (setting them in the physical devices) and letting the device drivers know about it. For the
case of Linux, it is often just a driver determining how the BIOS has set bus-resources and if necessary, the
driver giving a command to change (reset) the bus-resources. "PnP" often just means PnP on the ISA bus so
that the message from isapnp: "No Plug and Play device found" just means that no ISA PnP devices were
found. The standard PCI specifications (which were invented before coining the term "PnP") provide the
equivalent of PnP for the PCI bus.

PnP matches up devices with their device drivers and specifies their communication channels (by allocating
bus-resources). It electronically communicates with configuration registers located inside the physical devices
using a standardized protocol. On the ISA bus before Plug-and-Play, the bus-resources were formerly set in
hardware devices by jumpers or switches. Sometimes the bus-resources could be set into the hardware
electronically by a driver (usually written only for a MS OS but in rare cases supported by a Linux driver).
This was something like PnP but there was no standardized protocol used so it wasn't really PnP. Some cards
had jumper setting which could be overridden by such software. For Linux before PnP, most software drivers
were assigned bus-resources by configuration files (or the like) or by probing the for the device at addresses
where it was expected to reside. But these methods are still in use today to allow Linux to use old non-PnP
hardware. And sometimes these old methods are still used today on PnP hardware (after say the BIOS has
assigned resources to hardware by PnP methods).

The PCI bus was PnP-like from the beginning, but it's not usually called PnP or "plug and play" with the
result that PnP often means PnP on the ISA bus. But PnP in this documents usually means PnP on either the
ISA or PCI bus.

2.12 How Pnp Works (simplified)

Here's how PnP should work in theory. The hypothetical PnP configuration program finds all PnP devices and
asks each what bus-resources it needs. Then it checks what bus-resources (IRQs, etc.) it has to give away. Of
course, if it has reserved bus-resources used by non-PnP (legacy) devices (if it knows about them) it doesn't
give these away. Then it uses some criteria (not specified by PnP specifications) to give out the bus-resources
so that there are no conflicts and so that all devices get what they need (if possible). It then indirectly tells
each physical device what bus-resources are assigned to it and the devices set themselves up to use only the
assigned bus-resources. Then the device drivers somehow find out what bus-resources their devices use and
are thus able to communicate effectively with the devices they control.

For example, suppose a card needs one interrupt (IRQ number) and 1 MB of shared memory. The PnP
program reads this request from the configuration registers on the card. It then assigns the card IRQS5 and 1
MB of memory addresses space, starting at address 0xe9000000. The PnP program also reads identifying
information from the card telling what type of device it is, its ID number, etc. Then it directly or indirectly
tells the appropriate device driver what it's done. If it's the driver itself that is doing the PnP, then there's no
need to find a driver for the device (since it's driver is already running). Otherwise a suitable device driver
needs to be found and sooner or later told how it's device is configured.

Real Computers 12

Plug-and-Play-HOWTO

It's not always this simple since the card (or routing table for PCI) may specify that it can only use certain IRQ
numbers or that the 1 MB of memory must lie within a certain range of addresses. The details are different for
the PCI and ISA buses with more complexity on the ISA bus.

One way commonly used to allocate resources is to start with one device and allocate it bus-resources. Then
do the same for the next device, etc. Then if finally all devices get allocated resources without conflicts, then
all is OK. But if allocating a needed resource would create a conflict, then it's necessary to go back and try to
make some changes in previous allocations so as to obtain the needed bus-resource. This is called rebalancing.
Linux doesn't do rebalancing but MS Windows does in some cases. For Linux, all this is done by the BIOS
and/or kernel and/or device drivers. In Linux, the device driver doesn't get it's final allocation of resources
until the driver starts up, so one way to avoid conflicts is just not to start any device that might cause a
conflict. However, the BIOS often allocates resources to the physical device before Linux is even booted and
the kernel checks PCI devices for addresses conflicts at boot-time.

There are some shortcuts that PnP software may use. One is to keep track of how it assigned bus-resources at
the last configuration (when the computer was last used) and reuse this. BIOSs do this as does MS Windows
and this but standard Linux doesn't. But in a way it does since it often uses what the BIOS has done. Windows
stores this info in its "Registry" on the hard disk and a PnP/PCI BIOS stores it in non-volatile memory in your
PC (known as ESCD; see The BIOS's ESCD Database). Some say that not having a registry (like Linux) is
better since with Windows, the registry may get corrupted and is difficult to edit. But PnP in Linux has
problems too.

While MS Windows (except for Windows 3.x and NT4) were PnP, Linux was not originally a PnP OS but has
been gradually becoming a PnP OS. PnP originally worked for Linux because a PnP BIOS would configure
the bus-resources and the device drivers would find out (using programs supplied by the Linux kernel) what
the BIOS has done. Today, most drivers can issue commands to do their own bus-resource configuring and
don't need to always rely on the BIOS. Unfortunately a driver could grab a bus-resource which another device
will need later on. Some device drivers may store the last configuration they used in a configuration file and
use it the next time the computer is powered on.

If the device hardware remembered its previous configuration, then there wouldn't be any hardware to PnP
configure at the next boot-time. But hardware seems to forget its configuration when the power is turned off.
Some devices contain a default configuration (but not necessarily the last one used). Thus a PnP device needs
to be re-configured each time the PC is powered on. Also, if a new device has been added, then it too needs to
be configured too. Allocating bus-resources to this new device might involve taking some bus-resources away
from an existing device and assigning the existing device alternative bus-resources that it can use instead. At
present, Linux can't allocate with this sophistication (and MS Windows XP may not be able to do it either).

2.13 Starting Up the PC

When the PC is first turned on the BIOS chip runs its program to get the computer started (the first step is to
check out the motherboard hardware). If the operating system is stored on the hard-drive (as it normally is)
then the BIOS must know about the hard-drive. If the hard-drive is PnP then the BIOS may use PnP methods
to find it. Also, in order to permit the user to manually configure the BIOS's CMOS and respond to error
messages when the computer starts up, a screen (video card) and keyboard are also required. Thus the BIOS
must always PnP-configure devices needed to load the operating system from the hard-drive.

Once the BIOS has identified the hard-drive, the video card, and the keyboard it is ready to start booting

(loading the operating system into memory from the hard-disk). If you've told the BIOS that you have a PnP
operating system (PnP OS), it should start booting the PC as above and let the operating system finish the PnP

2.12 How Pnp Works (simplified) 13

Plug-and-Play-HOWTO

configuring. Otherwise, a PnP-BIOS will (prior to booting) likely try to do the rest of the PnP configuring of
devices (but not inform the device drivers of what it did). But the drivers can still find out this by utilizing
functions available in the Linux kernel.

2.14 Buses

To see what's on the PCI bus type 1spci or 1spci —vv. Ortype scanpci -v for the same information
in the numeric code format where the device is shown by number (such as: "device 0x122d" instead of by
name, etc. In rare cases, scanpci will find a device that 1 spci can't find.

The boot-time messages on your display show devices which have been found on various buses (use
shift-PageUp to back up thru them). See Boot-time Messages

ISA is the old bus of the old IBM-compatible PCs while PCI is a newer and faster bus from Intel. The PCI bus
was designed for what is today called PnP. This makes it easy (as compared to the ISA bus) to find out how
PnP bus-resources have been assigned to hardware devices.

For the ISA bus there was a real problem with implementing PnP since no one had PnP in mind when the ISA
bus was designed and there are almost no I/O addresses available for PnP to use for sending configuration info
to a physical device. As a result, the way PnP was shoehorned onto the ISA bus is very complicated. Whole
books have been written about it. See PnP Book. Among other things, it requires that each PnP device be
assigned a temporary "handle" by the PnP program so that one may address it for PnP configuring. Assigning
these "handles" is call "isolation". See ISA Isolation for the complex details.

As the ISA bus becomes extinct, PnP will be a little easier. It will then not only be easier to find out how the
BIOS has configured the hardware, but there will be less conflicts since PCI can share interrupts. There will
still be the need to match up device drivers with devices and also a need to configure devices that are added
when the PC is up and running. The serio