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PREFACE

In the twenty years which have elapsed since the first appearance of
Maxwell’s Treatise on Electricity and Magnetism great progress has been
made in these sciences. This progress has been largely—perhaps it would
not be too much to say mainly—due to the influence of the views set forth
in that Treatise, to the value of which it offers convincing testimony.

In the following work I have endeavoured to give an account of some re-
cent electrical researches, experimental as well as theoretical, in the hope
that it may assist students to gain some acquaintance with the recent
progress of Electricity and yet retain Maxwell’s Treatise as the source from
which they learn the great principles of the science. I have adopted ex-
clusively Maxwell’s theory, and have not attempted to discuss the conse-
quences which would follow from any other view of electrical action. I have
assumed throughout the equations of the Electromagnetic Field given by
Maxwell in the ninth chapter of the second volume of his Treatise.

The first chapter of this work contains an account of a method of re-
garding the Electric Field, which is geometrical and physical rather than
analytical. I have been induced to dwell on this because I have found that
students, especially those who commence the subject after a long course
of mathematical studies, have a great tendency to regard the whole of
Maxwell’s theory as a matter of the solution of certain differential equa-
tions, and to dispense with any attempt to form for themselves a mental
picture of the physical processes which accompany the phenomena they are
investigating. I think that this state of things is to be regretted, since it
retards the progress of the science of Electricity and diminishes the value
of the mental training afforded by the study of that science.

In the first place, though no instrument of research is more powerful
than Mathematical Analysis, which indeed is indispensable in many de-
partments of Electricity, yet analysis works to the best advantage when



PREFACE v

employed in developing the suggestions afforded by other and more physi-
cal methods. One example of such a method, and one which is very closely
connected with the initiation and development of Maxwell’s Theory, is that
of the ‘tubes of force’ used by Faraday. Faraday interpreted all the laws
of Electrostatics in terms of his tubes, which served him in place of the
symbols of the mathematician, while in his hands the laws according to
which these tubes acted on each other served instead of the differential
equations satisfied by such symbols. The method of the tubes is distinctly
physical, that of the symbols and differential equations is analytical.

The physical method has all the advantages in vividness which arise
from the use of concrete quantities instead of abstract symbols to represent
the state of the electric field; it is more easily wielded, and is thus more
suitable for obtaining rapidly the main features of any problem; when,
however, the problem has to be worked out in all its details, the analytical
method is necessary.

In a research in any of the various fields of electricity we shall be acting
in accordance with Bacon’s dictum that the best results are obtained when
a research begins with Physics and ends with Mathematics, if we use the
physical theory to, so to speak, make a general survey of the country, and
when this has been done use the analytical method to lay down firm roads
along the line indicated by the survey.

The use of a physical theory will help to correct the tendency—which I
think all who have had occasion to examine in Mathematical Physics will
admit is by no means uncommon—to look on analytical processes as the
modern equivalents of the Philosopher’s Machine in the Grand Academy of
Lagado, and to regard as the normal process of investigation in this subject
the manipulation of a large number of symbols in the hope that every now
and then some valuable result may happen to drop out.

Then, again, I think that supplementing the mathematical theory by
one of a more physical character makes the study of electricity more valu-
able as a mental training for the student. Analysis is undoubtedly the
greatest thought-saving machine ever invented, but I confess I do not think
it necessary or desirable to use artificial means to prevent students from
thinking too much. It frequently happens that more thought is required,
and a more vivid idea of the essentials of a problem gained, by a rough
solution by a general method, than by a complete solution arrived at by
the most recent improvements in the higher analysis.
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The method of illustrating the properties of the electric field which I
have given in Chapter I has been devised so as to lead directly to the dis-
tinctive feature in Maxwell’s Theory, that changes in the polarization in
a dielectric produce magnetic effects analogous to those produced by con-
duction currents. Other methods of viewing the processes in the Electric
Field, which would be in accordance with Maxwell’s Theory, could, I have
no doubt, be devised; the question as to which particular method the stu-
dent should adopt is however for many purposes of secondary importance,
provided that he does adopt one, and acquires the habit of looking at the
problems with which he is occupied as much as possible from a physical
point of view.

It is no doubt true that these physical theories are liable to imply more
than is justified by the analytical theory they are used to illustrate. This
however is not important if we remember that the object of such theories is
suggestion and not demonstration. Either Experiment or rigorous Analysis
must always be the final Court of Appeal; it is the province of these physical
theories to supply cases to be tried in such a court.

Chapter II is devoted to the consideration of the discharge of electric-
ity through gases; Chapter III contains an account of the application of
Schwarz’s method of transformation to the solution of two-dimensional
problems in Electrostatics. The rest of the book is chiefly occupied with
the consideration of the properties of alternating currents; the experiments
of Hertz and the development of electric lighting have made the use of these
currents, both for experimental and commercial purposes, much more gen-
eral than when Maxwell’s Treatise was written; and though the principles
which govern the action of these currents are clearly laid down by Maxwell,
they are not developed to the extent which the present importance of the
subject demands.

Chapter IV contains an investigation of the theory of such currents
when the conductors in which they flow are cylindrical or spherical, while
in Chapter V an account of Hertz’s experiments on Electromagnetic Waves
is given. This Chapter also contains some investigations on the Electro-
magnetic Theory of Light, especially on the scattering of light by small
metallic particles; on reflection from metals; and on the rotation of the
plane of polarization by reflection from a magnet. I regret that it was only
when this volume was passing through the press that I became acquainted
with a valuable paper by Drude (Wiedemann’s Annalen, 46, p. 353, 1892)
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on this subject.
Chapter VI mainly consists of an account of Lord Rayleigh’s inves-

tigations on the laws according to which alternating currents distribute
themselves among a network of conductors; while the last Chapter con-
tains a discussion of the equations which hold when a dielectric is moving
in a magnetic field, and some problems on the distribution of currents in
rotating conductors.

I have not said anything about recent researches on Magnetic Induction,
as a complete account of these in an easily accessible form is contained
in Professor Ewing’s ‘Treatise on Magnetic Induction in Iron and other
Metals.’

I have again to thank Mr. Chree, Fellow of King’s College, Cambridge,
for many most valuable suggestions, as well as for a very careful revision
of the proofs.

J. J. THOMSON.
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of water above that of the surrounding atmosphere.

,, 178. For 90◦C. read 100◦C.



NOTES ON

ELECTRICITY AND MAGNETISM.



CHAPTER I.

ELECTRIC DISPLACEMENT AND FARADAY TUBES OF FORCE.

1.] The influence which the notation and ideas of the fluid theory
of electricity have ever since their introduction exerted over the science
of Electricity and Magnetism, is a striking illustration of the benefits con-
ferred upon this science by a concrete representation or ‘construibar vorstel-
lung ’ of the symbols, which in the Mathematical Theory of Electricity de-
fine the state of the electric field. Indeed the services which the old fluid
theory has rendered to Electricity by providing a language in which the
facts of the science can be clearly and briefly expressed can hardly be over-
rated. A descriptive theory of this kind does more than serve as a vehicle
for the clear expression of well-known results, it often renders important
services by suggesting the possibility of the existence of new phenomena.

The descriptive hypothesis, that of displacement in a dielectric, used by
Maxwell to illustrate his mathematical theory, seems to have been found
by many readers neither so simple nor so easy of comprehension as the old
fluid theory; indeed this seems to have been one of the chief reasons why
his views did not sooner meet with the general acceptance they have since
received. As many students find the conception of ‘displacement’ difficult, I
venture to give an alternative method of regarding the processes occurring
in the electric field, which I have often found useful and which is, from a
mathematical point of view, equivalent to Maxwell’s Theory.

2.] This method is based on the conception, introduced by Faraday, of
tubes of electric force, or rather of electrostatic induction. Faraday, as is
well known, used these tubes as the language in which to express the phe-
nomena of the electric field. Thus it was by their tendency to contract, and
the lateral repulsion which similar tubes exert on each other, that he ex-
plained the mechanical forces between electrified bodies, while the influence
of the medium on these tubes was on his view indicated by the existence
of specific inductive capacity in dielectrics. Although the language which
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Faraday used about lines of force leaves the impression that he usually
regarded them as chains of polarized particles in the dielectric, yet there
seem to be indications that he occasionally regarded them from another
aspect; i.e. as something having an existence apart from the molecules of
the dielectric, though these were polarized by the tubes when they passed
through the dielectric. Thus, for example, in § 1616 of the Experimental
Researches he seems to regard these tubes as stretching across a vacuum.
It is this latter view of the tubes of electrostatic induction which we shall
adopt, we shall regard them as having their seat in the ether, the polariza-
tion of the particles which accompanies their passage through a dielectric
being a secondary phenomenon. We shall for the sake of brevity call such
tubes Faraday Tubes.

In addition to the tubes which stretch from positive to negative electric-
ity, we suppose that there are, in the ether, multitudes of tubes of similar
constitution but which form discrete closed curves instead of having free
ends; we shall call such tubes ‘closed’ tubes. The difference between the
two kinds of tubes is similar to that between a vortex filament with its
ends on the free surface of a liquid and one forming a closed vortex ring
inside it. These closed tubes which are supposed to be present in the ether
whether electric forces exist or not, impart a fibrous structure to the ether.

In his theory of electric and magnetic phenomena Faraday made use of
tubes of magnetic as well as of electrostatic induction, we shall find however
that if we keep to the conception of tubes of electrostatic induction we can
explain the phenomena of the magnetic field as due to the motion of such
tubes.

The Faraday Tubes.

3.] As is explained in Art. 82 of Maxwell’s Electricity and Magnetism,
these tubes start from places where there is positive and end at places
where there is negative electricity, the quantity of positive electricity at
the beginning of the tube being equal to that of the negative at the end.
If we assume that the tubes in the field are all of the same strength, the
quantity of free positive electricity on any surface will be proportional to
the number of tubes leaving the surface. In the mathematical theory of
electricity there is nothing to indicate that there is any limit to the extent to
which a field of electric force can be subdivided up into tubes of continually
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diminishing strength, the case is however different if we regard these tubes
of force as being no longer merely a form of mathematical expression, but
as real physical quantities having definite sizes and shapes. If we take
this view, we naturally regard the tubes as being all of the same strength,
and we shall see reasons for believing that this strength is such that when
they terminate on a conductor there is at the end of the tube a charge
of negative electricity equal to that which in the theory of electrolysis we
associate with an atom of a monovalent element such as chlorine.

This strength of the unit tubes is adopted because the phenomena of
electrolysis show that it is a natural unit, and that fractional parts of this
unit do not exist, at any rate in electricity that has passed through an
electrolyte. We shall assume in this chapter that in all electrical processes,
and not merely in electrolysis, fractional parts of this unit do not exist.

The Faraday tubes either form closed circuits or else begin and end on
atoms, all tubes that are not closed being tubes that stretch in the ether
along lines either straight or curved from one atom to another. When the
length of the tube connecting two atoms is comparable with the distance
between the atoms in a molecule, the atoms are said to be in chemical
combination; when the tube connecting the atoms is very much longer
than this, the atoms are said to be ‘chemically free’.

The property of the Faraday tubes of always forming closed circuits or
else having their ends on atoms may be illustrated by the similar property
possessed by tubes of vortex motion in a frictionless fluid, these tubes
either form closed circuits or have their ends on the boundary of the liquid
in which the vortex motion takes place.

The Faraday tubes may be supposed to be scattered throughout space,
and not merely confined to places where there is a finite electromotive
intensity, the absence of this intensity being due not to the absence of the
Faraday tubes, but to the want of arrangement among such as are present:
the electromotive intensity at any place being thus a measure, not of the
whole number of tubes at that place, but of the excess of the number
pointing in the direction of the electromotive intensity over the number of
those pointing in the opposite direction.

4.] In this chapter we shall endeavour to show that the various phenom-
ena of the electromagnetic field may all be interpreted as due to the motion
of the Faraday tubes, or to changes in their position or shape. Thus, from
our point of view, this method of looking at electrical phenomena may be
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regarded as forming a kind of molecular theory of Electricity, the Faraday
tubes taking the place of the molecules in the Kinetic Theory of Gases: the
object of the method being to explain the phenomena of the electric field
as due to the motion of these tubes, just as it is the object of the Kinetic
Theory of Gases to explain the properties of a gas as due to the motion of
its molecules.

These tubes also resemble the molecules of a gas in another respect, as
we regard them as incapable of destruction or creation.

5.] It may be asked at the outset, why we have taken the tubes of
electrostatic induction as our molecules, so to speak, rather than the tubes
of magnetic induction? The answer to this question is, that the evidence
afforded by the phenomena which accompany the passage of electricity
through liquids and gases shows that molecular structure has an exceed-
ingly close connection with tubes of electrostatic induction, much closer
than we have any reason to believe it has with tubes of magnetic induc-
tion. The choice of the tubes of electrostatic induction as our molecules
seems thus to be the one which affords us the greatest facilities for ex-
plaining those electrical phenomena in which matter as well as the ether is
involved.

6.] Let us consider for a moment on this view the origin of the energy
in the electrostatic and electromagnetic fields. We suppose that associated
with the Faraday tubes there is a distribution of velocity of the ether both
in the tubes themselves and in the space surrounding them. Thus we
may have rotation in the ether inside and around the tubes even when
the tubes themselves have no translatory velocity, the kinetic energy due
to this motion constituting the potential energy of the electrostatic field:
while when the tubes themselves are in motion we have super-added to
this another distribution of velocity whose energy constitutes that of the
magnetic field.

The energy we have considered so far is in the ether, but when a tube
falls on an atom it may modify the internal motion of the atom and thus
affect its energy. Thus, in addition to the kinetic energy of the ether arising
from the electric field, there may also be in the atoms some energy arising
from the same cause and due to the alteration of the internal motion of the
atoms produced by the incidence of the Faraday tubes. If the change in the
energy of an atom produced by the incidence of a Faraday tube is different
for atoms of different substances, if it is not the same, for example, for an
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atom of hydrogen as for one of chlorine, then the energy of a number of
molecules of hydrochloric acid would depend upon whether the Faraday
tubes started from the hydrogen and ended on the chlorine or vice versâ.
Since the energy in the molecules thus depends upon the disposition of
the tubes in the molecule, there will be a tendency to make all the tubes
start from the hydrogen and end on the chlorine or vice versâ, according
as the first or second of these arrangements makes the difference between
the kinetic and potential energies a maximum. In other words, there will,
in the language of the ordinary theory of electricity, be a tendency for all
the atoms of hydrogen to be charged with electricity of one sign, while all
the atoms of chlorine are charged with equal amounts of electricity of the
opposite sign.

The result of the different effects on the energy of the atom produced by
the incidence of a Faraday tube will be the same as if the atoms of different
substances attracted electricity with different degrees of intensity: this has
been shown by v. Helmholtz to be sufficient to account for contact and
frictional electricity. It also, as we shall see in Chapter II, accounts for
some of the effects observed when electricity passes from a gas to a metal
or vice versâ.

7.] The Faraday tubes when they reach a conductor shrink to molecular
dimensions. We shall consider the processes by which this is effected at
the end of this chapter, and in the meantime proceed to discuss the effects
produced by these tubes when moving through a dielectric.

8.] In order to be able to fix the state of the electric field at any
point of a dielectric, we shall introduce a quantity which we shall call the
‘polarization’ of the dielectric, and which while mathematically identical
with Maxwell’s ‘displacement’ has a different physical interpretation. The
‘polarization’ is defined as follows: Let A and B be two neighbouring points
in the dielectric, let a plane whose area is unity be drawn between these
points and at right angles to the line joining them, then the polarization in
the direction AB is the excess of the number of the Faraday tubes which
pass through the unit area from the side A to the side B over those which
pass through the same area from the side B to the side A. In a dielectric
other than air we imagine the unit area to be placed in a narrow crevasse cut
out of the dielectric, the sides of the crevasse being perpendicular to AB.
The polarization is evidently a vector quantity and may be resolved into
components in the same way as a force or a velocity; we shall denote the
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components parallel to the axes of x, y, z by the letters f , g, h; these are
mathematically identical with the quantities which Maxwell denotes by the
same letters, their physical interpretation however is different.

9.] We shall now investigate the rate of change of the components of the
polarization in a dielectric. Since the Faraday tubes in such a medium can
neither be created nor destroyed, a change in the number passing through
any fixed area must be due to the motion or deformation of the tubes. We
shall suppose, in the first place, that the tubes at one place are all moving
with the same velocity. Let u, v, w be the components of the velocities
of these tubes at any point, then the change in f , the number of tubes
passing at the point x, y, z, through unit area at right angles to the axis
of x, will be due to three causes. The first of these is the motion of the
tubes from another part of the field up to the area under consideration;
the second is the spreading out or concentration of the tubes due to their
relative motion; and the third is the alteration in the direction of the tubes
due to the same cause.

Let δ1f be the change in f due to the first cause, then in consequence
of the motion of the tubes, the tubes which at the time t+ δt pass through
the unit area will be those which at the time t were at the point

x− uδt, y − vδt, z − wδt,

hence δ1f will be given by the equation

δ1f = −
(
u
df

dx
+ v

df

dy
+ w

df

dz

)
δt.

In consequence of the motion of the tubes relatively to one another,
those which at the time t passed through unit area at right angles to x will
at the time t+ δt be spread over an area

1 + δt

{
dv

dy
+
dw

dz

}
;

thus δ2f , the change in f due to this cause, will be given by the equation

δ2f =
f

1 + δt

{
dv

dy
+
dw

dz

} − f,
or δ2f = −δtf

{
dv

dy
+
dw

dz

}
.
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In consequence of the deflection of the tubes due to the relative motion
of their parts some of those which at the time t were at right angles to
the axis of x will at the time t + δt have a component along it. Thus,
for example, the tubes which at the time t were parallel to y will after a

time δt has elapsed be twisted towards the axis of x through an angle δt
du

dy
,

similarly those parallel to z will be twisted through an angle δt
du

dz
towards

the axis of x in the time δt; hence δ3f , the change in f due to this cause,
will be given by the equation

δ3f = δt

{
g
du

dy
+ h

du

dz

}
.

Hence if δf is the total change in f in the time δt, since

δf = δ1f + δ2f + δ3f,

we have

δf =

[
−
(
u
df

dx
+ v

df

dy
+ w

df

dz

)
− f

(
dv

dy
+
dw

dz

)
+

(
g
du

dy
+ h

du

dz

)]
δt,

which may be written as

df

dt
=

d

dy
(ug − vf)− d

dz
(wf − uh)− u

(
df

dx
+
dg

dy
+
dh

dz

)
. (1)

If ρ is the density of the free electricity, then since by the definition of
Art. 8 the surface integral of the normal polarization taken over any closed
surface must be equal to the quantity of electricity inside that surface, it
follows that

ρ =
df

dx
+
dg

dy
+
dh

dz
,

hence equation (1) may be written

Similarly

df

dt
+ uρ =

d

dy
(ug − vf)− d

dz
(wf − uh).

dg

dt
+ vρ =

d

dz
(vh− wg)− d

dx
(ug − vf),

dh

dt
+ wρ =

d

dx
(wf − uh)− d

dy
(vh− wg).


(2)
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If p, q, r are the components of the current parallel to x, y, z respec-
tively, α, β, γ the components of the magnetic force in the same directions,
then we know

4πp =
dγ

dy
− dβ

dz
,

4πq =
dα

dz
− dγ

dx
,

4πr =
dβ

dx
− dα

dy
.


(3)

Hence, if we regard the current as made up of the convection current
whose components are uρ, vρ, wρ respectively, and the polarization cur-

rent whose components are
df

dt
,
dg

dt
,
dh

dt
, we see by comparing equations

(2) and (3) that we may regard the moving Faraday tubes as giving rise to
a magnetic force whose components α, β, γ are given by the equation

α = 4π(vh− wg),

β = 4π(wf − uh),

γ = 4π(ug − vf).

 (4)

Thus a Faraday tube when in motion produces a magnetic force at right
angles both to itself and to its direction of motion, whose magnitude is pro-
portional to the component of the velocity at right angles to the direction
of the tube. The magnetic force and the rotation from the direction of
motion to that of the tube at any point are related like translation and
rotation in a right-handed screw.

10.] The motion of these tubes involves kinetic energy, and this ki-
netic energy is the energy of the magnetic field. Now if µ is the magnetic
permeability we know that the energy per unit volume is

µ

8π
(α2 + β2 + γ2),

or substituting the values of α, β, γ from equations (4),

2πµ[(hv − gw)2 + (fw − hu)2 + (gu− fv)2].

The momentum per unit volume of the dielectric parallel to x is the
differential coefficient of this expression with regard to u, hence if U , V , W
are the components of the momentum parallel to x, y, z, we have

U = 4πµ{g(gu− fv)− h(fw − hu)}
= gc− hb,
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if a, b, c are the components of the magnetic induction parallel to x, y, z.

Similarly V = ha− fc,
W = fb− ga.

}
(5)

Thus the momentum per unit volume in the dielectric, which is due to
the motion of the tubes, is at right angles to the polarization and to the
magnetic induction, the magnitude of the momentum being equal to the
product of the polarization and the component of the magnetic induction
at right angles to it. We may regard each tube as having a momentum
proportional to the intensity of the component of the magnetic induction
at right angles to the direction of the tube. It is interesting to notice that
the components of the momentum in the field as given by equations (5)
are proportional to the amounts of energy transferred in unit time across
unit planes at right angles to the axes of x, y, z in Poynting’s theory
of the transfer of energy in the electromagnetic field (Phil. Trans. 1884,
Part II. p. 343); hence the direction in which the energy in Poynting’s
theory is supposed to move is the same as the direction of the momentum
determined by the preceding investigation.

11.] The electromotive intensities parallel to x, y, z due to the motion of
the tubes are the differential coefficients of the kinetic energy with regard to
f , g, h respectively, hence we obtain the following expressions for X, Y , Z
the components of the electromotive intensity,

X = wb− vc,
Y = uc− wa,
Z = va− ub.

 (6)

Thus the direction of the electromotive intensity due to the motion of
the tubes is at right angles both to the magnetic induction and to the
direction of motion of the tubes.

From equations (6) we get

dZ

dy
− dY

dz
= v

da

dy
+ w

da

dz
− u

(
db

dy
+
dc

dz

)
+ a

(
dv

dy
+
dw

dz

)
− bdu

dy
− cdu

dz
.
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But since the equation

da

dx
+
db

dy
+
dc

dz
= 0

holds, as we shall subsequently show, on the view we have taken of the
magnetic force as well as on the ordinary view, we have

dZ

dy
− dY

dz
= u

da

dx
+ v

da

dy
+ w

da

dz
+ a

(
dv

dy
+
dw

dz

)
− bdu

dy
− cdu

dz
.

The right-hand side of this investigation is by the reasoning given in

Art. 9 equal to −da
dt

, the rate of diminution in the number of lines of

magnetic induction passing through unit area at right angles to the axis
of x: hence we have

Similarly

dZ

dy
− dY

dz
= −da

dt
.

dX

dz
− dZ

dx
= −db

dt
,

dY

dx
− dX

dy
= −dc

dt
.


(7)

Now by Stokes’ theorem∫
(X dx+ Y dy + Z dz)

taken round a closed circuit is equal to∫∫ {
l

(
dZ

dy
− dY

dz

)
+m

(
dX

dz
− dZ

dx

)
+ n

(
dY

dx
− dX

dy

)}
dS,

where l, m, n are the direction-cosines of the normal to a surface S which
is entirely bounded by the closed circuit. Substituting the preceding values
for dZ/dy − dY/dz, &c., we see that the line integral of the electromotive
intensity round a closed circuit is equal to the rate of diminution in the
number of lines of magnetic induction passing through the circuit. Hence
the preceding view of the origin of magnetic force leads to Faraday’s rule
for the induction of currents by the alteration of the magnetic field.

12.] When the electromotive intensity is entirely due to the motion of
the tubes in an isotropic medium whose specific inductive capacity is K,
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we have

f =
K

4π
X

=
K

4π
{wb− vc},

and since

b = 4πµ{fw − hu}, c = 4πµ{gu− fv},
we have f = µK{f(u2 + v2 + w2)− u(fu+ gv + hw)};
similarly g = µK{g(u2 + v2 + w2)− v(fu+ gv + hw)},

h = µK{h(u2 + v2 + w2)− w(fu+ gv + hw)},
hence fu+ gv + hw = 0,

and therefore u2 + v2 + w2 = 1
µK
.

Hence when the electromotive intensity is entirely due to the motion
of the tubes, the tubes move at right angles to themselves with the ve-
locity 1/

√
µK, which is the velocity with which light travels through the

dielectric. In this case the momentum is parallel to the direction of motion,
and the electromotive intensity is in the direction of the polarization. In
this case the polarization, the direction of motion and the magnetic force,
are mutually at right angles; their relative disposition is shown in Fig. 1.

Collecting the preceding results, we see that when a Faraday tube is in
motion it is accompanied by (1) a magnetic force right angles to the tube
and to the direction in which it is moving, (2) a momentum at right angles
to the tube and to the magnetic induction, (3) an electromotive intensity
at right angles to the direction of motion and to the magnetic induction;
this always tends to make the tube set itself at right angles to the direction
in which it is moving. Thus in an isotropic medium in which there is no
free electricity and consequently no electromotive intensities except those
which arise from the motion of the tubes, the tubes set themselves at right
angles to the direction of motion.

13.] We have hitherto only considered the case when the tubes at any
one place in a dielectric are moving with a common velocity. We can
however without difficulty extend these results to the case when we have
different sets of tubes moving with different velocities.

Let us suppose that we have the tubes f1, g1, h1, moving with a velocity
whose components are u1, v1, w1, while the tubes f2, g2, h2 move with the
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Fig. 1.

velocities u2, v2, w2, and so on. Then the rate of increase in the number of
tubes which pass through unit area at right angles to the axis of x is, by
the same reasoning as before,

d

dy

∑
(ug − vf)− d

dz

∑
(wf − uh)−

∑
(uρ).

Hence we see as before that the tubes may be regarded as producing a
magnetic force whose components α, β, γ are given by the equations

α = 4π
∑

(vh− wg),

β = 4π
∑

(wf − uh),

γ = 4π
∑

(ug − vf).

 (8)

The Kinetic energy per unit volume, T , due to the motion of these
tubes is given by the equation

T =
µ

8π
{α2 + β2 + γ2},

or

T = 2πµ
[{∑

(vh− wg)
}2

+
{∑

(wf − uh)
}2

+
{∑

(ug − vf)
}2
]
.
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Thus dT/du1, the momentum per unit volume parallel to x due to the
tube with suffix 1, is equal to

4πµ
{
g1

∑
(ug − vf)− h1

∑
(wf − uh)

}
,

= g1c− h1b,

where a, b, c are the components of the magnetic induction.
Thus U , V , W , the components of the momentum per unit volume

parallel to the axes of x, y, z respectively, are given by the equations

U = c
∑
g − b

∑
h,

V = a
∑
h− c

∑
f,

W = b
∑
f − a

∑
g.

 (9)

Thus when we have a number of tubes moving about in the electric
field the resultant momentum at any point is perpendicular both to the
resultant magnetic induction and to the resultant polarization, and is equal
to the product of these two quantities into the sine of the angle between
them.

The electromotive intensities X, Y , Z parallel to the axes of x, y, z
respectively are equal to the mean values of dT/df , dT/dg, dT/dh, hence
we have

X = bw̄ − cv̄,
Y = cū− aw̄,
Z = av̄ − bū;

 (10)

where a bar placed over any quantity indicates that the mean value of that
quantity is to be taken.

Thus when a system of Faraday tubes is in motion, the electromotive
intensity is at right angles both to the resultant magnetic induction and to
the mean velocity of the tubes, and is equal in magnitude to the product
of these two quantities into the sine of the angle between them.

We see from the preceding equations that there may be a resultant
magnetic force due to the motion of the positive tubes in one direction and
the negative ones in the opposite, without either resultant momentum or
electromotive intensity; for if there are as many positive as negative tubes
passing through each unit area so that there is no resultant polarization,
there will, by equations (9), be no resultant momentum, while if the number
of tubes moving in one direction is the same as the number moving in the
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opposite, equations (10) show that there will be no resultant electromotive
intensity due to the motion of the tubes. We thus see that when the
magnetic field is steady the motion of the Faraday tubes in the field will
be a kind of shearing of the positive past the negative tubes; the positive
tubes moving in one direction and the negative at an equal rate in the
opposite. When, however, the field is not in a steady state this ceases to
be the case, and then the electromotive intensities due to induction are
developed.

Mechanical Forces in the Field.

14.] The momentum parallel to x per unit volume of the medium, due
to the motion of the Faraday tubes, is by equation (9)

c
∑
g − b

∑
h;

thus the momentum parallel to x which enters a portion of the medium
bounded by the closed surface S in unit time is equal to∫∫ [

c
∑
g(lu+mv + nw)− b

∑
h(lu+mv + nw)

]
dS,

where dS is an element of the surface and l, m, n the direction-cosines of
its inwardly directed normal.

If the surface S is so small that the external magnetic field may be
regarded as constant over it, the expression may be written as

c
∫∫ ∑

g(lu+mv + nw) dS − b
∫∫ ∑

h(lu+mv + nw) dS.

Now
∫∫ ∑

g(lu+mv + nw) dS,

and
∫∫ ∑

h(lu+mv + nw) dS,

are the number of Faraday tubes parallel to y and z respectively which
enter the element in unit time, that is, they are the volume integrals of the
components q and r of the current parallel to y and z respectively: if the
medium surrounded by S is a dielectric this is a polarization current, if
it is a conductor it is a conduction current. Thus the momentum parallel
to x communicated in unit time to unit volume of the medium, in other
words the force parallel to x acting on unit volume of the medium, is equal
to

cq − br;



15.] ELECTRIC DISPLACEMENT AND FARADAY TUBES OF FORCE. 15

similarly the forces parallel to y and z are respectively

and

ar − cp,
bp− aq.

}
(11)

When the medium is a conductor these are the ordinary expressions for
the components of the force per unit volume of the conductor when it is
carrying a current in a magnetic field.

When, as in the above investigation, we regard the force on a conductor
carrying a current as due to the communication to the conductor of the
momentum of the Faraday tubes which enter the conductor, the origin of
the force between two currents will be very much the same as that of the
attraction between two bodies on Le Sage’s theory of gravitation. Thus,
for example, if we have two parallel currents A and B flowing in the same
direction, then if A is to the left of B more tubes will enter A from the left
than from the right, because some of those which would have come from
the right if B had been absent will be absorbed by B, thus in unit time the
momentum having the direction left to right which enters A will exceed
that having the opposite direction; thus A will tend to move towards the
right, that is towards B, while for a similar reason B will tend to move
towards A.

15.] We have thus seen that the hypothesis of Faraday tubes in motion
explains the properties and leads to the ordinary equations of the electro-
magnetic field. This hypothesis has the advantage of indicating very clearly
why polarization and conduction currents produce similar mechanical and
magnetic effects. For the mechanical effects and the magnetic forces at any
point in the field are due to the motion of the Faraday tubes at that point,
and any alteration in the polarization involves motion of these tubes just
as much as does an ordinary conduction current.

16.] We shall now proceed to illustrate this method of regarding elec-
trical phenomena by applying it to the consideration of some simple cases.
We shall begin with the case which suggested the method; that of a charged
sphere moving uniformly through the dielectric. Let us suppose the charge
on the sphere is e and that it is moving with velocity w parallel to the axis
of z. Faraday tubes start from the sphere and are carried along with it as
it moves through the dielectric; since these tubes are moving they will, as
we have seen, produce a magnetic field. We shall suppose that the system
has settled down into a steady state, so that the sphere and its tubes are
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all moving with the same velocity w. Let f , g, h be the components of
the polarization at any point, α, β, γ those of the magnetic force. The
expressions for X, Y , Z, the components of the electromotive intensity,
will consist of two parts, one due to the motion of the Faraday tubes and
given by equations (6), the other due to the distribution of these tubes and
derivable from a potential Ψ; we thus have, if the magnetic permeability is
unity,

X = wβ − dΨ

dx
,

Y = −wα− dΨ

dy
,

Z = −dΨ

dz
.


(12)

By equations (4)

α = −4πgw,

β = 4πfw,

γ = 0.

If K is the specific inductive capacity of the medium, we have

X =
4π

K
f, Y =

4π

K
g, Z =

4π

K
h.

Since the magnetic permeability of the dielectric is taken as unity, we
may put 1/K = V 2, where V is the velocity of light through the dielectric.

Making these substitutions for the magnetic force and the electromotive
intensity, equations (12) become

4πf(V 2 − w2) = −dΨ

dx
,

4πg(V 2 − w2) = −dΨ

dy
,

4πhV 2 = −dΨ

dz
;

and since
df

dx
+
dg

dy
+
dh

dz
= 0,

we get
d2Ψ

dx2
+
d2Ψ

dy2
+
V 2 − w2

V 2

d2Ψ

dz2
= 0, (13)
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or putting z′ =
V

{V 2 − w2}
1
2

z,

equation (13) becomes

d2Ψ

dx2
+
d2Ψ

dy2
+
d2Ψ

dz′2
= 0,

a solution of which is

Ψ =
A

{x2 + y2 + z′2}
1
2

=
A{

x2 + y2 +
V 2

V 2 − w2
z2

} 1
2

. (14)

To find A we notice that the normal polarization over any sphere con-
centric with the moving one must equal e, the charge on the sphere; hence
if a is the radius of the moving sphere,∫∫ {x

a
f +

y

a
g +

z

a
h
}
dS = e.

Substituting for f , g, h their values, we find

Aa

4π(V 2 − w2)

∫∫
dS{

x2 + y2 +
V 2

V 2 − w2
z2

} 3
2

= e,

or
A

2(V 2 − w2)

∫ π

0

sin θ dθ{
sin2 θ +

V 2

V 2 − w2
cos2 θ

} 3
2

= e.

The integral, if V > w, is equal to

2{V 2 − w2} 1
2

V
;

hence A = eV {V 2 − w2}
1
2 ,
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so that f =
e

4π

V

{V 2 − w2} 1
2

x{
x2 + y2 +

V 2

V 2 − w2
z2

} 3
2

,

g =
e

4π

V

{V 2 − w2} 1
2

y{
x2 + y2 +

V 2

V 2 − w2
z2

} 3
2

,

h =
e

4π

V

{V 2 − w2} 1
2

z{
x2 + y2 +

V 2

V 2 − w2
z2

} 3
2

.



(15)

Thus
f

x
=
g

y
=
h

z
.

The Faraday tubes are radial and the resultant polarization varies in-
versely as

r2

{
1 +

w2

V 2 − w2
cos2 θ

} 3
2

,

where r is the distance of the point from the centre, and θ the angle which
r makes with the direction of motion of the sphere. We see from this result
that the polarization is greatest where θ = π/2, least where θ = 0; the
Faraday tubes thus leave the poles of the sphere and tend to congregate at
the equator. This arises from the tendency of these tubes to set themselves
at right angles to the direction in which they are moving. The surface
density of the electricity on the moving sphere varies inversely as{

1 +
w2

V 2 − w2
cos2 θ

} 3
2

,

it is thus a maximum at the equator and a minimum at the poles.
The components α, β, γ of the magnetic force are given by the equations

α = −4πwg = − eV w

{V 2 − w2} 1
2

y{
x2 + y2 +

V 2

V 2 − w2
z2

} 3
2

,

β = 4πwf =
eV w

{V 2 − w2} 1
2

x{
x2 + y2 +

V 2

V 2 − w2
z2

} 3
2

,

γ = 0.


(16)
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These expressions as well as (15) were obtained by Mr. Heaviside by
another method in the Phil. Mag. for April, 1889.

Thus the lines of magnetic force are circles with their centres in and
their planes at right angles to the axis of z. When w is so small that w2/V 2

may be neglected, the preceding equations take the simpler forms

f =
e

4π

x

r3
, g =

e

4π

y

r3
, h =

e

4π

z

r3
,

α = −ewy
r3

, β =
ewx

r3
.

(See J. J. Thomson ‘On the Electric and Magnetic Effects produced by
the Motion of Electrified Bodies’, Phil. Mag. April, 1881.)

The moving sphere thus produces the same magnetic field as an element
of current at the centre of the sphere parallel to z whose moment is equal
to ew. When as a limiting case V = w, that is when the sphere is moving
with the velocity of light, we see from equations (15) and (16) that the
polarization and magnetic force vanish except when z = 0 when they are
infinite. The equatorial plane is thus the seat of infinite magnetic force and
polarization, while the rest of the field is absolutely devoid of either. It
ought to be noticed that in this case all the Faraday tubes have arranged
themselves so as to be at right angles to the direction in which they are
moving.

We shall now consider the momentum in the dielectric due to the motion
of the Faraday tubes. Since the dielectric is non-magnetic the components
U , V ′, W of this are by equations (9) given by the following expressions:

U = −βh = − e
2

4π

V 2w

V 2 − w2

xz(
x2 + y2 + V 2

V 2−w2 z2
)3 ,

V ′ = αh = − e
2

4π

V 2w

V 2 − w2

yz(
x2 + y2 + V 2

V 2−w2 z2
)3 ,

W = βf − αg =
e2

4π

V 2w

V 2 − w2

(x2 + y2)(
x2 + y2 + V 2

V 2−w2 z2
)3 .


(17)

The resultant momentum at any point is thus at right angles to the
radius and to the magnetic force; it is therefore in the plane through the
radius and the direction of motion and at right angles to the former. The
magnitude of the resultant momentum per unit volume at a point at a
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distance r from the centre of the sphere, and where the radius makes an
angle θ with the direction of motion, is

e2w

4π
· V 2

V 2 − w2

1

r4

sin θ{
1 + w2

V 2−w2 cos2 θ
}3 .

Thus the momentum vanishes along the line of motion of the sphere,
where the Faraday tubes are moving parallel to themselves, and continually
increases towards the equator as the tubes get to point more and more at
right angles to their direction of motion.

The resultant momentum in the whole of the dielectric is evidently
parallel to the direction of motion; its magnitude I is given by the equation

I =
e2w

4π

V 2

V 2 − w2

∫ ∞
a

∫ π

0

∫ 2π

0

sin2 θr2 dr sin θ dθ dφ

r4

{
1 +

w2

V 2 − w2
cos2 θ

}3

=
e2w

a

V 2

V 2 − w2

∫ 1

0

sin2 θ d(cos θ){
1 +

w2

V 2 − w2
cos2 θ

}3 ,

or putting
w

{V 2 − w2} 1
2

cos θ = tanψ,

we see that

I =
e2V 2

a{V 2 − w2} 1
2

∫ tan−1 w

{V 2−w2}
1
2

0

cos2 ψ

(
1− V 2

w2
sin2 ψ

)
dψ;

or if tan−1 w

{V 2 − w2} 1
2

= ϑ,

I =
e2

2a

V 2

{V 2 − w2} 1
2

{
ϑ

(
1− 1

4

V 2

w2

)
+ 1

2
sin 2ϑ

(
1 + 1

4

V 2

w2
cos 2ϑ

)}
.

Thus the momentum of the sphere and dielectric parallel to z is mw+I,
where m is the mass of the sphere; so that the effect of the charge will be
to increase the apparent mass of the sphere by I/w or by

1
2

e2

a

V 2

w{V 2 − w2} 1
2

{
ϑ

(
1− 1

4

V 2

w2

)
+ 1

2
sin 2ϑ

(
1 + 1

4

V 2

w2
cos 2ϑ

)}
.
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When the velocity of the sphere is very small compared to that of light,

ϑ =
w

V

(
1 + 1

6

w2

V 2

)
approximately, and the apparent increase in the mass of the sphere is

2

3

e2

a
.

When in the limit w = V the increase in mass is infinite, thus a charged
sphere moving with the velocity of light behaves as if its mass were infinite,
its velocity therefore will remain constant, in other words it is impossible
to increase the velocity of a charged body moving through the dielectric
beyond that of light.

The kinetic energy per unit volume of the dielectric is

1

8π
(α2 + β2),

and hence by equations (16) and (17) it is equal to

w

2
W ;

thus the total kinetic energy in the dielectric is equal to

1
2
wI,

that is to

e2

4a
w · V 2

{V 2 − w2} 1
2

{
ϑ

(
1− 1

4

V 2

w2

)
+ 1

2
sin 2ϑ

(
1 + 1

4

V 2

w2
cos 2ϑ

)}
.

We shall now proceed to investigate the mechanical forces acting on the
sphere when it is moving parallel to the axis of z in a uniform magnetic
field in which the magnetic force is everywhere parallel to the axis of x and
equal to H.

If U , V ′, W are the components of the momentum,

U = gc− hb,
V ′ = ha− fc,
W = fb− ga.

In this case
c = 0, b = β, a = α +H,
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where α and β have the values given in equations (16).
The momentum transmitted in unit time across the surface of a sphere

concentric with the moving one has for components∫∫
wU cos θ dS,

∫∫
wV ′ cos θ dS,

∫∫
wW cos θ dS,

the integration being extended over the surface of the sphere. Substituting
the values of U , V ′, W , we see that the first and third of these expressions
vanish, while the second reduces to

e

4π

V Hw

{V 2 − w2} 1
2

∫∫
cos2 θ dS

r2

{
1 +

w2

V 2 − w2
cos2 θ

} 3
2

,

or 1
2

eV Hw

{V 2 − w2} 1
2

∫ π

0

cos2 θ sin θ dθ{
1 +

w2

V 2 − w2
cos2 θ

} 3
2

,

which is equal to

− eHwV

{V 2 − w2} 1
2

{
(V 2 − w2)

3
2

V w2
−
(
V 2 − w2

w2

) 3
2

log

(
V + w

V − w

) 1
2

}
,

or to −eH (V 2 − w2)

w

{
1− 1

2

V

w
log

(
V + w

V − w

)}
.

When w/V is very small this expression reduces to

1
3
eHw.

This is the rate at which momentum is communicated to the sphere, in
other words it is the force on the sphere; hence the force on the charged
sphere coincides in direction with the force on an element of current parallel
to the axis of z, but the magnitude of the force on the moving sphere is only
one-third that of the force on an element of current along z whose moment
is ew. By the moment of an element of current we mean the product of the
intensity of the current and the length of the element. When w = V , that
is when the sphere moves through the magnetic field with the velocity of
light, we see from the preceding expression that the force acting upon it
vanishes.

We can get a general idea of the origin of the mechanical force on the
moving sphere if we remember that the uniform magnetic field is (Art. 13)
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due to the motion of Faraday tubes, the positive tubes moving in one direc-
tion, the negative ones in the opposite, and that in their motion through
the field these tubes have to traverse the sphere. The momentum due
to these tubes when they enter the sphere is proportional to the magnetic
force at the place where they enter the sphere, while their momentum when
they leave the sphere is proportional to the magnetic force at the place of
departure. Now the magnetic forces at these places will be different, be-
cause on one side of the sphere the magnetic force arising from its own
motion will increase the original magnetic field, while on the other side it
will diminish it. Thus by their passage across the sphere the tubes will have
gained or lost a certain amount of momentum; this will have been taken
from or given to the sphere, which will thus be subject to a mechanical
force.

Rotating Electrified Plates.

17.] The magnetic effects due to electrified bodies in motion are
more conveniently examined experimentally by means of electrified rotat-
ing plates than by moving electrified spheres. The latter have, as far as I
know, not been used in any experiments on electro-convection, while most
interesting experiments with rotating plates have been made by Rowland
(Berichte d. Berl. Acad. 1876, p. 211), Rowland and Hutchinson (Phil.
Mag. 27, p. 445, 1889), Röntgen (Wied. Ann. 35, p. 264, 1888; 40, p. 93,
1890), Himstedt (Wied. Ann. 38, p. 560, 1889). The general plan of these
experiments is as follows: an air condenser with circular parallel plates
is made to rotate about an axis through the centres of the plates and at
right angles to their planes. To prevent induced currents being produced
by the rotation of the plates in the earth’s magnetic field, radial divisions
filled with insulating material are made in the plates. When the plates
are charged and set in rotation a magnetic field is found to exist in their
neighbourhood similar to that which would be produced by electric cur-
rents flowing in concentric circular paths in the plates of the condenser,
the centres of these circles being the points where the axis of rotation cuts
the plates.

Let us now consider how these magnetic forces are produced. Faraday
tubes at right angles to the plates pass from one plate to the other. We
shall suppose when the condenser is rotating as a rigid body these tubes
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move as if they were rigidly connected with it. Then, taking the axis of
rotation as the axis of z, the component velocities of a tube at a point
whose coordinates are x, y are respectively −ωy and ωx, where ω is the
angular velocity with which the plates are rotating.

If these were the only Faraday tubes in motion the components α, β, γ
of the magnetic force would by equations (4) be given by the equations

α = 4πσωx,

β = 4πσωy, (18)

γ = 0,

where σ (= h) is the surface-density of the electricity on either plate. These
values for the components of the magnetic force do not however satisfy the
relation

dα

dx
+
dβ

dy
+
dγ

dz
= 0,

which must be satisfied since the value of
1

8π

∫∫∫
(α2 + β2 + γ2) dx dy dz

must, in a medium whose magnetic permeability is unity, be stationary for
all values of α, β, γ which give assigned values to the currents, that is to

dβ

dx
− dα

dy
,

dα

dz
− dγ

dx
,

dγ

dy
− dβ

dz
.

For let α0, β0, γ0 be any particular values of the components of the
magnetic force which satisfy the assigned conditions, then the most general
values of these components are expressed by the equations

α = α0 +
dφ

dx
,

β = β0 +
dφ

dy
,

γ = γ0 +
dφ

dz
,

where φ is an arbitrary function of x, y, z.
Then if ∫∫∫

(α2 + β2 + γ2) dx dy dz

is stationary, ∫∫∫
(α δα + β δβ + γ δγ) dx dy dz = 0. (19)
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Let the variations in α, β, γ be due to the increment of φ by an arbitrary
function δφ, then

δα =
d δφ

dx
, δβ =

d δφ

dy
, δγ =

d δφ

dz
.

Substituting these values for δα, δβ, δγ, and integrating by parts, equa-
tion (19) becomes∫∫

δφ(α dy dz + β dz dx+ γ dx dy)

−
∫∫∫

δφ

{
dα

dx
+
dβ

dy
+
dγ

dz

}
dx dy dz = 0,

and therefore since δφ is arbitrary

dα

dx
+
dβ

dy
+
dγ

dz
= 0.

The values of α, β, γ given by equation (18) cannot therefore be the
complete expressions for the magnetic force, and since we regard all mag-
netic force as due to the motion of Faraday tubes, it follows that the tubes
which connect the positive to the negative charges on the plates of the
condenser cannot be the only tubes in the field which are in motion; the
motion of these tubes must set in motion the closed tubes which, Art. 2,
exist in their neighbourhood. The motion of the closed tubes will produce
a magnetic field in which the forces can be derived from a magnetic po-
tential Ω. When we include the magnetic field due to the motion of these
closed tubes, we have

α = 4πσωx− dΩ

dx
=
dΩ′

dx
,

β = 4πσωy − dΩ

dy
=
dΩ′

dy
,

γ = − dΩ

dz
=
dΩ′

dz
,

if Ω′ = 2πσω(x2 + y2)− Ω;

and since
dα

dx
+
dβ

dy
+
dγ

dz
= 0,

we have
d2Ω′

dx2
+
d2Ω′

dy2
+
d2Ω′

dz2
= 0.
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The question now arises, does the motion of the tubes which connect
the positive and negative electrifications on the plates only set those closed
tubes in motion which are between the plates of the condenser, or does it
affect the tubes outside as well? Let us examine the consequences of the
first hypothesis. In this case, since the Faraday tubes outside the condenser
are at rest, the magnetic force will vanish except between the plates of
the condenser; it follows, however, from the properties of the magnetic
potential that it must vanish inside as well, so that no magnetic force at
all would be produced by the rotation of the plates. As this is contrary to
the result of Rowland’s experiments, the Faraday tubes stretching between
the plates must by their rotation set in motion tubes extending far away
from the region between the plates. The motion of these closed tubes must
however be consistent with the condition that the magnetic force parallel
to the plates due to the motion of the tubes must be continuous. Let us
consider for a moment the radial magnetic force due to the closed tubes:
this may arise either from the rotation round the axis of tubes which pass
through the plates, or from the motion at right angles to the plates of
tubes parallel to them. In the first case, the velocity tangential to the
plates of the tubes must be continuous, otherwise the tubes would break,
and since the tangential velocity is continuous, the radial magnetic force
due to the motion of these tubes will be continuous also. In the second
case, the product of the normal velocity of the tubes and their number
per unit volume must be the same on the two sides of a plate, otherwise
there would be an accumulation of these tubes in the plate. The product
of the normal velocity into the number of the tubes is, however, equal to
the tangential magnetic force due to the motion of the closed tubes, so
that this must be continuous.

The open tubes which stretch from the positive electricity on one plate
to the negative on the other will, however, by their motion produce a
discontinuity in the radial magnetic force, since these tubes stop at the
plates, and do not pass through them. The radial magnetic force at a
point due to these tubes is 4πσωr, where r is the distance of the point
from the axis of rotation. The conditions to determine the magnetic field
are thus, (1) that except in the substance of the plates there must be a
magnetic potential satisfying Laplace’s equation, and (2) that at either
plate the discontinuity in the radial magnetic force must be 4πσωr, where
σ is the surface-density of the electricity on the plates. These conditions
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are, however, exactly those which determine the magnetic force produced
by a system of electric currents circulating in circles in the plates of the
condenser, the intensity of the currents at a distance r from the axis of
rotation being σωr for the positive and −σωr for the negative plate. Hence
the magnetic force due to rotating the plates will be the same as that
produced by this distribution of electric currents.

This conclusion seems to be confirmed by the results of the experi-
ments of Rowland and Hutchinson (Phil. Mag. 27, p. 445, 1889), as using
this hypothesis they found a tolerably accurate value of ‘v’, the ratio of
the electromagnetic to the electrostatic unit of electricity, by means of
experiments on a rotating plate.

We can see by similar reasoning that if only one of the plates is rotating,
the other being at rest, the magnetic effect will be the same as that due to
a system of electric currents circulating in the rotating plate, the intensity
of the current at a distance r from the axis being σωr.

Some interesting experiments have been made by Röntgen (Wied. Ann.
35, p. 264, 1888), in which, while the plates of the condenser were at rest,
a glass disc parallel to the plates and situated between them was set in
rapid rotation and was found to produce a magnetic field. The rotation of
the disc must thus have set in motion the Faraday tubes passing through
it, and these in turn have affected closed tubes extending into the region
beyond the condenser.

Experiments of this kind seem to open up a field of enquiry which will
throw light upon a question which at present is one of the most obscure
in electricity: that of the relation between the velocities of the dielectric
and of the Faraday tubes passing through it. This question is one of great
importance in the Electro-magnetic Theory of Light, as but little progress
can be made in the Theory of Aberration until we have got an answer to
it. Another question which we have not touched upon, but which is very
important in this connexion, is whether the motion of the Faraday tubes
through ether devoid of matter would produce magnetic force, or whether
for this purpose it is necessary that the tubes should pass across ordinary
matter as well as ether. The point may be illustrated by the following case.
Suppose we have a plate of glass between two parallel charged plates rigidly
electrified, whether uniformly or otherwise, and that the whole system is
set in rotation and moves like a rigid body, then, is or is not the motion of
the system accompanied by magnetic force? Here the Faraday tubes move
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through the ether (assuming that the velocity of the ether is not the same
as that of the glass), but do not move relatively to the glass.

The motion of the tubes through the dielectric will be requisite for the
production of magnetic effects if we suppose that there are no closed tubes
in the electric field, and that all the tubes connect portions of ordinary
matter. The recognition of closed tubes in the ether seems to be desirable
in the present state of our electrical knowledge, as unless we acknowledge
the existence of such tubes we have to suppose that light being an electro-
magnetic phenomenon cannot traverse a region wholly devoid of ordinary
matter, and further that the existence of magnetic force depends upon the
presence of such matter in the field.

A Steady Magnetic Field.

18.] Magnetic force on the theory we are now discussing is due to
the motion of the Faraday tubes. When the magnetic field is variable the
presence of these tubes is rendered evident by the existence of electromotive
intensities in the field: when however the field is steady, we have no direct
electrical evidence of the presence of these tubes, and their disposition and
velocities have to be deduced from the equations developed in the preceding
pages. We shall now proceed to examine this very important case more in
detail.

In a steady magnetic field in which there is no free electricity the Fara-
day tubes must be closed, exception being made of course of the short
tubes which connect together the atoms in the molecules present in the
field. Since in such a field there is no electromotive intensity, there must
pass through each unit area of the field the same number of positive as
of negative tubes, that is, there must be as many tubes pointing in one
direction as the opposite. These tubes will (Art. 12) place themselves so
as to be at right angles both to the direction in which they are moving
and to the magnetic force. The distribution of the Faraday tubes and the
directions in which they are moving cannot be determined solely from the
magnetic force; but for the purpose of forming a clear conception of the
way in which the magnetic force may be produced, we shall suppose that
the positive tubes are moving with the velocity of light in one direction, the
negative tubes with an equal velocity in the opposite, and that at any point
the direction of a tube, its velocity, and the magnetic force are mutually
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at right angles.
In a steady magnetic field surfaces of equal potential exist which cut

the lines of magnetic force at right angles, so that since both the Faraday
tubes and the directions in which they are moving are at right angles to
the lines of magnetic force we may suppose that the Faraday tubes form
closed curves on the equipotential surfaces, a tube always remaining on
one equipotential surface and moving along it at right angles to itself.

We shall now consider the motion of these tubes in a very simple mag-
netic field: that surrounding an infinitely long circular cylinder whose axis
is taken as the axis of z, and which is uniformly magnetized at right angles
to its axis and parallel to the axis of x.

The magnetic potential inside the cylinder is equal to

Hx,

where H is the magnetic force inside the cylinder.
The potential outside the cylinder, if a is the radius of the cylinder, is

equal to

H
a2 cos θ

r
,

where r is the distance from the axis of the cylinder of the point at which the
potential is reckoned, and θ the azimuth of r measured from the direction
of magnetization. Thus inside the cylinder the equipotential surfaces are
planes at right angles to the direction of magnetization, while outside they
are a system of circular cylinders which if prolonged would pass through
the axis of the magnet; the axes of all these cylinders are parallel to the
axis of z and lie in the plane of xz. The cross sections of the original
cylinder and the equipotential surfaces are represented in Fig. 2.

We shall suppose that the Faraday tubes are parallel to the axis of
the cylinder; then we may regard the magnetic field as produced by such
tubes travelling round the equipotential surfaces with uniform velocity, the
positive tubes moving in one direction, the negative ones in the opposite.
We shall show that the number of tubes passing through the area bounded
by unit length of the cross-section of any equipotential surface, the normals
and the consecutive equipotential surface will be constant. For since the
magnetic force is at right angles both to the Faraday tubes and the direction
in which they are moving, the magnetic force due to this distribution of
Faraday tubes will be at right angles to the equipotential surfaces; and if
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Fig. 2.

N is the number of tubes of one sign between two consecutive equipotential
surfaces per unit length of cross section of one of them, ds the length of
a portion of such a cross section, dν the normal distance between two
consecutive equipotential surfaces Ω1 and Ω2, then in the cylinder whose
base is ds dν the number of Faraday tubes of one sign will be N ds(Ω2−Ω1);
but since these tubes are distributed over an area ds dν, the number of
tubes per unit area of the base of the cylinder is N(Ω2 − Ω1)/dν. These
tubes are however all moving at the same rate, so that the magnetic force
due to them will be proportional to the number per unit area of the base of
the cylinder, that is to N(Ω2−Ω1)/dν, so that since the magnetic force due
to these tubes is proportional to (Ω2 − Ω1)/dν, N will be constant. Thus
the magnetic force due to the tubes moving in the way we have described
coincides both in magnitude and direction with that due to the magnetized
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cylinder.
We see from Fig. 2 that the directions of motion of these tubes change

abruptly as they enter the magnetized cylinder. The principles by which
the amount of this bending of the direction of motion of the tubes may be
calculated are as follows. If h1 and h2 are the densities of the tubes just
inside and outside the cylinder, R1, R2 the corresponding velocities of these
tubes along the normal to the cylinder, then since there is no accumulation
of the tubes at the surface of the cylinder we must have∑

R1h1 =
∑
R2h2.

But since R is the radial velocity,
∑

4πRh is by (8), Art. 13, the tangen-
tial magnetic force: hence the preceding equation expresses the continuity
of the tangential magnetic force as we cross the surface of the cylinder.

Fig. 3.

Again, when a Faraday tube crosses the
surface of the cylinder, the tangential com-
ponent of its momentum will not change;
but by equations (9) the tangential mo-
mentum of the tube is proportional to the
normal magnetic induction, so that the
continuity of the tangential momentum is
equivalent to that of the normal compo-
nent of the magnetic induction. We have
thus deduced from this view of the mag-
netic field the ordinary boundary condi-
tions (1) that the tangential component
of the magnetic force is continuous, and
(2) that the normal component of the
magnetic induction is continuous.

The paths along which the tubes move
coincide with the lines of flow produced
by moving the cylinder uniformly at right
angles to the direction of magnetization through an incompressible fluid.

Induction of Currents due to Changes in the Magnetic Field.

19.] Let Fig. 3 represent a section of the magnetized cylinder and one
of its equipotential surfaces, the directions of the magnetic force round
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the cylinder being denoted by the dotted lines. We shall call those Fara-
day tubes which point upwards from the plane of the paper positive, the
negative Faraday tubes of course pointing downwards. The positive and
the negative tubes circulate round the equipotential surface in the direc-
tions marked in the figure. Let A and B represent the cross-sections of
the wires of a circuit, the wires being at right angles to the plane of the
paper. When the magnetic field is steady no current will be produced in
this circuit, because there are as many positive as negative tubes at any
point in the field. Let us now suppose that the magnetic field is suddenly
destroyed; we may imagine that this is done by placing barriers across the
equipotential surfaces in the magnetized cylinder so as to stop the circula-
tion of the Faraday tubes. The inertia of these tubes will for a short time
carry them on in the direction in which they were moving when the barrier
was interposed, hence the positive tubes will run out on the right-hand
side of the equipotential surfaces and accumulate on the left-hand side,
while the negative tubes will leave the left-hand side and accumulate on
the right. The equality which formerly existed between the positive and
negative tubes will now be destroyed: there will be an excess of positive
tubes in the neighbourhood of the conductor A, and an excess of negative
ones round B. A current will therefore be started in the circuit running
from A to B above the plane of the paper, and from B to A below it. We
see in this way how the inertia of the Faraday tubes accounts for induced
currents arising from variations in the intensity of the magnetic field.

Induction due to Motion of the Circuit.

20.] We can explain in a similar way the currents induced when a
conductor is moved about in a magnetic field. Suppose we have a straight
conductor moving about in the streams of Faraday tubes which constitute
such a field, the Faraday tubes being parallel to each other and to the
conductor: let the conductor be moved in the opposite direction to that
in which the positive tubes are moving. This motion of the conductor will
tend to stop the positive tubes in it and just in front of it; the inertia
of the tubes further off will make them continue to move towards the
conductor, and thus the density of the tubes in front (i.e. those entering the
conductor) will increase, while the density of the tubes behind (i.e. those
leaving the conductor) will diminish; the number of positive tubes in the
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conductor will thus be greater than the number which would have been
present if the conductor had been at rest. Similar reasoning will show that
there will be a decrease in the number of negative tubes in the conductor.
Thus the positive tubes in the conductor will now outnumber the negative
ones, and there will therefore be a positive current. The motion of the
conductor in the direction opposite to that in which the positive Faraday
tubes are moving will thus be accompanied by the production of a positive
current. This current is the ordinary induction current due to the motion
of a conductor in the magnetic field.

Effect of the Introduction of Soft Iron into a Magnetic Field.

Fig. 4.

21.] Another simple magnetic
system which we shall briefly con-
sider is that of an infinite cylinder
of soft iron, whose axis is taken as
that of z, placed in what was before
its introduction a uniform magnetic
field parallel to the axis of x. Be-
fore the cylinder was introduced into
the field, the Faraday tubes, which
we may suppose to be parallel to the
axis of z, would all be moving paral-
lel to the axis of y; as soon however
as the cylinder is placed in the field,
the tubes will turn so as to avoid as
much as possible going through it,
for since the tangential momentum
is not altered the tangential velocity
of the tubes must be smaller inside
the cylinder than it is outside, as the
effective inertia of a tube in a magnetic medium is greater than in a non-
magnetic one (see Art. 10). The lines of flow of the Faraday tubes will
thus be deflected by the cylinder in much the same way as a current of
electricity flowing through a conducting field would be deflected by the
introduction into the field of a cylinder made of a worse conductor than
itself. The Faraday tubes bend away from the cylinder in the way shown
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in Figure 4. The paths of the Faraday tubes coincide however with equipo-
tential surfaces; these surfaces therefore bend away from the cylinder, and
the lines of magnetic force which are at right angles to the equipotential
surface turn in consequence towards the cylinder as indicated in Fig. 4, in
which the dotted lines represent lines of magnetic force.

Fig. 5.

Permanent Magnets.

22.] In the interior of the magnet as well as in the surrounding magnetic
field there is a shearing of the positive tubes past the negative ones. The
magnet as it moves about carries this system of moving tubes with it,
so that the motion of the tubes must in some way be maintained by a
mechanism connected with the magnet: this mechanism exerts a fan-like
action, driving the positive tubes in one direction, the negative ones in the
opposite. This effect would be produced if the molecules of the magnet
had the constitution described below and were in rapid rotation about the
lines of magnetic force. Let the molecule ABC of a magnet consist of three
atoms A, B, C, Fig. 5. Let one short tube go from B and end on A, another
start from B and end on C, then if the molecule rotates in the direction
of the arrow, about an axis through B perpendicular to the plane of the
paper, since two like parallel Faraday tubes repel each other the rotation
of the molecule will set the Faraday tubes in the ether surrounding the
molecule in motion, the tubes going from left to right will move upwards
in the plane of the paper, while those from right to left move downwards.
This will produce a magnetic field in which, since the magnetic force is at
right angles both to the moving tubes and the direction of motion, it will
be at right angles to the plane of the paper and upwards; thus the magnetic
force is parallel to the axis of rotation of the molecule. We notice that the
atoms in the molecule are of different kinds with respect to the number
of tubes incident upon them; thus B is the seat of two tubes, A and C of



23.] ELECTRIC DISPLACEMENT AND FARADAY TUBES OF FORCE. 35

one each; in chemical language this would be expressed by saying that the
valency of the atom B is twice that of either A or C.

This illustration is only intended to call attention to the necessity for
some mechanism to be connected with a permanent magnet to maintain
the motion of the Faraday tubes in the field, and to point out that the
motion of molecular tubes is able to furnish such a mechanism.

Steady Current flowing along a Straight Wire.

23.] We shall now proceed to express in terms of the Faraday tubes
the phenomena produced by a steady current flowing along an infinitely
long straight vertical wire. We shall suppose that the circumstances are
such that there is no free electricity on the surface of the wire, so that the
Faraday tubes in its neighbourhood are parallel to its length. If we take
the direction of the current as the positive direction, the positive tubes
parallel to the wire will be moving in radially to keep up the current,
and this inward radial flow of positive tubes will be accompanied by an
outward radial flow of negative tubes, a positive tube when entering the
wire displacing a negative tube which moves outward from the wire. This
shearing of the positive and negative tubes past each other will give rise
to a magnetic force which will be at right angles both to the direction of
the tubes and the direction in which they are moving; thus the magnetic
force is tangential to a circle whose plane is horizontal and whose centre
is on the axis of the wire. When the positive tubes enter the wire they
shrink to molecular dimensions in the manner to be described in Art. 31.
At a distance r from the axis of the wire let N be the number of positive
tubes passing through unit area of a plane at right angles to the wire, v the
velocity of these tubes inwards, let N ′ be the number of negative tubes per
unit area at the same point, v′ their velocity outwards. The algebraical
sum of the number of tubes which cross the circle whose radius is r and
whose centre is on the axis of the wire is thus

(vN + v′N ′) 2πr.

When the field is steady the value of this expression must be the same
at all distances from the wire, because as many tubes must flow into any
region as flow out of it. Hence when the field is steady this expression must
equal the algebraical sum of the number of positive tubes which enter the
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wire in unit time; this number is however equal to i, the current through
the wire; hence we have

(vN + v′N ′) 2πr = i.

But by equations (4)

vN + v′N ′ =
γ

4π
,

where γ is the magnetic force at a distance r from the axis. Substituting
this value for vN + v′N ′, we get

γ =
2i

r
,

the usual expression for the magnetic force outside the wire produced by
a straight current.

When the field is steady, there will be as many positive as negative
tubes in each unit area, and therefore no electromotive intensity; if however
the intensity of the current changes, this will no longer hold. To take an
extreme case, let us suppose that the circuit is suddenly broken, then the
inertia of the positive tubes will make them continue to move inwards;
and since as the circuit is broken they can no longer shrink to molecular
dimensions when they enter it, the positive tubes will accumulate in the
region surrounding the wire: the inertia of the negative tubes carries them
out of this region, so that now there will be a preponderance of positive
tubes in the field around the wire. If any conductor is in this field these
positive tubes will give rise to a positive current, which is the ‘direct’
induced current which occurs on breaking the circuit. When the field was
steady no current would be produced in this secondary circuit, because
there were as many positive as negative tubes in its neighbourhood.

The Faraday tubes have momentum which they give up when they enter
the wire. If we consider a single wire where everything is symmetrical, the
wire is bombarded by these tubes on all sides, so that there is no tendency
to make it move off in any definite direction. Let us suppose, however,
that we have two parallel wires conveying currents in the same direction,
let A and B denote the cross-sections of these wires, B being to the right
of A. Then some of the tubes which if B were absent would pass into A

from the region on the right, will when B is present be absorbed by it,
and so prevented from entering A. The supply of positive tubes to A will
thus no longer be symmetrical; more will now come into A from the region
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on its left than from that on its right; hence since each of the tubes has
momentum, more momentum will come to A from the left than from the
right; thus A will be pushed from left to right or towards B. There will thus
be an attraction between the parallel currents.

24.] It will be noticed that the tubes in the preceding case move radially
in towards the wire, so that the energy which is converted into heat in
the circuit comes from the dielectric sideways into the wire and is not
transmitted longitudinally along it. This was first pointed out by Poynting
in his paper on the Transfer of Energy in the Electromagnetic Field (Phil.
Trans. 1884, Part. II. p. 343).

When however the current instead of being constant is alternating very
rapidly, the motion of the tubes in the dielectric is mainly longitudinal and
not transversal. We shall show in Chapter IV that if p is the frequency
of the current, σ the specific resistance of the wire, a its radius, and µ its
magnetic permeability, then when 4πµpa2/σ is a large quantity the elec-
tromotive intensity outside the wire is normal to the wire and therefore
radial. Thus in this case the Faraday tubes will be radial, and they will
move at right angles to themselves parallel to the wire. There is thus a
great contrast between this case and the previous one in which the tubes
are longitudinal and move radially, while in this the tubes are radial and
move longitudinally.

Discharge of a Leyden Jar.

Fig. 6.

25.] We shall now proceed to
consider the distribution and mo-
tion of the Faraday tubes during
the discharge of a Leyden jar. We
shall take the symmetrical case in
which the outside coatings of two
Leyden jars A and B (Fig. 6) are
connected by a wire, while the in-
side coating of A is connected to
one terminal of an electrical ma-
chine, the inside coating of B to
the other. When the electrical machine is in action the difference of poten-
tial between the inside coatings of the jars increases until a spark passes
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Fig. 7. Fig. 8.

between the terminals of the machine and electrical oscillations are started
in the jars.

Just before the passage of the spark the Faraday tubes will be ar-
ranged somewhat as follows. Some tubes will stretch from one terminal of
the electrical machine to the other, others will go from these terminals to
neighbouring conductors, such as the table on which the machine is placed,
the floors and walls of the room. The great majority of the tubes will how-
ever be short tubes going through the glass from one coating to the other
of the jars A and B.

Let us consider the behaviour of two of these tubes, one from A, the other

Fig. 9. Fig. 10.
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Fig. 11. Fig. 12.

from B, when a spark passes between the terminals of the machine: while
the spark is passing these terminals may be considered to be connected by
a conductor. The tubes which before the spark passed stretched from one
terminal of the machine to the other, will as soon as the air space breaks
down shrink to molecular dimensions; and since the repulsion which these
tubes exerted on those surrounding them is obliterated, the latter crowd
into the space between the terminals. The short tubes which, before the
spark passed, went from one coating of a jar to the other will now occupy
some such positions as those shown in Fig. 7. These tubes being of opposite
kinds tend to run together, they approach each other until they meet as in
Fig. 8, the tubes now break up as in Fig. 9, the upper portion runs into the
spark gap where it contracts, while the lower portion runs towards the wire
connecting the outside coatings of the jars, Fig. 10. If this wire is a good
conductor the tubes at their junction with the wire will be at right angles
to it, and a tube will move somewhat as in Fig. 11. The inertia of the
tube will carry the two sides past each other, until the tubes are arranged
as in Fig. 12. The tube with its ends on the wire will travel backwards
and will approach the positive tube which was emitted from the air gap
when the negative tube (Fig. 9) entered it. The tubes then go through
the processes illustrated in Figs. 9, 8, 7 in the reverse order, and the jars
again get charged, but with electricity of opposite sign to that with which
they started. After a time all the original Faraday tubes will be replaced
by others of opposite sign, and the charges on the jars will be equal and
opposite to the original charges. The new charge will then proceed to get
reversed by similar processes to those by which the original charge was
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Fig. 13

reversed, and thus the charges on the jar will oscillate from positive to
negative and back again.

26.] When a conducting circuit is placed near the wire connecting the
outer coatings of the jars, the Faraday tubes will strike against the circuit
on their way to and from the wire. The passage of these tubes across the
circuit will, since there is an excess of tubes of one name, produce a current
in this circuit, which is the ordinary current in the secondary due to the
variation of the intensity of the current in the primary circuit.

Some of the tubes as they rush from the jar to the wire connecting
the outside coatings of the jar strike against the secondary circuit, break
up into two parts, as shown in Fig. 13, the ends of these parts run along
this circuit until they meet again, when the tube reunites and goes off as
a single tube. The passage of the tube across the secondary circuit is thus
equivalent to a current in the direction of rotation of the hands of a watch;
this is opposite to that of the current in the wire connecting the outside
coatings of the jars. The circuit by breaking up the tubes falling on it
prevents them from moving across its interior, in other words, it tends to
keep the number of lines of magnetic induction which pass through the
circuit constant; this tendency gives the usual rule for finding the direction
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of the induced current. The introduction of magnetic force for the purpose
of finding the currents in one circuit induced by alterations of the currents
in another circuit seems however somewhat artificial.

Electromagnetic Theory of Light.

27.] We can by the aid of the Faraday tubes form a mental picture of
the processes which on the Electromagnetic Theory accompany the propa-
gation of light. Let us consider in the first place the uninterrupted propa-
gation of a plane wave emitted from a plane source. Let z be the direction
of propagation and let the wave be one of plane polarized light, the plane
of polarization being that of yz. Then we may suppose that a bundle of
Faraday tubes parallel to x are emitted from the plane source, and that
either these, or other parallel tubes set in motion by them, travel at right
angles to themselves and parallel to the axis of z with the velocity of light.
By the principles we have been considering these tubes produce in the re-
gion through which they are passing a magnetic force whose direction is at
right angles both to the direction of the tubes and that in which they are
moving, the magnetic force is thus parallel to the axis of y. The magnitude
of the magnetic force is by equations (4) equal to 4πv times the polariza-
tion, where v is the velocity of light, and since the electromotive intensity
is 4π/K, or, if the medium is non-magnetic, 4πv2 times the polarization,
we see that the electromotive intensity is equal to v times the magnetic
force. If there is no reflection the electromotive intensity and the magnetic
force travel with uniform velocity v outwards from the plane of disturbance
and always bear a constant ratio to each other. By supposing the number
of tubes issuing from the plane source per unit time to vary harmonically
we arrive at the conception of a divergent wave as a series of Faraday
tubes travelling outwards with the velocity of light. In this case the places
of maximum, zero and minimum electromotive intensity will correspond
respectively to places of maximum, zero and minimum magnetic force.

The case is different, however, when light is reflected from a metallic
surface. We shall suppose this surface plane and at right angles to the axis
of z. In this case since the tangential electromotive intensity at the metal-
lic surface vanishes, when a bundle of positive tubes enters the reflecting
surface, an equal number of negative tubes are emitted from it; these travel
backwards towards the source of light, moving in the opposite direction to
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the positive tubes. If we have a harmonic emission of tubes from the source
of light we shall evidently also have a harmonic emission of tubes from the
reflecting surface. Thus, at the various places in the path of the light,
we may have positive tubes moving backwards or forwards accompanied
by negative tubes moving in either direction. The magnetic effects of the
positive tubes moving forwards are the same as those of the negative tubes
moving backwards. Thus, when we have tubes of opposite signs moving
in opposite directions, their magnetic effects conspire while their electro-
motive effects conflict; so that when, as in the case of reflection, we have
streams of tubes moving in opposite directions the magnetic force will no
longer be proportional to the electromotive intensity. In fact the places
where the magnetic force is greatest will be places where the electromotive
intensity vanishes, for such a place will evidently be one where we have the
maximum density of positive tubes moving in one direction accompanied
by the maximum density of negative tubes moving in the opposite, and
since in this case there are as many positive as negative tubes the electro-
motive intensity will vanish. In a similar way we can see that the places
where the electromotive intensity is a maximum will be places where the
magnetic force vanishes.

This view of the Electromagnetic Theory of Light has some of the char-
acteristics of the Newtonian Emission Theory; it is not, however, open to
the objections to which that theory was liable, as the things emitted are
Faraday tubes, having definite positions at right angles to the direction of
propagation of the light. With such a structure the light can be polarized,
while this could not happen if the things emitted were small symmetrical
particles as on the Newtonian Theory.

28.] Before proceeding to interpret the production of a current by a
galvanic cell in terms of Faraday tubes it is necessary to consider a little
more in detail the process by which these tubes contract when they enter
a conductor.

29.] When a Faraday tube is not closed its ends are places where electri-
fication exists, and therefore are always situated on matter. Now the laws
of Electrolysis show that the number of Faraday tubes which can fall on an
atom is limited; thus only one can fall on an atom of a monad element, two
on that of a dyad, and so on. The atoms in the molecule of a compound
which is chemically saturated are already connected by the appropriate
number of tubes, so that no more tubes can fall on such atoms. Thus on
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this view the ends of a tube of finite length are on free atoms as distinct
from molecules, the atoms in the molecule being connected by short tubes
whose lengths are of the order of molecular distances. Thus, on this view,
the existence of free electricity, whether on a metal, an electrolyte, or a gas,
always requires the existence of free atoms. The production of electrifica-
tion must be accompanied by chemical dissociation, the disappearance of
electrification by chemical combination; in short, on this view, changes in
electrification are always accompanied by chemical changes. This was long
thought to be a peculiarity attaching to the passage of electricity through
electrolytes, but there is strong evidence to show that it is also true when
electricity passes through gases. Reasons for this conclusion will be given
in Chap. II, it will be sufficient here to mention one or two of the most
striking instances, the details of which will be found in that chapter.

Perrot found that when the electric discharge passed through steam,
oxygen came off in excess at the positive and hydrogen at the negative
electrode, and that the excesses of oxygen at the positive and of hydrogen
at the negative electrode were the same as the quantities of these gases set
free in a water voltameter placed in series with the discharge through the
steam. Grove found that when the discharge passed between a point and
a silver plate through a mixture of hydrogen and oxygen, the plate was
oxidised when it was the positive electrode, not when it was the negative.
If the plate was oxidised to begin with, it was reduced by the hydrogen
when it was the negative electrode, not when it was the positive. These
and the other results mentioned in Chap. II seem to point unmistakably to
the conclusion that the passage of electricity through gases is necessarily
attended by chemical decomposition.

30.] Although the evidence that the same is true when electricity passes
through metals is not so direct, it must be borne in mind that here, from
the nature of the case, such evidence is much more difficult to obtain;
there are, however, reasons for believing that the passage of electricity
through metals is accomplished by much the same means as through gases
or electrolytes. We shall return in Art. 34 to these reasons after considering
the behaviour of the Faraday tubes when electricity is passing through an
electrolyte, liquid or gaseous.

31.] To fix our ideas, let us take the case of a condenser discharging
through the gas between its plates. Let us consider a Faraday tube which
before discharge stretched from an atom O (Fig. 14) on the positive plate
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Fig. 14

Fig. 15

to another atom P on the negative one. The molecules AB, CD, EF of the
intervening gas will be polarized by induction, and the Faraday tubes which
connect the atoms in these molecules will point in the opposite direction
to the long tube OP. The tube in the molecule AB will lengthen and bend
towards the tube OP (which is supposed to pass near to AB) since these are
of opposite signs, until when the field is sufficiently strong the tube in the
molecule AB runs up into the long tube OP as in Fig. 15. The long tube
then breaks up into two tubes OA and BP as in Fig. 16, and the tube OA

shortens to molecular dimensions. The result of these operations is that
the tube OP has contracted to the tube BP, and the atoms O and A have
formed a molecule. The process is then continued, until the tube OP has
contracted into a tube of molecular dimensions at P. The above explanation
is only intended to represent the general nature of the processes by which

Fig. 16

the Faraday tubes shorten; we must modify it a little in order to explain
the very great velocity of the discharge along the positive column (see
Chap. II, Art. 108). If the tubes shortened in the preceding manner, we
see that the velocity of the ends of the tube would only be comparable with
the velocity of translation of the molecules of the gas, but the experiments
alluded to above show that it is enormously greater than this. A very
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slight modification of the above process will, however, while keeping the
essential features of the discharge the same, give a much greater velocity of
discharge. Instead of supposing that the tube OP jumps from one molecule
to the next, we may suppose that, under the induction in the field, several
of the molecules, say AB, CD, EF, form a chain, and that the tubes in these
molecules instead of being successively affected by the long tube and by
each other are simultaneously affected, so that the tube OP instead of merely
jumping from one molecule to the next, moves as in Fig. 17 from one end of
the chain AB, CD, EF to the other. In this case the long tube would shorten
by the length of the chain in the same time as on the previous hypothesis
it shortened by the distance between two molecules, so that on this view
the velocity of discharge would be greater than that on the previous view
in the proportion of the length of a chain to the distance between two
molecules. We shall see in Chap. II that there is considerable evidence
that in the electric field chains of molecules are formed having a structure
much more complex than that of the molecules recognized in the ordinary
Kinetic Theory of Gases.

Fig. 17

32.] We can easily express the resistance of a conductor in terms of
the time the Faraday tubes take to disappear (i.e. to contract to molecular
dimensions). Let us for the sake of clearness take the case of a conducting
wire, along which E is the electromotive intensity at any point, while K is
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the specific inductive capacity of the material of which the wire is made.
Then the number of Faraday tubes passing through unit area of the cross-
section of the wire is equal to

K

4π
E.

Let T be the average life of a tube in the conductor, then the number
of tubes which disappear from unit area in unit time is KE/4πT ; and
since the current c across unit area is equal to the number of tubes which
disappear from unit area in unit time, we have

c =
KE

4πT
.

If σ be the specific resistance of the conductor measured in electromag-
netic units

E = σc,

hence σ =
4πT

K
,

or T =
Kσ

4π
.

Hence T has the same value as the quantity denoted by the same symbol
in Maxwell’s Electricity and Magnetism (Art. 325). It is often called the
time of relaxation of the medium.

If {K} be the value of K in electrostatic units,

then since {K} =
K

9× 1020
,

we have T =
{K}
4π

σ

9× 1020
.

The approximate values of T/{K} for a few substances are given in the
following table:—

T/{K}
Silver . . . . . . . . 1.5× 10−19

Lead . . . . . . . . 1.8× 10−18

Mercury . . . . . . . 8.7× 10−18

Water with 8.3 per cent of H2SO4 3.1× 10−13

Glass at 200◦C . . . . . 2 × 10−6
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Since the values of {K} have not been determined for substances con-
ducting anything like so well as those in the preceding list we cannot de-
termine the value of T . Cohn and Arons have found however that the
specific inductive capacity of distilled water is about 76. Cohn and Arons
(Wied. Ann. 33, p. 13, 1888), and Cohn (Berl. Ber. p. 1037, 1891) found
that the specific inductive capacity of a weak solution differs very little
from that of the solvent, though the difference in the specific resistance
is very great. If we suppose that the K for water mixed with sulphuric
acid is the same as the K for water, we should find T for this electrolyte
about 2× 10−11, which is about ten thousand times as long as the time of
vibration of sodium light; hence this electrolyte when exposed to electrical
vibration of this period will behave as if T were infinite or as if it were
an insulator, and so will be transparent to electrical vibrations as rapid
as those of light. We see too that if {K} for the metals were as great
as {K} for distilled water, the values of T for these substances would not
greatly exceed the time of vibrations of the rays in the visible spectrum:
this result explains Maxwell’s observation, that the opacity of thin metallic
films is much less than the value calculated on the electromagnetic theory,
on the assumption that the conductivity of the metals for the very rapidly
alternating currents which constitute light is as great as that for steady
currents.

Galvanic Cell.

33.] The production of a current by a cell is the reverse process to the
decomposition of an electrolyte by a current; in the latter case the chemical
processes make a long Faraday tube shrink to molecular dimensions, in the
former they produce a long tube from short molecular tubes. Let A and B

(Fig. 18) represent two metal plates immersed in an acid which combines
chemically with A. Let a be a positive atom in the plate A connected by
a Faraday tube with a negative atom b, then if a enters into chemical
combination with a molecule cd of the acid, after the combination a and c
will be connected by a Faraday tube, as will also b and d: it will be seen
from the second line in the figure that the length of the tube bd has been
increased by the chemical action. If now d enters into combination with
another molecule ef , the result of this will be still further to increase the
length of the tube, and this length will increase as the chemical combination
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Fig. 18

progresses through the acid. In this way a long tube is produced, starting
from the metal at which the chemical change occurs. This tube will rush
to the wire connecting the plates, there shrink to molecular dimensions,
and produce a current through the wire.

34.] The connection between electric conduction and chemical change
is much more evident in the cases of liquid electrolytes and gases than
it is in that of metals. There does not seem, however, to be sufficient
difference between the laws of conduction through metals and electrolytes
to make it necessary to seek an entirely different explanation for metallic
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conduction. The chief points in which metallic conduction differs from
electrolytic are:—

1. The much greater ease with which electricity passes through metals
than through electrolytes.

2. The difference of the effects of changes of temperature on the con-
ductivity in the two cases. An increase of temperature generally diminishes
the conductivity of a metal, while it increases that of an electrolyte.

3. The appearance of the products of chemical decomposition at the
electrodes when electricity passes through an electrolyte, and the existence
of polarization, while neither of these effects has been observed in metallic
conduction.

With regard to the first of these differences, we may remark that though
the conductivities of the best conducting metals are enormously greater
than those of electrolytes, there does not seem to be any abrupt change
in the values of the conductivities when we pass from cases where the
conduction is manifestly electrolytic, as in fused lead or sodium chlorides,
to cases where it is not recognised as being of this nature, as in tellurium
or carbon. The following table, which contains the relative conductivities
of a few typical substances, is sufficient to show this:—

Silver 63.
Mercury 1.
Gas Carbon 1× 10−2.
Tellurium 4× 10−4.
Fused Lead Chloride 2× 10−4.
Fused Sodium Chloride 8.6× 10−5.

With regard to the second difference between metallic and electrolytic
conduction, viz. the effect of temperature on the conductivity, though it
is true that in most cases the effect of an increase in temperature is to
diminish the conductivity in one case and increase it in the other, this is a
rule which is by no means without exceptions. There are cases in which,
though the conduction is not recognised as being electrolytic, the conduc-
tivity increases as the temperature increases. Carbon is a striking instance
of this, and Feussner∗ has lately prepared alloys of manganese, copper and
nickel whose conductivities show the same peculiarity. On the other hand,
Sack (Wied. Ann. 43, p. 212, 1891) has lately shown that above 95◦C the

∗Zeitschrift f. Instrumentenkunde, 9, p. 233, 1889.
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conductivity of a .5 per cent. solution of sulphate of copper decreases as
the temperature increases, and in this respect resembles the conductivity
of metals. These exceptions are sufficient to show that increase of conduc-
tivity with temperature is not a sufficient test to separate electrolytic from
metallic conduction.

With regard to the third and most important point—the appearance of
the products of chemical decomposition at the electrodes—it is evident that
we could not expect to get any evidence of this in the case of the elementary
metals. The case of alloys looks more hopeful. Roberts-Austen, however,
who examined several alloys through which a powerful electric current had
been passed, could not detect any difference in the composition of the alloy
round the two electrodes. This result does not however seem conclusive
against the conduction being electrolytic, for some alloys are little more
than mixtures, while others behave as if they were solutions of one metal
in another. In neither of these cases could we expect to find any separation
of the constituents produced by the passage of the current; we could only
expect to find this effect when the connection between the constituents
was of such a nature that the whole alloy could be regarded as a chemical
compound, in the molecule of which one metal could be regarded as the
positive, the other as the negative element. The alloys investigated by
Roberts-Austen do not seem to have been of this character.

One important respect in which metallic resembles electrolytic conduc-
tion is the way in which electrolytes and metals behave to the electrical
vibrations which constitute light: an electrolyte, though a conductor for
steady currents, behaves like an insulator to the rapidly alternating lumi-
nous electrical currents, and, as Maxwell’s experiments on the transparency
of their metallic films show, metals show an analogous effect, for their re-
sistance for the light vibrations is enormously greater than their resistance
to steady currents.

The theory of Faraday tubes which we have been considering is, as far
as we have taken it, geometrical rather than dynamical; we have not at-
tempted any theory of the constitution of these tubes, though the analogies
which exist between their properties and those of tubes of vortex motion
irresistibly suggest that we should look to a rotatory motion in the ether
for their explanation.

Taking however these tubes for granted, they afford, I think, a con-
venient means of getting a vivid picture of the processes occurring in the



34.] ELECTRIC DISPLACEMENT AND FARADAY TUBES OF FORCE. 51

electromagnetic field, and are especially suitable for expressing the rela-
tions which exist between chemical change and electrical action.



CHAPTER II.

THE PASSAGE OF ELECTRICITY THROUGH GASES.

35.] The importance which Maxwell attached to the study of the phe-
nomena attending the passage of electricity through gases, as well as the
fact that there is no summary in English text books of the very extensive
literature on this subject, lead me to think that a short account of recent
researches on this kind of electric discharge may not be out of place in this
volume.

Can the Molecule of a Gas be charged with Electricity?

36.] The fundamental question as to whether a body if charged to a
low potential and surrounded by dust-free air at a low temperature will
lose any of its charge, and the very closely connected one as to whether it
is possible to communicate a charge of electricity to air in this condition,
have occasioned considerable divergence of opinion among physicists.

Coulomb (Mémoires de l’Académie des Sciences, 1785, p. 612), who
investigated the loss of electricity from a charged body suspended by insu-
lating strings, thought that after allowing for the leakage along the supports
there was a balance over, which he accounted for by a convective discharge
through the air; he supposed that the particles of air when they came in
contact with a charged body received a charge of electricity of the same
sign as that on the body, and that they were then repelled by it. On this
view the molecules of air, just like small pieces of metal, can be charged
with electricity.

This theory of the loss of electricity from charged bodies has how-
ever not been confirmed by subsequent experiments, as Warburg (Pogg.
Ann. 145, p. 578, 1872) and Nahrwold (Wied. Ann. 31, p. 448, 1887) have
shown that the loss can be accounted for by the presence of dust in the air
surrounding the bodies; and that it is the particles of dust striking against
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the bodies which carry off their electricity, and not the molecules of air.
This dust may either be present in the air originally, or it may consist of

particles of metal given off from the charged conductors themselves, for, as
Lenard and Wolf (Wied. Ann. 37, p. 443, 1889) have shown, metals either
free from electrification or charged with negative electricity give off metallic
dust when exposed to ultra-violet light. When the metals are positively
electrified no dust seems to be given off.

The experiments of the physicists above mentioned point to the conclu-
sion that the molecules of a gas at ordinary temperatures cannot receive a
charge of electricity.

This view receives strong support from the results of Blake’s exper-
iments (Wied. Ann. 19, p. 518, 1883), which have been confirmed by
Sohncke (Wied. Ann. 34, p. 925, 1888), which show that not only is there
no electricity produced by the evaporation of an unelectrified liquid, but
that the vapour arising from an electrified liquid is not electrified. If the
molecules of a vapour were capable of receiving a charge of electricity un-
der any circumstances we should expect them to do so in this case. This
experiment is a striking example of the way in which important researches
may be overlooked, for, as the following extract from Priestley’s History of
Electricity, p. 204, shows, Blake’s experiment was made and the same result
obtained more than one hundred years ago. ‘Mr. Kinnersley of Philadel-
phia, in a letter dated March 1761, informs his friend and correspondent
Dr. Franklin, then in England, that he could not electrify anything by
means of steam from electrified boiling water; from whence he concluded,
that, contrary to what had been supposed by himself and his friend, steam
was so far from rising electrified that it left its share of common electricity
behind.’

There does not seem to be any evidence that an electrified body can
lose any of its charge by radiation through space without convection of
electricity by charged particles.

Hot Gases.

37.] It is only at moderate temperatures that a conductor charged to
a low potential retains its charge when surrounded by a gas, for Becquerel
(Annales de Chimie et de Physique [3] 39, p. 355, 1853) found that air at
a white heat would allow electricity to pass through it even though the
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potential difference was only a few volts. This result has been confirmed
by Blondlot (Comptes Rendus, 104, p. 283, 1887), who found that air at
a bright red heat was unable to insulate under potential differences as low
as 1/1000 of a volt. He found, too, that the conduction through the hot
gas did not obey Ohm’s law.

From some experiments of my own (Phil. Mag. [5] 29, pp. 358, 441,
1890) I have come to the conclusion that hot gases conduct electricity with
very different degrees of facility. Gases such as air, nitrogen, or hydro-
gen which do not experience any chemical change when heated conduct
electricity only to a very small extent when hot, and in this case the con-
duction, as Blondlot supposed, appears to be convective. Gases, however,
which dissociate at high temperatures, that is gases such as iodine, hydri-
odic acid gas, &c., whose molecules split up into atoms, conduct with very
much greater facility, and the conduction does not exhibit that dependence
on the material of which the electrodes are made which is found when the
electricity is transmitted by convection.

A large number of gases were examined, and in every case where the hot
gas possessed any considerable conductivity, I was able to detect by purely
chemical means that chemical decomposition had been produced by the
heat. In this connection it is necessary to distinguish between two classes
of dissociation. The first kind is when the molecule is split up into atoms,
as in iodine, hydriodic acid gas, hydrochloric acid gas (when the chlorine,
though not the hydrogen, remains partly dissociated), and so on. In all
cases when dissociation of this kind exists, the gas is a good conductor
when hot. The second kind of dissociation consists in the splitting up of
the molecules of the gas into simpler molecules but not into atoms. This
kind of dissociation occurs when a molecule of ammonia splits up into
molecules of nitrogen and hydrogen, or when a molecule of steam splits up
into molecules of hydrogen and oxygen. In this case the gases only conduct
on the very much lower scale of the non-dissociable gases.

The first of the following lists contains those gases which only con-
duct badly when heated, the second those which conduct comparatively
well: chemical analysis showed that all the gases in the second list were
decomposed when they were hot enough to conduct electricity:—

(1) Air, Nitrogen, Carbonic Acid, Steam, Ammonia, Sulphuric Acid
gas, Nitric Acid gas, Sulphur (in an atmosphere of nitrogen), Sulphuretted
Hydrogen (in an atmosphere of nitrogen).
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(2) Iodine, Bromine, Chlorine, Hydriodic Acid gas, Hydrobromic Acid
gas, Hydrochloric Acid gas, Potassium Iodide, Sal-Ammoniac, Sodium
Chloride, Potassium Chloride.

The conductivities of the two classes of gases differ so greatly, both
in amount and in the laws they obey, that the mechanism by which the
discharge is effected is probably different in the two cases.

These experiments seem to show that when electricity passes through
a gas otherwise than by convection, free atoms, or something chemically
equivalent to them, must be present. It should be noticed that on this view
the molecules even of a hot gas do not get charged, it is the atoms and not
the molecules which are instrumental in carrying the discharge.

I also examined the conductivities of several metallic vapours, including
those of Sodium, Potassium, Thallium, Cadmium, Bismuth, Lead, Alu-
minium, Magnesium, Tin, Zinc, Silver, and Mercury. Of these the vapours
of Tin, Mercury, and Thallium hardly seemed to conduct at all, the vapours
of the other metals conducted well, their conductivities being comparable
with those of the dissociable gases.

The small amount of conductivity which hot gases, which are not de-
composed by heat, possess, seems to be due to a convective discharge
carried perhaps by dust produced by the decomposition of the electrodes:
in some cases perhaps the electricity may be carried by atoms produced
by the chemical action of the electrodes on the adjacent gas.

The temperature of the electrodes seems to exert great influence upon
the passage of the electricity through the gas into which the electrodes dip.
In the experiments described above I found it impossible to get electricity
to pass through the gas, however hot it might be, unless the electrodes
were hot enough to glow. A current passing through a hot gas was imme-
diately stopped by placing a large piece of cold platinum foil between the
electrodes—though a strong up-current of the hot gas was maintained to
prevent the gas getting chilled by the cold foil. As soon as the foil began
to glow, the passage of the electricity through the gas was re-established.

This is one among the many instances we shall meet with in this chapter
of the difficulty which electricity has in passing from a gas to a cold metal.
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Electric Properties of Flames.

38.] The case in which the passage of electricity through hot gases has
been most studied is that of flames; here the conditions are far from simple,
and the results that have been obtained are too numerous and intricate
for us to do more than mention their main features. A full account of
the experiments which have been made on this subject will be found in
Wiedemann’s Lehre von der Elektricität, vol. 4, B∗.

A flame such as the oxy-hydrogen flame conducts electricity, the hotter
parts conducting better than the colder: the conductivity of the flame is
improved by putting volatile salts into it, and the increase in the conduc-
tivity is greater when the salts are placed near the negative electrode than
when they are placed near the positive†.

The conduction through the flame exhibits polar properties, for if the
electrodes are of different sizes the flame conducts better when the larger
electrode is negative than when it is positive.

If wires made of different metals are connected together and dipped into
the flame, there will be an electromotive force round the circuit formed by
the flame and the wire; the flame apparently behaving in much the same
way as the acid in a one-fluid battery; the electromotive force in some cases
amounts to between three and four volts.

A current can also be obtained through a bent piece of wire if the ends
of the wire are placed in different parts of the flame.

Escape of Electricity from a Conductor at Low Potential surrounded by
Cold Gas.

39.] Though it seems to be a well-established fact that a conductor at
a low potential, surrounded by cold air, may retain its charge for an indef-
initely long time, recent researches have shown that when the conductor is
exposed to certain influences leakage of the electricity may ensue.

One of the most striking of these influences is that of ultra-violet light.
The effect of ultra-violet light on the electric discharge seems first to have
been noticed by Hertz (Wied. Ann. 31, p. 983, 1887), who found that
the disruptive discharge between two conductors is facilitated by exposing

∗See also Giese, Wied. Ann. 38, p. 403, 1889.
†For an investigation on the effect of putting volatile salts in flames published sub-

sequently to Wiedemann’s work, see Arrhenius (Wied. Ann. 42, p. 18, 1891).
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the air space, across which the discharge takes place, to the influence of
ultra-violet light.

E. Wiedemann and Ebert (Wied. Ann. 33, p. 241, 1888) subsequently
proved that the seat of this action is at the cathode; they showed that the
light produces no effect when the cathode is shielded from its influence,
however brightly the rest of the line of discharge may be illuminated.

They found that if the cathode is surrounded by air the effect of the
ultra-violet light is greatest when the pressure is about 300 mm. of mercury:
when the pressure is so low that the negative rays (see Art. 108) are visible,
the effect of the ultra-violet light is not at all well marked.

They found also that the magnitude of the effects depends upon the gas
surrounding the cathode; they tried the effect of immersing the cathode in
carbonic acid, hydrogen and air, and found that for these three gases the
effect is greatest in carbonic acid, least in air. In carbonic acid the effect
is not confined to ultra-violet light, as the luminous rays when they fall on
a cathode also facilitate the discharge.

Great light was thrown on the nature of this effect by an investigation
made by Lenard and Wolf (Wied. Ann. 37, p. 443, 1889), in which it was
proved that when ultra-violet light falls on a negatively electrified platinum
surface, a steam jet in the neighbourhood of the surface shows by its change
of colour that the steam in it has been condensed. This condensation
always occurs when the negatively electrified surface on which the light
falls is metallic, or that of a phosphorescent liquid, such as a solution of
fuchsin or methyl violet. They found also that some, but much smaller,
effects are produced when the surfaces are not electrified, but no effect at
all can be detected when they are charged with positive electricity.

They attributed this condensation of the jet to dust emitted from the
illuminated surface, the dust, in accordance with Aitken’s experiments
(Trans. Roy. Soc. Edinburgh, 30, p. 337, 1881), producing condensation by
forming nuclei round which the water drops condense.

The indications of a steam jet are not however free from ambiguity, as
R. v. Helmholtz (Wied. Ann. 32, p. 1, 1887) has shown that condensation
occurs in the jet when chemical reactions are going on in its neighbourhood,
even though no dust is present. There is thus some doubt as to whether
the condensation observed by Lenard and Wolf is due to disintegration
of the illuminated surface or to chemical action taking place close to it.
Taking however the interpretation which these observers give to their own
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experiments, the effects observed by Hertz, E. Wiedemann and Ebert can
easily be explained as due to the carrying of the discharge by particles
disintegrated from the metallic surface by the action of the ultra-violet
light.

40.] Closely connected with this effect is the discovery, made almost
simultaneously by Hallwachs (Phil. Mag. [5], 26, p. 78, 1888) and Righi
(Phil. Mag. [5], 25, p. 314, 1888), that a metallic surface, especially if
the metal is zinc and freshly polished, becomes positively electrified when
exposed to the action of ultra-violet light.

Lenard and Wolf’s experiments suggest that this is probably due to
the disintegration of the surface by the light, the metallic dust or vapour
carrying off the negative electricity and leaving the positive behind.

Stoletow (Phil. Mag. [5], 30, p. 436, 1890) showed that a kind of voltaic
battery might be made by taking two plates of different metals in metallic
connection and exposing one of them to the action of ultra-violet light; the
plate so exposed becoming the negative electrode of the battery. When
ultra-violet light acts in this way, Stoletow found that, as we should expect,
the light is powerfully absorbed by the surface on which it falls.

Probably another example of the same effect is the positive electrifica-
tion observed by Crookes (Phil. Trans., Part II. 1879, p. 647) on a plate
placed inside an exhausted tube in full view of the negative electrode. We
shall see, when we consider the discharges in such tubes, that something
proceeds from the cathode which resembles ultra-violet light in its power
of producing phosphorescence in bodies on which it falls. Crookes’ exper-
iment, which was made at Maxwell’s suggestion, shows that the resem-
blance of the cathode discharge to ultra-violet light extends to its power
of producing a positive charge on a metal plate exposed to its influence.

41.] A striking instance of the facility with which a negatively electri-
fied surface disintegrates, whilst a positively electrified one remains intact,
is afforded by the well-known ‘spluttering’ of the negative electrode in a
vacuum tube. In such a tube the glass round the negative electrode is
darkened by the deposition of a thin film of metal torn from the adjacent
cathode; the glass round the positive electrode is, on the other hand, quite
free from any such deposit. The amount of the disintegration of the cath-
ode depends greatly upon the metal of which it is made. Crookes (Proc.
Roy. Soc. 50, p. 88, 1891) has given the following table, which expresses the
relative loss in weight in equal times of cathodes of the same size exposed
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to similar electrical conditions:—

Palladium 108.00
Gold 100.
Silver 82.68
Lead 75.04
Tin 56.96
Brass 51.58
Platinum 44.00
Copper 40.24
Cadmium 31.99
Nickel 10.99
Indium 10.49
Iron 5.50

The loss in weight of magnesium and aluminium electrodes was too
small to be detected. In the same paper Crookes also describes an experi-
ment which seems to show that the ‘spluttering’ at the negative electrode
exists in water even when surrounded by air at atmospheric pressure.

42.] Since a metal surface when exposed to the action of sunlight emits
negative electricity and retains positive, we should expect positively elec-
trified bodies when exposed to light to behave differently from negatively
electrified ones. This has been found to be the case. The first observa-
tions on this subject seem to have been made by Hoor (Repertorium d.
Physik. 25, p. 105, 1889), who found that freshly prepared surfaces of zinc,
copper, and brass quickly lost a negative charge when exposed to the action
of ultra-violet light, while the same surfaces retained a positive charge.

The subject was afterwards taken up by Elster and Geitel (Wied. Ann.
38, pp. 40, 497, 1889; 41, p. 161, 1890; 42, p. 564, 1891), who verified
Hoor’s result for zinc, but could not detect any loss of negative electricity
from freshly prepared surfaces of brass or copper. They also established the
interesting fact that the effect is most marked in the case of the electro-
positive metals, zinc or amalgamated zinc, aluminium, and magnesium.
For the still more electro-positive metals, potassium and sodium, or rather
for their amalgams, since the pure metals are difficult to work with on
account of the tarnishing of their surfaces, they found that the effect is
so strong that it can readily be observed even when the amalgams are
enclosed in glass tubes, though glass, as is well known, absorbs most of
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the ultra-violet rays. When they succeeded subsequently in working with
surfaces of potassium and sodium instead of their amalgams, they found
that these substances are sensitive not merely to the ultra-violet rays but
even to those emitted by an ordinary petroleum lamp (Wied. Ann. 43,
p. 225, 1891).

Thus when the surface of some metals is negatively electrified and ex-
posed to the action of light, and especially of ultra-violet light, we have an
exception to the general rule that a charged body surrounded by cold air
can retain its charge, for an indefinite time, provided the charge is not large
enough to produce a spark. For as Elster and Geitel proved, the smallest
negative charge rapidly disappears from the illuminated surface.

The order of sensitiveness of metals to this effect is given by Elster and
Geitel as

Potassium,
Alloy of Sodium and Potassium,
Sodium,
Amalgams of Rubidium, Potassium, Sodium and Lithium,
Magnesium, Aluminium,
Zinc,
Tin.

It is interesting to note that this is roughly the order of the metals in
Volta’s contact electricity series, as each metal is positive to the one after
it. Elster and Geitel found that the effect is too small to be measured in
Cadmium, Lead, Copper, Iron, Platinum, Mercury, and Carbon. They also
found no clear indications of it with water. It is well marked, however, in
phosphorescent substances such as Balmain’s luminous paint (sulphide of
calcium), and Elster and Geitel (Wied. Ann. 44, p. 722, 1891) have quite
recently shown that it is exhibited by Fluor Spar and other phosphorescent
minerals.

Another way of observing this effect is to place the illuminated body
without a charge and in connection with the earth in the neighbourhood
of a charged body, when the latter will lose its charge if it is positively
electrified, while it will not lose its charge if it is negatively electrified; the
positive charge induces a negative one on the illuminated body, this nega-
tive electricity escapes, travels up to and neutralises the positive electricity
which induced it. When the pressure of the gas surrounding the body is
less than 1 mm., the escape of the negative electricity from the illuminated
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surface is considerably checked by placing it in a strong magnetic field
(Elster and Geitel, Wied. Ann. 41, p. 166, 1890).

Discharge of Electricity caused by Glowing Bodies.

43.] Somewhat similar differences between the discharge of positive and
negative electricity are observed when the charged body, instead of being
illuminated, is raised to so high a temperature that it becomes luminous
itself. Elster and Geitel (Wied. Ann. 38, p. 27, 1889) found that when
a platinum wire is heated to a bright red heat in an atmosphere of air or
oxygen at a low pressure, a cold metal plate in its neighbourhood discharges
negative electricity with much greater ease than positive. If, on the other
hand, a thin platinum wire or carbon-filament is heated to incandescence
in an atmosphere of hydrogen at a low pressure, the cold plate discharges
positive electricity more easily than negative. Guthrie, who (Phil. Mag.
[4] 46, p. 257, 1873) was the first to call attention to phenomena of this
kind, observed that an iron sphere in air when white hot cannot retain
a charge either of positive or of negative electricity, and that as it cools
it acquires the power of retaining a negative charge before it can retain
a positive one. If the sphere is connected to the earth and held near a
charged body, then, when the sphere is white hot, the body soon loses its
charge whether this be positive or negative; when the sphere is somewhat
colder, the body is discharged if negatively electrified but not if positively.

The converse problem of the production of electrification by a glow-
ing wire has been studied in great detail by Elster and Geitel, a summary
of whose results is given in Wied. Ann. 37, p. 315, 1889. The conclu-
sions they have come to are that when an insulated plate is placed near
an incandescent platinum wire, the plate becomes positively electrified in
air and oxygen, negatively electrified in hydrogen. It thus appears that
incandescent wires discharge most easily the electricity of opposite sign
to that which they produce on plates placed in their neighbourhood. If
the incandescence is continued for a long time, then if the wire is thin
and the pressure low, a plate in the neighbourhood of the wire receives
a negative charge, whatever be the gas by which it is surrounded. Elster
and Geitel seem to ascribe this to the action of gases driven out of the
electrodes. Nahrwold, who also observed this effect (Wied. Ann. 35, 107,
1888), regards it as the normal one, and ascribes the positive electrification
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observed when the wire first begins to glow to the action of dust in the
gas. It is noteworthy that hydrogen, which in Elster and Geitel’s experi-
ments behaved with platinum electrodes oppositely to the other gases, is
the only gas in which, according to Nahrwold, a platinum wire does not
disintegrate when heated. With carbon filaments, Elster and Geitel found
that the neighbouring plate is always negatively electrified, but so much
gas is given off from these filaments that the interpretation of these results
is ambiguous.

Elster and Geitel have also observed that the ease with which electric-
ity is produced in a plate near a glowing wire is diminished if the gas is
hydrogen by placing the wire in a magnetic field, increased if it is oxygen
or air.

44.] The investigations we have just described show clearly that metallic
surfaces have in general a much greater tendency to attract a positive than
a negative charge. Thus, for example, we have seen that when originally
uncharged they become positively charged when exposed to the action of
ultra-violet light, and if charged to begin with, then under the influence
of the light they lose a negative charge much more rapidly than a positive
one, indeed there seems no evidence to show that there is any loss of a
small positive charge from this effect.

The phenomena depending on the action of ultra-violet light and of
incandescent surfaces can be co-ordinated by the conception introduced
by v. Helmholtz (Erhaltung der Kraft, Wissenschaftliche Abhand. vol. 1.
p. 48), that bodies attract electricity with different degrees of intensity.
This conception was shown by him to be able to explain electrification by
friction, and the difference of potential produced by the contact of metals.
Thus, for example, the difference of potential produced by the contact of
zinc and copper is explained on this hypothesis by saying that the positive
electricity is attracted more strongly by the zinc than it is by the copper.

Instead of considering the specific attraction of different bodies for elec-
tricity directly, it is equivalent in theory and generally more convenient in
practice to regard the potential energy possessed by a body charged with
electricity as consisting of two parts, (1) the part calculated by the ordi-
nary rules of electrostatics, and (2) a part proportional to the charge and
equal to σQ, where Q is the charge and σ a quantity which we shall call
the ‘Volta potential’ of the body, and which varies from one substance to
another.
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To investigate the nature of the effects produced by the presence of this
second term, let us consider the case of two parallel plates A and B made
of different metals and connected electrically with each other.

Let Q be the charge on the plate A, −Q that on the plate B, σA, σB
the values of the co-efficient σ for the plates A and B respectively, then if
C is the capacity of the condenser formed by the two plates, the potential
energy of the system will be given by the equation

V = 1
2

Q2

C
+ σAQ− σBQ.

The system will be in equilibrium when the potential energy is a mini-
mum, i.e. when dV/dQ = 0, or

Q

C
+ σA − σB = 0.

Thus, by the contact of the metals the potential of the plate A is raised
above that of B by σB − σA.

It is worthy of notice that on this view the medium separating the
plates does not affect the value of the potential difference between them,
however great the value of σ for this medium may be, provided that, as
in the case of cold air, the medium is incapable of receiving a charge of
electricity.

The idea of the possession by a charged body of a quantity of energy
proportional to the first power of the charge is involved in the well-used
phrase ‘specific heat of electricity’; for if we regard electricity as having a
specific heat which varies from one substance to another, a body charged
with electricity will in consequence of this specific heat possess some en-
ergy proportional to the charge. The electromotive forces which occur in
unequally heated bodies may be explained as due to the tendency of the
electricity to adjust itself so that the potential energy is a minimum; if
the quantity σ is a function of the temperature, the energy will not be a
minimum when the body is devoid of electrification.

The existence of the term σQ in the expression for the energy of a
charged body, since the electrification is on the surface, makes the energy
per unit area of the surface depend upon whether the electrification is pos-
itive, negative, or zero. Now since the apparent surface tension of a liquid
is equal to the energy per unit area of surface, it may be objected that if
this view were true the surface tension of such liquids as are conductors
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ought to be changed by electrification, the change being in one direction
when the electrification is positive and in the opposite when it is nega-
tive. A short calculation will show however that this change in the surface
tension is so small that it might easily have escaped detection. We have
seen that σB − σA is the potential difference produced by the contact of
two metals A and B, we know from observation that this difference, and
therefore presumably σA and σB, is of the order of a volt, or in electro-
magnetic units 108. Now the greatest electrification which can exist on the
surface without discharge when the metal is surrounded by air at the at-
mospheric pressure is such as to produce an electromotive intensity equal
approximately to 102 in electrostatic measure; thus the greatest surface
density is in electrostatic units about 102/4π, or in electromagnetic units
10−8/12π. Hence σQ, the energy of the kind we are considering, will at the
most be of the order 1/(12π) ergs per square centimetre. This is so small
compared with the energy due to the surface tension that it would require
very careful observations to detect it.

45.] When a conductor, which does not disintegrate, is surrounded by
air in its normal state, or by some other dielectric incapable of receiving a
charge of electricity, the conductor cannot get charged, however much the σ
for the conductor may differ from that for the dielectric; for the electricity
of opposite sign to that which would be left on the conductor has no place
to which it can go.

The case is however different when the conductor is exposed to the ac-
tion of ultra-violet light, for then, as Lenard and Wolf’s experiments prove,
one or both of the following effects must take place: (1) disintegration of
the conductor, (2) chemical changes in the gas in the neighbourhood of the
conductor which put the gas in a state in which it can receive a charge of
electricity. If either of these effects takes place it is possible for the conduc-
tor to be electrified, for the electricity of opposite sign to that left on the
conductor may go to the disintegrated metal or the gas. The experiments
hitherto made leave undecided the question which of these bodies serves
as the refuge of the electricity discarded from the metal.

The researches of Hallwachs and Righi on electrification by ultra-violet
light can be explained on either hypothesis, if we assume that σ1, the value
of σ for the metallic vapour or for the dissociated gas, is greater than σ2,
the value of σ for the solid metal. For when negative electricity −Q es-
capes from the metal and positive electricity equal to +Q remains behind,
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the diminution in the part of the potential energy due to the Volta poten-
tial is σ1Q − σ2Q or (σ1 − σ2)Q. Thus, since σ1 is by hypothesis greater
than σ2, the departure of the negative electricity from the metal will be
accompanied by a diminution in the potential energy, and will therefore
go on until the increase in the ordinary potential energy due to the new
distribution of electricity is sufficient to balance the diminution in the part
of the energy due to the Volta potential. The positive electrification of the
plate produced by ultra-violet light can thus be accounted for.

Again, if the metal were initially positively electrified it would not be
so likely to lose its charge as if it were initially charged with negative elec-
tricity, for the passage of positive electricity from the metal to its vapour
or to the dissociated gas would involve an increase in the energy depending
upon the Volta potential, and so would be much less likely to occur than
an escape of negative electricity, which would produce a diminution in this
energy. We can thus explain the observations of Elster and Geitel on the
difference in the rates of escape of positive and negative electricity from
illuminated surfaces. The causes of the electrification by incandescence
observed by Elster and Geitel (l.c.) are more obscure. Thus if we take the
case when a plate receives a positive charge in air owing to the presence
of a neighbouring incandescent platinum wire, the most obvious interpre-
tation would be that the incandescence produces electrical separation, the
wire getting negatively and the adjacent gas positively electrified. This
view is however open to the very serious objection that in the other cases
of the electrification of a metal in contact with a gas the metal receives
the positive charge and not the negative one, as it would have to do if the
preceding explanation were correct.

The plate is exposed to the radiation from the incandescent wire and
may perhaps under the influence of this radiation become a cathode, i.e.
give out negative electricity and thus become positively electrified, just as
it would if, as in Hallwach’s and Righi’s experiments, it were exposed to
the action of ultra-violet light, or as in Crookes’ experiment (Art. 40) to
the emanations from a negative electrode. It seems however difficult to ex-
plain the anomalous behaviour of hydrogen on this view, and Nahrwold’s
discovery of the absence of ‘spluttering’ in platinum wires heated to incan-
descence in an atmosphere of hydrogen seems to suggest that the charge
on the plate may possibly arise in some such way as the following, even
though the first effect of the incandescence is to produce a positive elec-
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trification over the wire and a negative one over the adjacent gas. When
a metallic wire is heated, disintegration may take place in two ways, the
metal may go off as vapour, or it may be torn off in solid lumps or dust.
Now there seems to be no reason why σ for these lumps should differ from
σ for the wire, for both the lump and the wire consist of the same substance
in the same state of aggregation; but if the σ’s were the same there would
be no separation of electricity between the two. On the contrary, if the
wire were charged with positive electricity, the lump, when it broke away,
would carry positive electricity off with it. The case is however different
when the metal goes off as vapour, or when it dissociates the gas in its
neighbourhood: here the wire and the vapour or gas are in different states
of aggregation, for which the values of σ are probably different, so that
there may now be a separation of electricity, the wire getting the positive
and the vapour or gas the negative.

In air there is such an abundant deposition of platinum on a glass tube
surrounding an incandescent platinum wire that the latter in all probability
gives off dust as well as either dissociating the surrounding gas or giving off
platinum vapour; while Nahrwold (Wied. Ann. 35, 107, 1888) has shown
that the deposition of platinum is so small in hydrogen that very little can
be given off as dust in this gas.

Let us now consider what will happen in air. When the platinum be-
comes incandescent there is a separation of electricity, the positive remain-
ing on the wire, the negative going to the metallic vapour or dissociated
gas. Since the wire has got a positive charge, any lumps that break away
from it will be positively electrified. If the positive electricity given by
these lumps to the plate, which in Elster and Geitel’s experiments was
held above the glowing wire, is greater than the negative charge given to
it by such vapour or gas as may come in contact with it, the charge on the
plate will be positive, as in Elster and Geitel’s experiments. In hydrogen
however, where the lumps are absent, there is nothing to neutralize the
negative electricity on the metallic vapour or dissociated gas, so that the
charge on the plate will, as Elster and Geitel found, be negative.
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Spark Discharge.

Electric Strength of a Gas.

46.] In Art. 51 of the first volume of the Electricity and Magnetism
Maxwell defines the electric strength of a gas as the greatest electromotive
intensity it can sustain without discharge taking place. This definition
suggests that the electric strength is a definite specific property of a gas,
otherwise the introduction of this term would not be of much value. If
discharge through a gas at a definite pressure and temperature always
began when the electromotive intensity reached a certain value, then this
value, which is what Maxwell calls the electric strength of the gas, would
have a perfectly definite meaning. The term ‘electric strength of the gas’
would however be misleading if it were found to depend on such things, for
example, as the materials of which the electrodes are made, the state of
their surface, their shape, size, or distance apart, or on whether the electric
field was uniform or variable either with regard to time or space. It has
been found that the ‘electric strength’ does depend upon some, perhaps
even upon all, of the preceding conditions.

47.] Righi (Nuovo Cimento, [2] 16, p. 97, 1876) made some experi-
ments with electrodes of carbon, bismuth, lead, zinc, tin and copper, but
found that the substance of which the electrodes are made has little ef-
fect on the electromotive intensity necessary for discharge. Mr. Peace, who
made careful experiments in the Cavendish Laboratory on this point, could
not detect any difference in the electromotive intensity required to spark
across electrodes made of brass and those made of zinc. De la Rue and
Hugo Müller (Phil. Trans. 169, Pt. 1. p. 93, 1878) came to the conclusion
that sparks pass more easily between aluminium terminals than between
terminals of other metals, but that with this exception the nature of the
electrodes has no influence upon the spark length.

Jaumann has shown (Wien. Berichte, 97, p. 765, 1888) that the spark
discharge is very much facilitated by making small but rapid changes in
the potential of one of the electrodes.

48.] The reduction by Schuster (Phil. Mag. [5] 29, p. 182, 1890) of
the experiments of Baille, Paschen, and Gaugain on the spark discharge
shows that with spherical electrodes of different sizes (1 cm., .5 cm., and
.25 cm. in radius respectively) the maximum electromotive intensity when
the spark just passes through air at atmospheric pressure varies from 142
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to 372, the maximum intensity for small spheres being greater than for large
ones. Schuster sums up the conclusions he draws from these experiments
as follows, l. c. p. 192:—

(1) ‘For two similar systems of two equal spheres in which only the linear
dimensions vary, the breaking-stress is greater the greater the curvature of
the spheres.’

(2) ‘If the distance between the spheres is increased, the breaking-stress
at first diminishes.’

(3) ‘There is a certain distance for which the breaking-stress is a mini-
mum.’

We shall find too when we consider the relation between spark length
and potential difference that the distance between the electrodes may have
an enormous effect on the electromotive intensity required to produce dis-
charge.

The ‘electric strength’ as defined by Maxwell seems to depend upon
so many extraneous circumstances that there does not appear to be any
reason for regarding it as an intrinsic property of the gas.

Connection between Spark Length and Potential Difference, when the
Field is approximately uniform.

49.] This subject has been investigated by a large number of physicists.
We have however only space to consider the most recent investigations on
this subject. Baille (Annales de Chimie et de Physique, [5] 25, p. 486,
1882) has made an elaborate investigation of the potential difference re-
quired to produce in air at atmospheric pressure sparks of varying lengths,
between planes, cylinders, and spheres of various diameters. The method
he used was to charge the conductors between which the sparks passed by
a Holtz machine, the potential between the electrodes being measured by
an attracted disc electrometer provided with a guard ring: this method
is practically the same as that employed by Lord Kelvin (Reprint of Pa-
pers on Electrostatics and Magnetism, p. 247), who in 1860 made the first
measurements in absolute units of the electromotive intensity required to
produce a spark.

For very short sparks between two planes Baille (l.c., p. 515) found the
results given in the following table:—
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Potential Difference and Spark Length;
(temperature 15◦ to 20◦C, pressure 760 mm.)

Spark Length
in Centimetres.

Potential Difference in
Electrostatic Units.

Surface Density in
Electrostatic Units.

.0015 1.42 75.4

.0020 1.62 64.5

.0025 1.90 60.5

.0050 2.51 39.9

.0075 2.81 29.8

.0100 3.15 25.1

.0125 3.48 22.1

.0150 3.80 20.1

In another series of experiments where the sparks were slightly longer,
Baille, p. 515, found the following results:—

Potential Difference and Spark Length.

Spark
Length.

Potential
Difference.

Surface
Density.

Spark
Length.

Potential
Difference.

Surface
Density.

.01 3.17 25.2 .08 12.38 12.3

.02 4.51 17.9 .09 13.44 11.9

.03 6.22 16.5 .10 14.67 11.7

.04 7.32 14.6 .11 15.75 11.4

.05 8.71 13.8 .12 16.84 11.1

.06 9.84 13.2 .13 17.94 11.0

.07 11.20 12.7 .14 19.00 10.8
.15 20.16 10.7

For spark lengths between .025 cm. and .5 cm. the following results
were obtained, p. 516, in a different series of experiments:—

Potential Difference and Spark Length.

Spark
Length.

Potential
Difference.

Surface
Density.

Spark
Length.

Potential
Difference.

Surface
Density.

.025 5.94 18.86 .275 32.69 9.46

.050 8.68 13.76 .300 35.35 9.37

.075 11.87 12.57 .325 37.83 9.25

.100 14.79 11.76 .350 39.95 9.08

.125 17.45 11.06 .375 42.17 8.94

.150 20.29 10.76 .400 44.74 8.90

.175 22.94 10.43 .425 47.30 8.86

.200 25.51 10.15 .450 49.70 8.79

.225 28.17 9.96 .475 52.18 8.75

.250 30.47 9.70 .500 54.48 8.67
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For longer sparks Baille, l.c., p. 517, got the numbers given in the
two following Tables, which represent the results of different sets of
experiments:—

Potential Difference and Spark Length.
TABLE (I).

Spark
Length.

Potential
Difference.

Surface
Density.

Spark
Length.

Potential
Difference.

Surface
Density.

.40 44.80 8.90 .60 63.82 8.47

.45 49.63 8.78 .65 68.75 8.42

.50 54.36 8.65 .70 74.09 8.42

.55 59.09 8.55 .75 79.02 8.39

TABLE (II).

Spark
Length.

Potential
Difference.

Surface
Density.

Spark
Length.

Potential
Difference.

Surface
Density.

.70 73.48 8.84 .90 94.72 8.38

.75 80.13 8.55 .95 100.16 8.38

.80 84.86 8.40 1.00 105.50 8.39

.85 89.89 8.42

50.] We may compare with these results those obtained by Liebig (Phil.
Mag. [5], 24, p. 106, 1887), who used a similar method, but whose elec-
trodes were segments of spheres 9.76 cm. in radius. Liebig’s results are as
follows:—

Potential Difference and Spark Length.

Spark Length
in

centimetres.

Potential
Difference.

Electro-
motive

Intensity.

Spark
Length.

Potential
Difference.

Electro-
motive

Intensity.

.0066 2.630 398.5 .2398 30.622 127.7

.0105 3.357 319.7 .2800 35.196 125.7

.0143 4.017 280.9 .3245 39.816 122.7

.0194 4.573 235.7 .3920 47.001 119.9

.0245 5.057 206.4 .4715 55.165 117.0

.0348 7.190 206.6 .5588 63.703 114.0

.0438 8.863 195.5 .6226 69.980 112.4

.0604 10.866 179.9 .7405 82.195 111.0

.0841 13.548 161.1 .8830 95.540 108.2

.0903 13.816 153.0 .9576 102.463 107.0

.1000 15.000 150.0 1.0672 110.775 103.8

.1520 20.946 137.8 1.1440 117.489 102.7

.1860 24.775 133.2



50.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 71

The potential difference and electromotive intensity are measured in
electrostatic units.
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Liebig’s results for hydrogen, coal gas and carbonic acid as well as air
are exhibited graphically in Fig. 19, where the nearly straight curve repre-
sents the relation between potential difference and spark length, and the
other the relation between electromotive intensity and spark length. The
abscissae are the spark lengths, the ordinates, the potential difference or
electromotive intensity. It will be seen that Liebig’s values for the potential
difference required to produce a spark of given length are about 8 per cent.
higher than Baille’s. It also appears from any of the preceding tables that
the electromotive intensity required to spark across a layer of air varies very
greatly with the thickness of the layer. Thus from Baille’s result we see
that the electromotive intensity required to spark across a layer .0015 cm.
thick is about nine times that required to spark across a layer 1 cm. thick.
The fact that a greater electromotive intensity is required to spark across
a thin layer of air than a thick one was discovered by Lord Kelvin (l.c.) in
1860.

51.] With regard to the relation between the potential difference V and
spark length l, Baille deduced from his experiments the relation

V 2 = 10500(l + 0.08)l.

The agreement between the numbers calculated by this formula and those
found by experiment is not very close, and Chrystal (Proc. Roy. Soc. Edin.
vol. 11. p. 487, 1882) has shown that for spark lengths greater than 2 mil-
limetres the linear relation

V = 4.997 + 99.593l

represents Baille’s results within experimental errors. This linear relation
is confirmed by Liebig’s results, as the curves, Fig. 19, are nearly straight
when the spark length is greater than one millimetre.

Carey Foster and Pryson (Chemical News, 49, p. 114, 1884) found that
the linear relation V = α + βl was the one which represented best the
results of their experiments on the discharge through air at atmospheric
pressure.

52.] When the spark length in air at atmospheric pressure is less than
about a millimetre, the curve which expresses the relation between poten-
tial difference and spark length gets concave to the axis along which the
spark lengths are measured; that is, for a given small increase in the spark
length the increase in the corresponding potential difference is greater when
the sparks are short than when they are long. For exceedingly short sparks
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there seems to be considerable evidence that when the spark length is re-
duced to a certain critical value there is a point of inflexion in the potential
difference curve, and that when the spark length is reduced below this value
the previous concavity is replaced by convexity, the curve for very small
spark lengths taking somewhat the shape of the one in Fig. 20. This in-
dicates that the potential difference required to produce a spark however
short cannot be less than a certain finite value, which for air at ordinary
temperatures is probably between 300 and 400 volts. If a curve similar
to Fig. 20 represents the relation between potential difference and spark
length, we see that it would be possible under certain conditions to start a
spark by pulling two plates maintained at a constant potential difference
further apart, and to stop the spark by pushing the plates nearer together.

Fig. 20.

53.] At atmospheric pressure the spark length at which the potential
difference is a minimum must, if such a length exist at all, be so small,
that it would be very difficult to measure the spark lengths with sufficient
accuracy to investigate this point completely; when however the air is at a
lower pressure the critical spark length is longer, and the investigation of
this problem easier. The evidence to which I have alluded in Art. 52 comes
indirectly from an investigation (which we shall have to consider later)
made by Mr. Peace in the Cavendish Laboratory, Cambridge. Mr. Peace’s
experiments were made with the view of finding the relation between the
potential difference in air and the pressure when the spark length is kept
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constant, but as experiments were made on this relation for sparks of many
different lengths, they furnish material for drawing the curve expressing the
relation between potential difference and spark length at constant pressure.
Such curves are given in Fig. 27, and it will be seen that at lower pressures
they exhibit the peculiarities referred to. The discharge took place between
very large electrodes, one of which was plane and the other a segment of a
sphere about 20 cm. in radius, and as the difference of potential was pro-
duced by a large number of storage cells, the equality of whose E. M. F. was
very carefully tested, the measurements of the potential difference could
be made with great accuracy. It must be remembered, however, that the
apparatus used was designed for the purpose of determining the relation be-
tween potential difference and pressure for constant spark length, and not
for the relation between potential difference and spark length for constant
pressure, so that its indications on this point are somewhat indirect. The
conclusion that with very short sparks the potential difference increases
as the spark length diminishes was, however, borne out to some extent
by the observation that when the voltage was just not sufficient (i.e. was
about two volts too small) to spark across .002 of an inch at a pressure
of 20 mm. of mercury, the same voltage would not send a spark between
the plates when the distance was reduced to .001 or even to .0004 of an
inch. Mr. Peace also found that when he removed the electrodes from
the apparatus after sparks had passed between them when they were very
close together, the part of the electrodes most affected by breathing upon
them formed an annulus at some little distance from the centre, indicating
that discharge had taken place most freely at distances which were slightly
greater than the shortest distance between the electrodes, which was along
the line joining their centres. Mr. Peace has more recently tested this result
directly by placing two spark gaps in parallel, the electrodes being parallel
plane plates. One pair of these electrodes were separated by a single thick-
ness of thin pieces of glass such as are used for cover slips, while the other
pair of electrodes were kept at a greater distance apart by placing between
them two or more of the pieces of glass piled one on the top of the other.
At atmospheric pressure the spark passed across the short gap rather than
the long one, but when the pressure was reduced the reverse effect took
place, the spark going across the longer air gap before any discharge could
be detected across the shorter, and after the spark had first passed across
the longer path it required in some cases an additional potential difference
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of more than 100 volts to make it go across the shorter as well. When in
Art. 170 we consider discharge at very low pressures we shall find that in
some experiments of Hittorf’s a long spark passed much more easily than
a very much shorter one between the same electrodes; in this case however
the electrodes were wires, and the field before discharge was not uniform
as in the case under consideration.

Discharge when the Electric Field is not uniform.

54.] In the experiments tabulated above the electrodes were so large
that the electric field between them might be considered as uniform be-
fore the spark passed. Baille and Paschen have however made some very
interesting experiments on the potential differences required to spark be-
tween spheres small enough to make the variations in the electric field
considerable. Baille’s results (Annales de Chimie et de Physique (5), 25,
p. 531, 1882) are given in the following table, the potential difference being
measured in absolute electrostatic units:—

Potential Differences: pressure 760 mm., temperature 15◦ to 20◦C.

Spark
Length
in cm.

Planes.
Spheres
6 cm. in

diameter.

Spheres
3 cm. in

diameter.

Spheres
1 cm. in

diameter.

Spheres
.6 cm. in
diameter.

Spheres
.35 cm. in
diameter.

Spheres
.1 cm. in
diameter.

.05 8.94 8.96 9.18 9.18 9.26 9.30 9.63

.10 14.70 14.78 14.99 15.25 15.53 16.04 16.10

.15 20.20 20.31 20.47 21.28 21.24 21.87 19.58

.20 25.42 25.59 25.95 26.78 26.82 27.13 21.91

.25 30.38 30.99 31.33 32.10 32.33 31.96 23.11

.30 35.35 36.12 36.59 37.32 37.38 36.29 24.12

.35 40.45 41.45 41.47 42.48 42.16 39.39 25.34

.40 45.28 46.34 46.77 47.62 46.34 41.77 26.03

.45 50.48 51.46 51.60 51.56 50.44 43.76 26.62

.40 44.80 45.00 45.00 45.50 44.80 41.07 26.58

.45 49.63 50.33 49.63 52.04 48.42 43.29 28.49

.50 54.35 55.06 54.96 54.66 53.25 47.21 30.00

.60 63.82 65.23 65.23 65.23 59.69 53.75 31.51

.70 74.09 75.40 73.79 72.28 64.22 56.47 32.92

.80 84.83 87.98 84.76 77.61 67.75 58.79 33.82

.90 94.72 97.44 94.62 80.13 70.56 59.09 34.93
1.00 105.49 112.94 104.69 83.05 72.38 59.49 36.24
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From this table Baille concludes that for a given length of spark between
two equal spheres, one charged and insulated and the other put to earth, the
potential difference varies with the diameter of the sphere; starting from
the plane the potential difference at first increases with the curvature,
and attains a maximum when the sphere has a certain diameter. This
critical diameter of the sphere depends upon the spark length, the shorter
the spark the smaller the critical diameter. In the preceding table the
maximum potential differences have been printed in bolder type.

The two parts into which the table is divided by the horizontal line
correspond to two different sets of experiments.

Paschen’s results (Wied. Ann. 37, p. 79, 1889) are given in the following
table:—

Potential Difference at first Spark: pressure 756 mm.
mean temperature 15◦C.

SHORT SPARKS.

Spark Length
in centimetres.

Spheres
1 cm. radius

Spheres
.5 cm. radius

Spheres
.25 cm. radius

.01 3.38 3.42 3.61

.02 5.04 5.18 5.58

.03 6.62 6.87 6.94

.04 8.06 8.22 8.43

.05 9.56 9.75 9.86

.06 10.81 10.87 11.19

.07 11.78 12.14 12.29

.08 13.40 13.59 13.77

.09 14.39 14.70 14.89

.10 15.86 15.97 16.26

.11 16.79 17.08 17.26

.12 18.28 18.42 18.71

.14 20.52 20.78 21.26
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LONG SPARKS.

Spark Length
in centimetres.

Spheres
1 cm. radius

Spheres
.5 cm. radius

Spheres
.25 cm. radius

.10 15.96 16.11 16.45

.15 21.94 22.17 22.59

.20 27.59 27.87 28.18

.25 32.96 33.42 33.60

.30 38.59 39.00 38.65

.35 43.93 44.32 43.28

.40 49.17 49.31 47.64

.45 54.37 54.18 51.56

.50 59.71 59.03 54.67

.55 64.60 63.35 57.27

.60 69.27 67.80 59.95

.70 78.51 75.04 63.14

.80 87.76 81.95 66.39

.90 68.65
1.00 70.68
1.20 74.94
1.50 79.42

Here the heavy type again denotes the maximum potential differences.

Fig. 21.

These results are represented graphically in Fig. 21. They confirm
Baille’s conclusion that for a spark of given length the potential difference
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is a maximum when the spheres have a certain critical diameter, the critical
diameter increasing with the length of the spark.

Fig. 22.

Both Baille’s and Paschen’s measurements show that when the spheres
are very small, the potential difference required to produce a spark of given
length is, if the spark length is not too small, much less than the potential
difference required to produce the same length of sparks between parallel
plates. When the spark passes between pointed electrodes the potential
differences are still smaller. This effect is clearly shown in Fig. 22, which
is taken from a paper by De la Rue and Hugo Müller (Phil. Trans. 1878,
Pt. 1. p. 55), and which contains curves representing the relation between
potential difference and spark length when the electrodes are (i) two plates,
(ii) two spheres, one 3 cm. in radius the other 1.5 cm. in diameter, (iii) two
concentric cylinders, (iv) a plane and a point, (v) two points. It will be
noticed that the two points, which give the greatest striking distance for
long sparks, give the least for short sparks.

55.] If the spark length between parallel plates is taken as unity, the
spark length corresponding to various potential differences for different
kinds of electrodes was found by De la Rue and Müller to be as follows
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(Proc. Roy. Soc. 36, p. 157, 1883):—

Number of cells, each cell having
an E.M.F. of 1.03 volts . . . . 1000 3000 6000 9000 12, 000 15, 000

Striking distance for point and plane .60 2.09 3.82 3.89 3.58 3.30
Striking distance for two points . . .84 1.94 4.65 4.65 4.18 3.68

This table would appear to indicate that the ratio of the striking dis-
tance for pointed electrodes to that of planes attains a maximum. It must
however be remembered that when the sparks are long the conditions are
not the same in the two cases; in the case of the plates the discharge takes
place abruptly, while when the electrodes are pointed a brush discharge
starts long before the spark passes, and materially modifies the conditions.

56.] Schuster (Phil. Mag. [5] 29, p. 182, 1890) has, by the aid of Kirch-
hoff’s solution of the problem of the distribution of electricity over two
spheres, calculated from Baille’s and Paschen’s experiments the maximum
electromotive intensity in the field when the spark passed. The results for
Baille’s experiments are given in Table 1, for Paschen’s in Table 2.

TABLE 1.

Value of Maximum Electromotive Intensity in Electrostatic Units.

Spark
Length
in cm.

Planes
Spheres,
diameter

6 cm.

Spheres,
diameter

3 cm.

Spheres,
diameter

1 cm.

Spheres,
diameter
.6 cm.

Spheres,
diameter
.35 cm.

Spheres,
diameter
.1 cm.

.05 179 180 186 190 197 206 292

.10 147 149 153 163 176 198 376

.15 135 138 141 157 170 206 425

.20 127 131 137 154 170 219 460

.25 122 127 134 154 180 236 478

.30 118 124 130 156 189 253 494

.35 116 122 129 159 197 263 516

.40 113 122 129 164 204 272 528

.45 112 120 127 166 214 278 540

.40 112 118 124 157 197 268 539

.45 110 119 122 167 206 275 578

.50 109 117 125 166 218 296 608

.60 106 116 125 181 233 327 639

.70 106 117 126 188 234 339 667

.80 106 123 130 192 250 349 685

.90 105 120 132 191 255 349 708
1.00 106 128 133 194 258 349 733
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TABLE 2.

Maximum Electromotive Intensity in Electrostatic Units.

Spark
Length
in cm.

Spheres,
diameter

2 cm.

Spheres,
diameter

1 cm.

Spheres,
diameter
.5 cm.

Spark
Length
in cm.

Spheres,
diameter

2 cm.

Spheres,
diameter

1 cm.

Spheres,
diameter
.5 cm.

.01 336 347 372 .10 166 175 190

.02 258 262 277 .15 155 165 190

.03 224 236 240 .20 148 162 198

.04 206 213 222 .25 145 161 204

.05 194 202 215 .30 143 163 215

.06 184 190 202 .35 143 166 226

.07 175 183 193 .40 142 170 236

.08 172 179 192 .45 142 174 249

.09 165 174 187 .50 144 180 256

.10 164 171 187 .55 145 184 265

.11 160 167 183 .60 145 190 272

.12 159 167 185 .70 148 196 281

.14 154 164 187 .80 151 205 288
.90 293

1.00 301
1.20 312
1.50 327

57.] It will be seen from these tables that the smaller the spheres, or
in other words the more irregular the electric field, the greater the value
of the maximum electromotive intensity. This is sometimes expressed by
saying that the curvature of the electrodes increases the electric strength
of the gas, and Gaugain (Annales de Chimie et de Physique, [iv] 8, p. 75,
1866) has found that when the spark passes between two coaxial cylinders,
the maximum value R of the electromotive intensity can be expressed by
an equation of the form

R = α + βr−
1
3 ,

where α and β are constants and r is the radius of the inner cylinder.
58.] The variations in the value of the electromotive intensity are so

great that they prove that it is not the value of the electromotive intensity
which primarily determines whether or not discharge must take place; and
it is probable that the use of this quantity as the measure of the electric
strength has retarded the progress of this subject by withdrawing attention
from the most important cause of the discharge to this which is probably
merely secondary.
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59.] The following results taken from Paschen’s experiments show that
when the sparks are not too long the variations in the electromotive inten-
sity are very much greater than the variations in the potential difference;
suggesting that for such sparks the potential difference is the most impor-
tant consideration.

Radius of Electrodes
in cm.

1. .5 .25

Potential Difference 13.4 13.6 13.8 }
Spark length .08 cm.Maximum Intensity 172 179 192

Potential Difference 20.5 20.8 21.3 }
Spark length .14 cm.Maximum Intensity 154 164 187

Potential Difference 49.2 49.3 47.6 }
Spark length .40 cm.Maximum Intensity 142 170 236

Potential Difference 87.8 81.9 66.4 }
Spark length .80 cm.Maximum Intensity 151 2054 288

60.] We can explain by the following geometrical illustration the two
effects produced by the irregularity of the field—the diminution in the
potential difference, and the increase in the maximum electromotive inten-
sity. When a discharge is passing through gas, we shall see later on, from
the consideration of the discharge at low pressures, reasons for believing
that the distribution of potential during discharge may be approximately
represented by the equation

V = α + βl,

where α and β are constants and l the distance from the negative electrode.

Fig. 23.

If the curve representing the distribution of
potential before discharge cuts the curve rep-
resenting the distribution after discharge, a
spark will pass, while if it does not cut it, no
discharge can take place.

In Fig. 23, A, B represent the electrodes,
CD the distribution of potential during the
discharge. If the electric field is uniform the
curve which represents the distribution of po-
tential before the spark passes is a straight
line such as AE, as the intensity of the field
increases E moves higher and higher, the first
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point at which it intersects the curve representing the distribution of poten-
tial after discharge being D. In this case the difference of potential between
the electrodes when the spark passes is BD, so that the relation between
the potential difference V and the spark length l is

V = α + βl.

When however the electric field is not uniform it is possible for the curve
representing the potential before discharge to intersect the potential curve
after discharge, even though the difference of potential before discharge is
less than BD. will be evident from Fig. 23, where the curved line represents
the distribution of potential in an irregular field. Here we have a very
rapid change in potential in the neighbourhood of one of the electrodes,
followed by a comparatively slow rate of change midway between them.
In this case the curves intersect and a discharge would take place, though
the difference of potential between the electrodes is less than that required
for sparking in a uniform field. Thus for equal spark lengths the potential
difference may be less when the field is variable than when it is uniform.
Again, we notice that the slope of this curve in the neighbourhood of the
electrode A is steeper than that of a line joining A and D, in other words
the maximum electromotive intensity when discharge takes place is greater
when the field is variable than when it is uniform. Both these results are
confirmed by Baille’s and Paschen’s observations.

For a theory of the spark discharge the reader is referred to the discus-
sion at the end of this chapter.

61.] It is sometimes said that the reason a thin layer of gas is electrically
stronger than a thick one is, that a film of condensed gas is spread over
the surface of the electrodes, and that this film is electrically stronger than
the free gas. This consideration however, as Chrystal (Proc. Roy. Soc.
Edin., 11, 1881–2, p. 487) has pointed out, is quite incapable of explaining
the variation in electric strength, for it is evident that if this were all
that had to be taken into account the discharge would pass whenever the
electromotive intensity was great enough to break through this film of
condensed gas, so that this intensity would be constant when the spark
passed whatever the thickness of the layer of free gas.
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Connection between Spark Potential and the Pressure of the Gas.

62.] The general nature of this connection is as follows: as the pressure
of the gas diminishes the difference of potential required to produce a spark
of given length also diminishes, until the pressure falls to a critical value
depending upon the length of the spark, the nature of the gas, the shape
and size of the electrodes and of the vessel in which the gas is contained;
at this pressure the potential difference is a minimum, and any further
diminution in the pressure is accompanied by an increase in the potential
difference. The critical pressure varies very greatly with the length of the
spark; in Mr. Peace’s experiments, which we shall consider later, when the
spark length was about 1/100 of a millimetre, the critical pressure was that
due to about 250 mm. of mercury, while for sparks several millimetres long
the critical pressure was less than that due to 1 mm. of mercury.

63.] At pressures considerably greater than the critical pressure, the
curve which represents the relation between potential difference and pres-
sure, the spark length being constant, approximates to a straight line, or
more accurately to a slightly curved hyperbola concave with respect to

Fig. 24.
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Fig. 25.

the axis along which the pressures are measured. Thus Wolf, who has de-
termined (Wied. Ann. 37. 306, 1889) the potential difference required to
produce a spark through air, hydrogen, carbonic acid, oxygen and nitrogen
at pressures varying from 1 to 5 atmospheres, found that the electromotive
intensity, y, required to produce a spark across a length of 1 mm. between
electrodes 5 cm. in radius when the pressure was x atmospheres, could be
expressed by the following equations:—

For hydrogen . . . . y = 65.09x+ 62.
For oxygen . . . . y = 96.0x + 44.
For air . . . . . . y = 107x + 39.
For nitrogen . . . . y = 120.8x+ 50.
For carbonic acid . . . y = 102.2x+ 72.

64.] For pressures less than one atmosphere the connection between
spark length and pressure has been investigated by Baille (Annales de
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Chimie et de Physique, [5] 29, p. 181, 1883), Macfarlane (Phil. Mag. [5] 10,
p. 389, 1880), and Paschen (Wied. Ann. 37, p. 69, 1889), who have found
that the relation is graphically represented by very slightly curved portions
of a hyperbola. Paschen (l.c. p. 91) made the interesting observation that as
long as the product of the density and spark length is constant the sparking
potential is for a considerable range of pressure constant for the same gas.
This result can also be expressed by saying that the sparking potential for
a gas can be expressed in terms of the ratio of the spark length to the
mean free path of the molecules of the gas. The curves given in Fig. 24,
which represent for air, hydrogen and carbonic acid the relation between
the spark potential in electrostatic units as ordinates, and the products of
the pressure of the gas in centimetres of mercury and the spark length in
centimetres as abscissæ, seem to show that this relation is approximately
a linear one.

Fig. 26.

65.] The preceding experi-
ments were made at pressures
much greater than the criti-
cal pressure. A series of very
interesting experiments has
lately been made by Mr. Peace
in the Cavendish Laboratory,
Cambridge, on the shape of
these curves in the neigh-
bourhood of the critical pres-
sure. In these experiments
the potential difference could
be determined with great ac-
curacy, as it was produced
by a large number of small
storage cells whose E. M. F.
could very easily be deter-
mined. Mr. Peace’s curves are
represented in Figs. 25, 26,
27, 28. Fig. 25 represents the
relation between potential difference in air and pressure for spark lengths
varying from .0010 cm. to .2032 cm. Fig. 26 represents the relation between
electromotive intensity and pressure for the same spark lengths, and Fig. 27
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Fig. 27.

the relation between potential difference and spark length for a series of
different pressures: the curve representing the relation between electromo-
tive intensity and spark length is given in Fig. 28. These curves will be
seen to present several points of great interest. In the first place, Fig. 25
shows how much the critical pressure depends upon the spark length; this
will also be seen from the following table:—

Spark Length. Minimum
Potential Difference. Critical Pressure.

.0010 cm. 326 volts. 250 mm.

.00254 cm. 330 volts. 150 mm.

.00508 cm. 333 volts. 110 mm.

.01016 cm. 354 volts. 55 mm.

.02032 cm. 370 volts. 35 mm.

Thus when the spark length was increased twenty-fold the critical pres-
sure was reduced from 250 mm. to 35 mm. Another very remarkable feature
is the small variation in the minimum potential difference required to pro-
duce the spark. In the preceding table there is a very considerable range
of pressure, but the variation in the potential difference is comparatively
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small. Mr. Peace too made the interesting observation that he could not
produce a spark however near he put the electrodes together or however
the pressure was altered, if the potential difference was less than something
over 300 volts. Gases in this respect seem to resemble electrolytes which
require a finite difference of potential to produce a steady current through
them. This constancy in the minimum value of the potential required to
produce a spark seems additional evidence that the passage of the spark is
regulated more by the value of the potential difference than by that of the
electromotive intensity. Another thing to be remarked about the curves in
Fig. 25 is the way in which they get flatter and flatter as the spark length
diminishes: the flatness of the curve corresponding to the spark length
.0010 cm., or .0004 inch, is so remarkable that I give the numbers from
which it was drawn:—

Spark Length .00101 cm.

Pressure in mm.
of Mercury.

Potential Difference
in Volts.

Electromotive
Intensity.

20 433 1420
30 398 1310
40 380 1245
50 370 1215
60 357 1170
70 353 1160
80 349 1145
90 346 1135

100 343 1125
120 337 1105
140 332 1090
160 330 1085
180 329 1080
200 328 1075
240 326 1070
280 327 1072
300 328 1075

The curves representing the relation between potential difference and
pressure for different lengths of spark cut each other; this indicates that
at a pressure lower than that where the curves cut it requires a greater
potential difference to produce the short spark than it does the long one.
This point has already been considered in Art. 53.
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Fig. 28.

66.] The connection between the critical pressure and the spark length
proves that the gas at the critical pressure when conveying the electric
discharge has a structure of which the linear measure of the coarseness is
comparable with the spark length. This spark length is very much greater
than the mean free path of the molecules, and thus these experiments
show that a gas conveying electrical discharge possesses a much coarser
structure than that recognized by the ordinary Kinetic Theory of Gases.
For the nature of this structure we must refer to the general theory of the
electrical discharge given at the end of this chapter.

67.] Although the magnitude of the critical pressure depends, as we
have seen, to a very great extent on the distance between the electrodes,
the actual existence of a critical pressure does not seem to depend on the
presence of electrodes. In Art. 74 a method is described by which an
endless ring discharge can be produced in a bulb containing gas at a low
pressure; in this case the discharge is in the gas throughout the whole of
its course, and there are no electrodes. If in such an experiment the bulb is
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connected to an air pump it will be found that when the pressure of the gas
in the bulb is high no discharge at all is visible; as however the pressure is
reduced a discharge gradually appears and increases in brightness until the
pressure is reduced to a small fraction of a millimetre, when the brightness
is a maximum; when the pressure is reduced below this value the discharge
has greater difficulty in passing, it gets dimmer and dimmer, and finally
stops altogether when the exhaustion is very great. This experiment shows
that there is a critical pressure even when there are no electrodes, but that
it is very much lower than in an ordinary sized tube when electrodes are
used.

68.] De la Rue and Hugo Müller (Proc. Roy. Soc. 35, p. 292, 1883), using
the ordinary discharge with electrodes, found that the critical pressure
depends on the diameter of the tube in which the rarefied gas is confined,
the critical pressure getting lower as the diameter of the tube is increased.

Potential Difference required to produce Sparks through various Gases.

69.] The potential difference required to send a spark between the same
electrodes, separated by the same distance, depends, as Faraday found, on
the nature of the gas surrounding the electrodes: thus, for example, the
potential difference required to produce a spark of given length in hydrogen
is much less than in air. Measurements of the potential differences required
to produce discharge through a series of gases have been made by, among
others, Faraday, Baille (Annales de Chimie et de Physique, [5] 29, p. 181,
1883), Liebig (Phil. Mag. [5] 24, p. 106, 1887), Paschen (Wied. Ann. 37,
p. 69, 1889). The results obtained by different observers seem to differ very
largely. This will be seen from the following table, in which Paschen gives
the ratio of the potential difference required to spark across hydrogen or
carbonic acid, to the potential difference required to spark across a layer
of air of the same thickness, the pressure for all the gases being 750 mm.
of mercury.
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Spark length in
centimetres.

Hydrogen. Carbonic Acid.
Baille. Liebig. Paschen. Baille. Liebig. Paschen.

.1 .49 .873 .639 1.67 1.20 1.05

.2 .49 .787 .578 1.24 1.16 .988

.3 .50 .753 .560 .94 1.07 .962

.4 .50 .704 .553 .76 1.03 .930

.5 .50 .670 .548 .994 .910

.6 .656 .555 .974 .940

It will be seen that, though the numbers got by different observers differ
very widely, they all agree in making carbonic acid stronger than air for
short sparks and weaker than it for long. This would indicate that in the
formula

V = α + βl,

which gives the spark potential V in terms of the spark length l, α for
carbonic acid is greater than α for air, while β for carbonic acid is less
than β for air.

It will be seen from Fig. 24, which contains Paschen’s curves showing
the relation between potential difference and pressure for air, hydrogen and
oxygen, that these curves cut each other; thus the relation between their
‘electric strengths’ depends to a large extent upon the pressure. Liebig’s
curves for air, hydrogen, carbonic oxide and coal gas were given in Fig. 19.

70.] Röntgen (Göttinger Nachrichten, 1878, p. 390) arrived at the con-
clusion that the potential difference required to produce a spark of given
length in different gases was, approximately, inversely proportional to the
mean free path of the molecules of the gas. This approximation, if it
exists at all, must be exceedingly rough, for we have seen that the rela-
tion between the potential differences required to spark through different
gases depends on the spark length and the pressure of the gases. If the
result found by Mr. Peace for air (Art. 65),—that the minimum poten-
tial difference required to produce a spark varied very little with the spark
length,—were to hold for other gases, there would be much more likelihood
of this minimum potential difference being connected with some physical
or chemical property of the gas, than the potential difference required to
produce a spark of arbitrary length at a pressure chosen at random being
so connected.

71.] If a permanent gas in a closed vessel be heated up to 300◦C, the
discharge potential does not change (see Cardani, Rend. della R. Acc. dei
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Lincei, 4, p. 44, 1888; J. J. Thomson, Proc. Camb. Phil. Soc., vol. 6, p. 325,
1889): if however the vessel be open so that the pressure remains constant,
there will be a diminution in the discharge potential due to the diminution
in density. When the temperature gets so high that chemical changes such
as dissociation take place in the gas the discharge potential may fall to
zero.

A great number of experiments have been made on the relative ‘electric
strengths’ of damp and dry air. The only observer who seems to have
found any difference is Baille, and in his case the difference was so large
as to make it probable that some of the water vapour had condensed into
drops.

Phenomena accompanying the Electric Discharge at Low Pressures.

72.] When the discharge passes between metallic electrodes sealed into
a tube filled with gas at a low pressure, the appearance it presents is very
complicated: many of the effects observed in the tube are however evidently
due to the action of the electrodes, as the phenomena at the anode are very
different from those at the cathode; it therefore appears desirable to begin
the study of the phenomena shown in vacuum tubes by investigating the
discharge when no electrodes are present.

73.] If we wish to produce the endless discharge in a closed vessel with-
out electrodes, we must produce in some way or another round a closed
curve in the vessel an electromotive force large enough to break down the
insulation of the gas. Since, for discharge to take place, the electromotive
force round a closed curve must be finite, it cannot be produced electrostat-
ically, we must use the electromotive forces produced by electromagnetic
induction, and make the closed curve in the exhausted vessel practically
the secondary of an induction coil. As the primary of this induction coil
I have used a wire connecting the inside and outside coatings of a Leyden
jar; when the jar is discharged through the wire enormous currents pass for
a short time backwards and forwards along the wire, the currents when the
wire is short and the jar small reversing their directions millions of times
in a second. We thus have here all the essentials for producing a very large
electromotive force round the secondary, viz. a very intense current in the
primary and an exceedingly rapid rate of alternation of this current; and
though the electromotive force only lasts for an exceedingly short time, it
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lasts long enough to produce the discharge through the gas and to enable
us to study its appearance.

74.] Two convenient methods of producing the discharge are shown in
Fig. 29: in the one on the right two jars are used, the outside coatings of
which (A and B) are connected by a wire in which a few turns C are made;
C forms the primary coil. The inside coatings of these jars are connected,
one to one terminal E of a Wimshurst electrical machine or of an induc-
tion coil, the other coating to F, the other terminal of such a machine.
If the tubes in which the discharge is to be observed are spherical bulbs,
they are placed inside the coil C; if they are endless tubes, they are placed
just outside it. When the difference of potential between E and F becomes
great enough to spark across EF, the jars are discharged and electrical os-
cillations set up in the wire ACB. The oscillating currents in the primary
produce a large electromotive intensity in its neighbourhood, sufficient un-
der favourable conditions to cause a bright discharge to pass through the
rarefied gas in the bulb placed inside the coil.

Fig. 29.

We have described in Art. 26 the way in which the Faraday tubes,
which before the spark took place were mainly in the glass between the
two coatings of the jars, spread through the region outside the jars, as
soon as the discharge passes, keeping their ends on the wire ACB. They will
pass in their journey through the bulb in the coil C, and if they congregate
there in sufficient numbers the electromotive force will be sufficient to cause
a discharge to pass through the gas. Anything which concentrates the
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Faraday tubes in the bulb will increase the brightness of the discharge
through it.

75.] It is necessary to prevent the coil C getting to a high potential be-
fore the spark passes, otherwise it may induce a negative electrification on
the parts of the inside of the glass bulb nearest to it and a positive electri-
fication on the parts more remote: when the potential of the coil suddenly
falls in consequence of the passage of the spark, the positive and negative
electricities will rush together, and in so doing may pass through the rar-
efied gas in the bulb and produce luminosity. This luminosity will spread
throughout the bulb and will not be concentrated in a well-defined ring,
as it is when it arises from the electromotive force due to the alternating
currents passing along the wire ACB. This effect may explain the difference
in the appearance presented by the discharge in the following experiments,
where the discharge passes as a bright ring, from that observed by Hit-
torf (Wied. Ann. 21, p. 138, 1884), who obtained the discharge in a tube
by twisting round it a wire connecting the two coatings of a Leyden jar:
in Hittorf’s experiment the luminosity seems to have filled the tube and
not to have been concentrated in a bright ring. To prevent these electro-
static effects, due to causes which operate before the electrical oscillations
in the wires begin, the coil C is connected to earth, and as an additional
precaution the discharge tube may be separated from the coil by a screen
of blotting paper moistened with dilute acid. The wet blotting paper is
a sufficiently good conductor to screen off any purely electrostatic effect,
but not a good enough one to interfere to any appreciable extent with the
electromotive forces arising from the rapidly alternating currents.

76.] If C is the capacity of the jars, L the coefficient of self-induction
of the discharging circuit, then if the difference of potential between the
terminals of the electric machine is initially V0, γ the current through the
wire at a time t after the spark has passed will (Chap. IV) be given by the
equation

γ =
CV0

(LC)
1
2

sin
t

(LC)
1
2

,

supposing as a very rough approximation that there is no decay either from
resistance or radiation in the vibrations.

The rate of variation of the current, γ̇, is thus given by the equation

γ̇ =
V0

L
cos

t

(LC)
1
2

.
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Thus if M is the coefficient of mutual induction between the primary and
a secondary circuit, the maximum electromotive force round the secondary
will be MV0/L, which for a given spark length is independent of the ca-
pacity of the jars. But though the maximum electromotive force does not
depend upon the capacity of the jars, the oscillations will last longer when
the jars have a large capacity than when they have a small one, as the
energy to begin with is greater; hence, though it is possible to get the
discharge with jars whose capacity is not more than 70 or 80 in electro-
static measure, it is not nearly so bright as when larger capacities are used.
The best number of turns to use in the coil is that which makes M/L a
maximum. If n is the number of turns, then M and L will be respectively
of the forms βn and L0 + αn2, where α and β are constants and L0 the
self-induction of the part of the wire ACB not included in the coil; thus
M/L will be of the form

βn

L0 + αn2
,

and this is a maximum when L0 = αn2, that is when the self-induction in
the coil is equal to that in the rest of the circuit. Though the electromotive
force is greatest in this case, in practice it is found to be better to sacrifice
a little of the electromotive force for the sake of prolonging the vibrations;
this can be done by increasing the self-induction of the coil. It is thus
advisable to use rather more turns in the coil than is indicated by the
preceding rule.

Appearance of the Discharge.

77.] Let us suppose that a bulb fused on to an air pump is placed
within the coil C, and that the jars are kept sparking while the bulb is
being exhausted. When the pressure is high, no discharge at all is to be
seen inside the bulb; but when the exhaustion has proceeded until the
pressure of the air has fallen to a millimetre of mercury or thereabouts, a
thin thread of reddish light is seen going round the bulb in the zone of the
coil. As the exhaustion proceeds still further, the brightness of this thread
rapidly increases as well as its thickness; it also changes its colour, losing the
red tinge and becoming white. Continuing the exhaustion, the luminosity
attains a maximum and the discharge passes as a very bright and well-
defined ring. When the pressure is still further diminished, the luminosity
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also diminishes, until when an exceedingly good vacuum is reached no
discharge at all passes. The pressure at which the luminosity is a maximum
is very much less than the pressure at which the electric strength is a
minimum in a tube provided with electrodes and comparable in size with
the size of the bulb; the former pressure is in air less than 1/200 of a
millimetre of mercury, while the latter is about half a millimetre.

78.] We see from this result that the difficulty which is experienced in
getting the discharge to pass through an ordinary vacuum tube when the
pressure is very low is not altogether due to the difficulty of getting the
electricity to pass from the electrodes into the gas, but that it also occurs
in tubes without electrodes, though in this case the critical pressure is very
much lower.

79.] The existence of a critical pressure can also be easily shown by
putting some mercury in the bulb, and, when the bulb has been well ex-
hausted, driving out the remainder of the air by heating the mercury and
filling the bulb with mercury vapour. After this process has been repeated
two or three times, the bulb should be fused off from the pump when
full of mercury vapour. It will only be found possible to get a discharge
through this bulb within a narrow range of temperature, between about
70◦ and 160◦C; when the bulb is colder than this, the pressure of the mer-
cury vapour is too small to allow the discharge to pass; when it is hotter,
the vapour pressure is too great.

The critical pressure can also be proved by using the principle that
a conductor screens off the electromotive intensities due to rapidly alter-
nating currents while an insulator does not. For this purpose we use two
glass bulbs one inside the other, the inner bulb containing gas at such a
pressure that the discharge can pass freely through it. The outer bulb con-
tains nothing but mercury and mercury vapour, and is prepared in the way
just described. If the primary coil is placed round the outer bulb, then,
when the bulb is cold, the discharge passes through the inner bulb, but not
through the outer, showing that at this low pressure the conductivity of
the vapour in the outer bulb is not great enough for the vapour to act as an
electrical screen to the inner bulb. If, however, the outer bulb is warmed,
the vapour pressure of the mercury increases, and with it the conductiv-
ity; a discharge now passes through the outer bulb but not through the
inner, the mercury vapour acting as a screen. When the temperature of
the outer bulb is still further increased, the pressure of the mercury vapour
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gets so great that it ceases to conduct, and the discharge, as at first, passes
through the inner bulb but not through the outer.

80.] These experiments show that after a certain exhaustion has been
passed the difficulty of getting a discharge to pass through a highly ex-
hausted tube increases as the exhaustion is increased. This result is in
direct opposition to a theory which has found favour with some physi-
cists, viz. that a vacuum is a conductor of electricity. The reason advanced
for this belief is that when the discharge passes through highly exhausted
tubes provided with electrodes, the difficulty which it experiences in get-
ting through such a tube, though very great, seems to be almost as great
for a short tube as for a long one; from this it has been concluded that
the resistance to the discharge is localised at the electrodes, and that when
once the electricity has succeeded in escaping from the electrode it has no
difficulty in making its way through the rare gas. But although there is
no doubt that in a highly exhausted tube the rise in potential close to the
cathode is great compared with the rise in unit length of the gas elsewhere,
it does not at all follow that the latter vanishes or that it continually dimin-
ishes as the pressure is diminished. The experiment we have just described
on the bulb without electrodes shows that it does not. Numerous other
experiments of very different kinds point to the conclusion that a vacuum
is not a conductor. Thus Worthington (Nature, 27, p. 434, 1883) showed
that electrostatic attraction was exerted across the best vacuum he could
produce, and that a gold-leaf electroscope would work inside it. Ayrton
and Perry (Ayrton’s Practical Electricity, p. 310) have determined the elec-
trostatic capacity of a condenser in a vacuum in which they estimated the
pressure to be only .001 mm. of mercury. If the air at this pressure had
been a good conductor the electrostatic capacity would have been infinite,
instead of being, as they found, less than at atmospheric pressure. Again,
if we accept Maxwell’s Electromagnetic Theory of Light, a vacuum cannot
be a conductor or it would be opaque, and we should not receive any light
from the sun or stars.

81.] The discharge has considerable difficulty in passing across the
junction of a metal and rarefied gas. This can easily be shown by placing a
metal diaphragm across the bulb in which the discharge takes place, care
being taken that the diaphragm extends right up to the surface of the glass.
In this case the discharge does not cross the metal plate, but forms two
separate closed circuits, one circuit being on one side of the diaphragm,
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the other on the other. The nature of the discharge is shown in Fig. 30, in
which it is seen that it travels through a comparatively long distance in the

Fig. 30.

rarefied gas to avoid the necessity
of crossing a thin plate of a very
good conductor. If the bulb, instead
of merely being bisected by one di-
aphragm, is divided into six or more
regions by a suitable number of di-
aphragms, it will be found a mat-
ter of great difficulty to get any dis-
charge at all through it. The metal
plate in fact behaves in this case al-
most exactly like a plate of an insu-
lating substance such as mica, which
when continuous also breaks the dis-
charge up into as many circuits as
there are regions formed by the mica
diaphragms. When however small holes are bored through the mica di-
aphragms the discharge will not be split up into separate circuits, but will
pass through these holes. By properly choosing the position of the holes
relative to that of the primary coil, we can get an undivided discharge in
part of the circuit branching in the neighbourhood of the diaphragm into
as many separate discharges as there are holes through either side of the
mica plate. The appearance presented by the discharge when there are two
holes on each side of the mica plate is shown in Fig. 31.

Fig. 31.

82.] A rarefied gas is usually regarded as
an exceedingly bad conductor, and the ex-
periments of many observers, such as those
of Hittorf, De la Rue and Hugo Müller, have
shown that when a tube provided with elec-
trodes in the usual way and filled with such
a gas is placed in a circuit round which there
is a given electromotive force, it produces
as great a diminution in the intensity of
the current as a resistance of several million
ohms would produce. This great apparent
resistance, when the pressure of the gas is
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not too low, is principally due however to the difficulty which the dis-
charge has in passing from the electrodes into the gas. If we investigate
the amount of current sent by a given electromotive force round a circuit
exclusively confined to the rarefied gas, we find that, instead of being ex-
ceedingly bad conductors, rarefied gases (at not too low a pressure) are,
on the contrary, surprisingly good ones, having molecular conductivities—
that is specific conductivities divided by the number of molecules in unit
volume—enormously greater than those of any electrolytes with which we
are acquainted.

83.] We cannot avail ourselves of any of the ordinary methods of mea-
suring resistances to measure the resistance of rarefied gases to these elec-
trodeless discharges; but while the very high frequency of the currents
through our primary coil makes the ordinary methods of measuring resis-
tances impracticable, it at the same time makes other methods available
which would be useless if the currents were steady or only varied slowly.
One such method, which is very easily applied, is based on the way in
which plates made of conductors screen off the action of rapidly alternat-
ing currents. If a conducting plate be placed between a primary circuit
conveying a rapidly alternating current and a secondary coil, the electro-
magnetic action of the currents induced in the plate will be opposed to
that of the currents in the primary, so that the interposition of the plate
diminishes the intensity of the currents induced in the secondary. When we
are dealing with currents through the primary with frequencies as high as
those produced by the discharge of a Leyden jar, the thinnest plate of any
metal is sufficient to entirely screen off the primary from the secondary,
and no currents at all are produced in the latter when a metal plate is
interposed between it and the primary; we could not therefore use this
method conveniently to distinguish between the conductivities of different
metals. If however instead of a metal plate we use a layer of an electrolyte,
the conductivity of the electrolyte is not sufficient to screen off from the
secondary the effect of the primary unless the layer is some millimetres
in thickness, and the worse the conductivity of the electrolyte the thicker
will be the layer of it required to reduce the action of the primary on
the secondary to a given fraction of its undisturbed value. By comparing
the thicknesses of layers of different electrolytes which produce the same
effect when interposed between the primary and the secondary we can,
since this thickness is proportional to the specific resistance, determine the
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conductivity of electrolytes for very rapidly alternating currents (see J. J.
Thomson, Proc. Roy. Soc. 45, p. 269, 1889).

84.] The conductivity of a rarefied gas can on this principle be compared
with that of an electrolyte in the following way: A, B, C, Fig. 32, represents
the section of a glass vessel shaped something like a Bunsen’s calorimeter;
in the inner portion ABC of this vessel, which is exposed to the air, an
exhausted tube E is placed. A tube from the outer vessel leads to a mercury
pump which enables us to alter its pressure at will. The primary coil LM

is wound round the outer tube. When the air in the outer tube is at
atmospheric pressure, a discharge caused by the action of the primary
passes through the tube E; but when the pressure of the gas in the outer
tube is reduced until a discharge passes through it, the discharge in E stops,
showing that the currents induced in the gas in the outer vessel have been
sufficiently intense to neutralise the direct action of the primary coil on the
tube in E.

Fig. 32.

In order to compare the intensity of the currents
through the rarefied gas with those produced under
similar circumstances in an electrolyte, the outer ves-
sel ABC, Fig. 32, through which the discharge has
passed is disconnected from the pump, and the por-
tion which has previously been occupied by the rar-
efied gas is filled with water, to which sulphuric acid
is gradually added. Pure water does not seem to pro-
duce any effect on the brightness of the discharge in E,
but as more and more sulphuric acid is added to the
water the discharge in E gets fainter and fainter, un-
til when about 25∗ per cent. by volume of sulphuric
acid has been added the effect produced by the elec-
trolyte seems to be as nearly as possible the same as
that produced by the rarefied gas. Thus the currents
through the rarefied gas must, since they produced the same shielding ef-
fect, be as intense as those through a 25 per cent. solution of sulphuric
acid. The conductivity of the gas must therefore be as great as that of
the mixture of sulphuric acid and water, which is one of the best liquid
conductors we know. This shielding effect can be produced by the rarefied

∗The actual percentage depends on the pressure of the gas as well as on what kind
of gas it is; the figures given above refer to an actual experiment.



85.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 100

gas when its pressure is as low as that due to 1/100 mm. of mercury, while
the number of molecules of sulphuric acid in a 25 per cent. solution is such
as would, if the sulphuric acid were in a gaseous state, produce a pressure
of about 100 atmospheres. Thus, comparing the conductivity per molecule
of the gas and of the electrolyte, the molecular conductivity of the gas is
about seven and a-half million times that of sulphuric acid. The relation
which the molecular conductivity of the gas bears to that of an electrolyte,
which produces the same effect in shielding off the effects of the primary,
depends upon the length of spark passing between the jars, and so upon
the electromotive intensity acting on the gas: in other words, conduction
through these gases does not obey Ohm’s law: the conductivity instead
of being constant increases with the electromotive intensity. This is what
we should expect if we regard the discharge through the gas as due to the
splitting up of its molecules: the greater the electromotive intensity the
greater the number of molecules which are split up and which take part in
the conduction of the electricity.

Fig. 33.

85.] Another method by which we can prove the
great conductivity of these rarefied gases at the pres-
sures when they conduct best is by measuring the en-
ergy absorbed by a secondary circuit made of the rar-
efied gas when placed inside a primary circuit convey-
ing a rapidly alternating current. We shall see, Chap-
ter IV, that when a conductor, whose conductivity is
comparable with that of electrolytes, is placed inside
the primary coil, the amount of energy absorbed per
unit time is proportional to the conductivity of the conductor; so that
if we measure the absorption of energy by equal and similar portions of
two electrolytes we can find the ratio of their conductivities. In the case
of these electrodeless discharges we can easily compare the absorption of
energy by two different secondary circuits in the following manner. In
the primary circuit connecting the outside coatings of two jars, two loops,
A and B, Fig. 33, are made, a standard bulb is placed in A and the substance
to be examined in B. When a large amount of energy is absorbed by the
secondary in B, the brightness of the discharge through the bulb placed
in A is diminished, and by observing the brightness of this discharge we
can estimate whether the absorption of energy by two different secondaries
placed in B is the same. If, now, an exhausted bulb be placed in B, the
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brightness of the discharge of the A bulb is at once diminished; indeed it is
not difficult so to adjust the spark by which the jars are discharged, that
a brilliant discharge passes in A when the B bulb is out of its coil, and no
visible discharge when it is inside the coil. To compare the absorption of
energy by the rarefied gas with that by an electrolyte we have merely to fill
the bulb with an electrolyte, and alter the strength of the electrolyte until
the bulb when filled with it produces the same effect as when it contained
the rarefied gas. It will be found that in order to produce as great an
absorption of energy as that due to a comparatively inefficient bulb filled
with rarefied air, a very strong solution of an electrolyte must be put into
the bulb; while a bulb which is exhausted to the pressure at which it pro-
duces its maximum effect absorbs a greater amount of energy than when
filled even with the best conducting electrolyte we can obtain. We conclude
from these experiments that the very large electromotive intensities which
are produced by the discharge of a Leyden jar can, when no electrodes are
used, send through a rarefied gas when the pressure is not too low much
larger currents than the same electromotive intensities could send through
even the best conducting mixture of water and sulphuric acid.

The results just quoted show that the conductivity, if estimated per
molecule taking part in the discharge, is much higher for rare gases than
even for metals such as copper or silver.

86.] The large values of the conductivities of these rarefied gases when
no electrodes are used are in striking contrast to the almost infinitesimal
values which are obtained when electrodes are present. This illustrates the
reluctance which the discharge has to pass across the junction of a rarefied
gas and a metal: the experiments described in Art. 81 are a very direct
proof of this peculiarity of the discharge. It seems also to be indicated,
though perhaps not quite so directly, by some experiments made by Liveing
and Dewar (Proc. Roy. Soc. 48, p. 437, 1890) on the spectrum of the
discharge. They found that the spectrum of a discharge passing through
a gas which holds in suspension a considerable quantity of metallic dust
does not show any of the lines of the metal. This is what we should expect
from the experiments described in Art. 81, as these show that the discharge
would take a very round-about course to avoid passing through the metal.

87.] There seem some indications that this reluctance of the discharge
to pass from one substance to another extends also to the case when both
substances are in the gaseous state, and that when the discharge passes
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through a mixture of two gases A and B, the discharges through A and
through B respectively are in parallel rather than in series: in other words,
that the polarized chains of molecules, which are formed before the dis-
charge passes, consist some of A molecules and some of B molecules, but
that the chains conveying the discharge do not consist partly of A and
partly of B molecules. Thus, if the discharge is passing through a mixture
of hydrogen and nitrogen, the chains in which the molecules split up and
along which the electricity passes may be either hydrogen chains or nitro-
gen chains, but not chains containing both hydrogen and nitrogen. This
seems to be indicated by the fact that when the discharge passes through
a mixture of hydrogen and nitrogen, the spectrum of the discharge may,
though a considerable quantity of nitrogen is present, show nothing but
the hydrogen lines.

Crookes’ observations on the striations in a mixture of gases (Presi-
dential Address to the Society of Telegraph Engineers, 1891) seem also to
point to the conclusion that the discharges through the different gases in
the mixture are separate; for he found that when several gases are present
in the discharge tube, different sets of striations, Art. 99, are found when
the discharge passes through the tube, the spectrum of the bright portions
of the striæ in one set showing the lines of one, and only one, of the gases
in the mixture; the spectrum of another set showing the lines of another of
the gases and so on, indicating that the discharges through the components
of the mixture are distinct.

Fig. 34.

88.] When the discharge
can continue in the same
medium all the way it can
traverse remarkably long dis-
tances, even though the greater
portion of the secondary may
be of such a shape as not to add
anything to the electromotive
force acting round it. Thus,
for example, the discharge will
pass through a very long sec-
ondary, even though the tube
of which this secondary is made
is bent up so that the greater part of it is at right angles to the electromo-
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tive intensity acting upon it. By using square coils with several turns for
the primaries, I have succeeded in sending discharges through tubes of this
kind over 12 feet in length. On the other hand, there will be no discharge
through a rarefied gas if the shape of the tube in which it is contained is
such that the electromotive force round it is either zero or very small: it
is impossible, for example, to get a discharge of this kind through a tube
shaped like the one shown in Fig. 34.

Action of a Magnet on the Electrodeless Discharge.

89.] A magnet deflects the discharge through a rarefied gas in much
the same way as it does a flexible wire carrying a current which flows
in the same direction as the one through the gas. As the electrodeless
discharges through the rarefied gas are oscillatory, they are when under the
action of a magnet separated into two distinct portions, the magnet driving
the discharge in one direction one way and that in the opposite direction
the opposite way. Thus, when a bulb in which the discharge passes as a
ring in a horizontal plane is placed between the poles of an electromagnet
arranged so as to produce a horizontal magnetic field, those parts of the
ring which are at right angles to the lines of magnetic force are separated
into two portions, one being driven upwards, the other downwards. The
displacement of the discharge is not however the only effect observed when
the discharge bulb is placed in a magnetic field, for the difficulty which
the discharge experiences in getting through the rarefied gas is very much
increased when it has to pass across lines of magnetic force. This effect,
which is very well marked, can perhaps be most readily shown when the
discharge passes as a bright ring through a spherical bulb. If such a bulb is
placed near a strong electromagnet it is easy to adjust the length of spark
in the primary circuit, so that when the magnet is ‘off’ a brilliant discharge
passes through the bulb, while when the magnet is ‘on’ no discharge at all
can be detected.

90.] The explanation of this effect would seem to be somewhat as
follows. The discharge through the rarefied gas does not rise to its full
intensity quite suddenly, but, as it were, feels its way. The gas first breaks
down along the line where the electromotive intensity is a maximum, and
a small discharge takes place along this line. This discharge produces a
supply of dissociated molecules along which subsequent discharges can pass
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with greater ease. The gas is thus in an unstable state with regard to the
discharge, since as soon as any small discharge passes through it, it becomes
electrically weaker and less able to resist subsequent discharges. When,
however, the gas is in a magnetic field, the magnetic force acting on the
discharge produces a mechanical force which displaces the molecules taking
part in the discharge from the line of maximum electromotive intensity;
thus subsequent discharges will not find it any easier to pass along this line
in consequence of the passage of the previous discharge. There will not
therefore be the same unstability in this case as there is in the one where
the gas is free from the action of the magnetic force. A confirmation of
this view is afforded by the appearance presented by the discharge when
the intensity of the magnetic field is reduced until the discharge just, but
only just, passes when the magnetic field is on: in this case the discharge
instead of passing as a steady fixed ring, flickers about the tube in a very
undecided way. Unless some displacement of the line of easiest discharge
is produced by the motion of the dissociated molecules under the action
of the magnetic force, it is difficult to understand why the magnet should
displace the discharge at all, unless the Hall effect in rarefied gases is very
large.

Fig. 35.

91.] In the preceding case the discharge was retarded because it had to
flow across the lines of magnetic force, when however the lines of magnetic
force run along the line of discharge the action of the magnet facilitates the
discharge instead of retarding it. This effect is easily shown by an arrange-
ment of the following kind. A square tube ABCD, Fig. 35, is placed outside
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the primary EFGH, the lower part of the discharge tube being situated be-
tween the poles L, M of an electromagnet. By altering the length of the spark
between the jars, the electromotive intensity acting on the secondary cir-
cuit can be adjusted until no discharge passes round the tube ABCD when
the magnet is off, whilst a bright discharge occurs as long as the magnet
is on. The two effects of the magnet on the discharge, viz. the stoppage
of the discharge across the lines of force and the help given to it along
these lines, may be prettily illustrated by placing in this experiment an
exhausted bulb N inside the primary. The spark length can be adjusted so
that when the magnet is ‘off’ the discharge passes through the bulb and
not in the square tube; while when the magnet is ‘on’ the discharge passes
in the square tube and not in the bulb.

Fig. 36.

92.] The explanation of the longitudinal effect of magnetic
force is more obscure than that of the transverse effect, it is
possible however that both are due to the same cause. For if the
feeble discharge with which we suppose the total discharge to
begin branches away at all from the main line, these branches
will, when the magnetic force is parallel to the line of discharge,
be brought into this line by the action of the magnetic force;
there will thus be a larger supply of dissociated molecules along
the main line of discharge, and therefore an easier path for
subsequent discharges when the magnetic force is acting than
when it is not.

This action of the magnet is not confined to this kind of
discharge; in fact I observed it first for a glow discharge, which
took place more easily from the pole of an electromagnet when
the magnet was ‘on’ than when it was ‘off’.

93.] Professor Fitzgerald has suggested that this effect of
the magnetic field on the discharge may be the cause of the
streamers which are observed in the aurora, the rare air, since
it is electrically weaker along the lines of magnetic force than
at right angles to them, transmitting brighter discharges along
these lines than in any other direction.
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Electric discharge through rarefied Gases when Electrodes are used.

94.] When the discharge passes between electrodes through a rare gas,
the appearance of the discharge at the positive and negative electrodes is
so strikingly different that the discharge loses all appearance of uniformity.
Fig. 36, which is taken from a paper by E. Wiedemann (Phil. Mag. [5],
18, p. 35, 1884), represents the appearance presented by the discharge
when it passes through a gas at a pressure comparable with that due to
half a millimetre of mercury. Beginning at the negative electrode k we
meet with the following phenomena. A velvety glow runs often in irregular
patches over the surface of the negative electrode; a wire placed inside this
glow casts a shadow towards the negative electrode (Schuster, Proc. Roy.
Society, 47, p. 557, 1890).

Fig. 37.

Next to this there is a comparatively dark region lb, called sometimes
‘Crookes’ space’ and sometimes the ‘first dark space;’ the length of this
region depends on the density of the gas, it gets longer as the density
diminishes. Puluj’s experiments (Wien. Ber. 81 (2), p. 864, 1880) show
that the length does not vary directly as the reciprocal of the density,
in other words, that it is not proportional to the mean free path of the
molecules.

Fig. 38.

The luminous boundary b of this dark space is approximately such as
could be got by tracing the locus of the extremities of normals of constant
length drawn from the negative electrode: thus, if the electrode is a disc,
the luminous boundary of the dark space is over a great part of its surface
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nearly plane as in Fig. 37, which is given by Crookes; while if it is a cir-
cular ring of wire, the luminous boundary resembles that shown in Fig. 38
(De la Rue). The length of the dark space also depends to some extent
on the current passing through the gas, an increase of current producing
(see Schuster, Proc. Roy. Society, 47, p. 556, 1890) a slight increase in the
length of the dark space. Some idea of the length of the dark space at
different pressures may be got from the following table of the results of
some experiments made by Puluj (Wien. Ber. 81 (2), p. 864, 1880) with a
cylindrical discharge tube and disc electrodes:—

Pressure in millimetres
of mercury.

Length of dark space
in air in mm.

1.46 2.5
.66 4.5
.51 5.8
.30 7.8
.24 9.5
.16 14.0
.12 15.5
.09 19.5
.06 22.0

The mean free path of the molecules is very much smaller than the
length of the dark space; thus at a pressure of 1.46 mm. of mercury, the
mean free path is only .04 mm. Crookes found (Phil. Trans. Part I, 1879,
pp. 138–9) that the dark space is longer in hydrogen than in air at the
same pressure, but that in carbonic acid it is considerably shorter.

95.] Crookes’ theory of the dark space is that it is the region which
the negatively electrified particles of gas shot off from the cathode (see
Art. 108) traverse before making an appreciable number of collisions with
each other, and that the brightly luminous boundary of this space is the
region where the collisions occur, these collisions exciting vibrations in the
particles and so making them luminous. It is an objection, though perhaps
not a fatal one, to this view, that the thickness of the dark space is very
much greater than the mean free path of the molecules. We shall see later
on that if the luminosity is due to gas shot from the negative electrode,
this gas must be in the atomic and not in the molecular condition; in the
former condition its free path would be greater than the value calculated
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from the ordinary data of the Molecular Theory of Gases, though if we
take the ordinary view of what constitutes a collision we should not expect
the difference to be so great as that indicated by Puluj’s experiments.

96.] The size of the dark space does not seem to be much affected
by the material of which the negative electrode is made, as long as it is
metallic. It is however considerably shorter over sulphuric acid electrodes
than over aluminium ones (Chree, Proc. Camb. Phil. Soc. vii, p. 222, 1891).
Crookes (Phil. Trans., 1879, p. 137) found that if a metallic electrode is
partly coated with lamp black the dark space is longer over the lamp-
blacked portion than over the metallic. Lamp black however absorbs gases
so readily that this effect may be due to a change in the gas and not
to the change in the electrode. The dark space is also, as Crookes has
shown (loc. cit.), independent of the position of the positive electrode.
When the cathode is a metal wire raised to a temperature at which it
is incandescent, Hittorf (Wied. Ann. 21, p. 112, 1884) has shown that
the changes in luminosity which with cold electrodes are observed in the
neighbourhood of the cathode disappear. There is a difference of opinion
as to whether the dark space exists when the discharge passes through
mercury vapour, Crookes maintaining that it does, Schuster that it does
not.

97.] Adjoining the ‘dark space’ is a luminous space, bp Fig. 36, called
the ‘negative column,’ or sometimes the ‘negative glow;’ the length of this
is very variable even though the pressure is constant. The spectrum of
this part of the discharge exhibits peculiarities which are not in general
found in that of the other luminous parts of the discharge. Goldstein
(Wied. Ann. 15, p. 280, 1882) however has found that when very intense
discharges are used, the peculiarities in the spectrum, which are usually
confined to the negative glow, extend to the other parts of the discharge.

Fig. 39.

98.] The negative glow is independent of the position of the positive
electrode; it does not bend round, for example, in a tube shaped as in
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Fig. 41, but is formed in the part of the tube away from the positive
electrode. This glow is stopped by any substance, whether a conductor
or an insulator, against which it strikes. The development of the negative
glow is also checked when the space round the negative electrode is too
much restricted by the walls of the discharge tube. Thus Hittorf (Pogg.
Ann. 136, p. 202, 1869) found that if the discharge took place in a tube
shaped like Fig. 39, when the wire c in the bulb was made the negative
electrode, the negative glow spread over the whole of its length, while if
the wire a in the neck was used as the negative electrode the glow only
occurred at its tip.

99.] Next after the negative glow comes a second comparatively non-
luminous space, ph Fig. 36, called the ‘second negative dark space,’ or
by some writers the ‘Faraday space;’ this is of very variable length and
is sometimes entirely absent. Next after this we have a luminous column
reaching right up to the positive electrode, this is called the ‘positive col-
umn.’ Its luminosity very often exhibits remarkable periodic alterations in
intensity such as those shown in Fig. 40, which is taken from a paper by
De la Rue and Hugo Müller (Phil. Trans., 1878, Part I, p. 155); these are
called ‘striations,’ or ‘striæ;’ under favourable circumstances they are ex-
ceedingly regular and constitute the most striking feature of the discharge.
The bright parts of the striations are slightly concave to the positive elec-
trode. The distance between the bright parts depends upon the pressure
of the gas and the diameter of the discharge tube. The distance increases
as the density of the gas diminishes.

According to Goldstein (Wied. Ann. 15, p. 277, 1882), if d is the dis-
tance between two striations and ρ the density of the gas, d varies as ρ−n,
where n is somewhat less than unity. The distance between the bright parts
of successive striations increases as the diameter of the discharge tube in-
creases, provided the striations reach to the sides of the tube. Goldstein
(l. c.) found that the ratio of the values of d at any two given pressures is
the same for all tubes. If the discharge takes place in a tube which is wider
in some places than in others, the striations are more closely packed in the
narrow parts of the tube than they are in the wide.

The striations have very often a motion of translation along the tube;
this motion is quite irregular, being sometimes towards the positive elec-
trode and sometimes away from it. This can easily be detected by observ-
ing, as Spottiswoode did, the discharge in a rapidly rotating mirror. These
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Fig. 40.
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movements of the striæ tend to make the striated appearance somewhat
indistinct, and if the movements are too large may obliterate it altogether;
thus many discharges which show no appearance of striation when ex-
amined in the ordinary way, are seen to be striated when looked at in a
revolving mirror. The difficulty of detecting whether a discharge is stri-
ated or not is, in consequence of the motion of the striæ, very much greater
when the striæ are near together than when they are far apart, so that it is
quite possible that discharges are striated at pressures much greater than
those at which striations are usually observed.

Goldstein, using a tube with moveable electrodes, showed (Wied. Ann.
12, p. 273, 1881) that when the cathode is moved the striæ move as if they
were rigidly connected with it, while when the anode is moved the position
of the striæ is not affected except in so far as they may be obliterated by
the anode moving past them.

100.] The striations are not confined to any one particular method of
producing the discharge, they occur equally well whether the discharge is
produced by an induction coil or by a very large number of galvanic cells.
They do not, however, occur readily in the electrodeless discharge; indeed I
have never observed them when a considerable interval intervened between
consecutive sparks. By using an induction coil large enough to furnish a
supply of electricity sufficient to produce an almost continuous torrent of
sparks between the jars, I have been able to get striations in exhausted
bulbs containing hydrogen or other gases.

101.] The striations are influenced by the quantity of current flowing
through the tube; this can easily be shown by putting a great external
resistance in the circuit, such as a wet string. The changes produced by
altering the current are complex and irregular: there seems to be a certain
intensity of current for which the steadiness of the striations is a maxi-
mum (De la Rue and Hugo Müller, Comptes Rendus, 86, p. 1072, 1878).
Crookes has found (Presidential Address to the Society of Telegraph Engi-
neers, 1891) that when the discharge passes through a mixture of different
gases there is a separate set of striations for each gas: the colour of the
striations in each set being different. Crookes proved this by observing the
spectra of the different striæ. A full account of the different coloured stri-
ations observed in air is given by Goldstein (Wied. Ann. 12, p. 274, 1881).

102.] When we consider the action of a magnet on the striated positive
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column we shall see reasons for thinking that any portion of the positive
column between the bright parts of consecutive striations constitutes a
separate discharge, and that the discharges in the several portions do not
occur simultaneously, but that the one next the anode begins the discharge,
and the others follow on in order.

Fig. 41.

103.] The positive column
bears a very much more impor-
tant relation to the discharge
than either the negative dark
space or the negative glow. The
latter effects are merely local,
they do not depend upon the
position of the positive elec-
trode, nor do they increase
when the length of the discharge
tube is increased. The posi-
tive column, on the other hand,
takes the shortest route through
the gas to the negative elec-
trode. Thus, if, for example,
the discharge takes place in a
tube like Fig. 41, the positive
column bends round the corner
so as to get to the negative elec-
trode, while the negative glow
goes straight down the verti-
cal tube, and is not affected by
the position of the positive elec-
trode. Again, if the length of
the tube is increased the size of
the negative dark space and of
the negative glow is not affected,
it is only the positive column
which lengthens out. I have, for
example, obtained the discharge
through a tube 50 feet long, and
this tube, with the exception of a few inches next the cathode, was entirely
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filled by the positive column, which was beautifully striated. These exam-
ples show that it is the positive column which really carries the discharge
through the gas, and that the negative dark space and the negative glow
are merely local effects, depending on the peculiarities of the transference
of electricity from a gas to a cathode.

104.] By the use of long discharge tubes such as those mentioned above,
it is possible to determine the direction in which the luminosity in the
positive column travels and to measure its rate of progression. The first
attempt at this seems to have been made by Wheatstone, who, in 1835,
observed the appearance presented in a rotating mirror by the discharge
through a vacuum tube 6 feet long; he concluded from his observations that
the velocity with which the flash went through the tube could not have been
less than 8×107 cm. per second. This great velocity is not accompanied by
a correspondingly large velocity of the luminous molecules, for von Zahn
(Wied. Ann. 8, p. 675, 1879) has shown that the lines of the spectrum of
the gas in the discharge tube are not displaced by as much as 1

40
of the

distance between the D lines when the line of sight is in the direction of
the discharge. It follows from this by Döppler’s principle, that the particles
when emitting light are not travelling at so great a rate as a mile a second,
proving, at any rate, that the luminous column does not consist of a wind
of luminous particles travelling with the velocity of the discharge.

105.] Wheatstone’s observations only give an inferior limit to the veloc-
ity of the discharge; they do not afford any information as to whether the
luminous column travels from the anode to the cathode or in the opposite
direction. To determine this, as well as measure the velocity of the lumi-
nosity in the positive column, I made the following experiment. ABCDEFG,
Fig. 42, is a glass tube about 15 metres long and 5 millimetres in diam-
eter, which, with the exception of two horizontal pieces of BC and GH, is
covered with lamp black; this tube is exhausted until a current can be sent
through it from an induction coil. The light from the uncovered portions of
the tube falls on a rotating mirror MN, placed at a distance of about 6 me-
tres from BC; the light from GH falls on the rotating mirror directly, that
from BC after reflection from the plane mirror P. The images of the bright
portions of the tube after reflection from the mirror are viewed through a
telescope, and the mirrors are so arranged that when the revolving mirror
is stationary the images of the bright portions GH and BC of the tube appear
as portions of the same horizontal straight line. The terminals of the long
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Fig. 42.

vacuum tube are pushed through mercury up the vertical tubes AB KL. This
arrangement was adopted because by running sulphuric acid up these tubes
the terminals could easily be changed from pointed platinum wires to flat
liquid surfaces, and the effect of very different terminals on the velocity and
direction of the discharge readily investigated. The bulbs on the tube are
also useful as receptacles of sulphuric acid, which serves to dry the gas left
in the tube. The rotating mirror was driven at a speed of from 400 to 500
revolutions per second by a Gramme machine. It was not found possible to
make any arrangement work well which would break the primary circuit of
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the induction coil when the mirror was in such a position that the images
of the luminous portions of the tube would be reflected by it into the field
of view of the telescope. The method finally adopted was to use an inde-
pendent slow break for the coil and look patiently through the telescope
at the rotating mirror until the break happened to occur just at the right
moment. When the observations were made in this way the observer at
the telescope saw, on an average about once in four minutes, sharp bright
images of the portions BC and GH of the tube, not sensibly broadened but no
longer quite in the same straight line. The relative displacement of those
images was reversed when the poles of the coil were reversed, and also when
the direction of rotation of the mirror was reversed. This displacement of
the images of BC and GH from the same straight line is due to the finite ve-
locity with which the luminosity is propagated: for, if the mirror can turn
through an appreciable angle while the luminosity travels from BC to GH or
from GH to BC, these images of BC and GH, when seen in the telescope after
reflection from the revolving mirror, will no longer be in the same straight
line. If the mirror is turning so that on looking through the telescope the
images seem to come in at the top and go out at the bottom of the field
of view, the image of that part of the tube at which the luminosity first
appears will be raised above that of the other part. If we know the rate
of rotation of the mirror, the vertical displacement of the images and the
distance between BC and GH, the rate of propagation of the luminosity may
be calculated. The displacement of the images showed that the luminosity
always travelled from the positive to the negative electrode. When AB was
the negative electrode, the luminous discharge arrived at GH, a place about
25 feet from the positive electrode, before it reached BC, which was only a
few inches from the cathode, and as the interval between its appearance at
these places was about the same as when the current was reversed, we may
conclude that when AB is the cathode the luminosity at a place BC, only a
few inches from it, has started from the positive electrode and traversed a
path enormously longer than its distance from the cathode. The velocity
of the discharge through air at the pressure of about 1

2
a millimetre of

mercury in a tube 5 millimetres in diameter was found to be rather more
than half the velocity of light.

106.] The preceding experiment was repeated with a great variety of
electrodes; the result, however, was the same whether the electrodes were
pointed platinum wires, carbon filaments, flat surfaces of sulphuric acid,
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or the one electrode a flat liquid surface and the other a sharp-pointed
wire. The positive luminosity travels from the positive electrode to the
negative, even though the former is a flat liquid surface and the latter a
pointed wire. The time taken by the luminosity to travel from BC to GH

was not affected to an appreciable extent by inserting between BC and GH

a number of pellets of mercury, so that the discharge had to pass from the
gas to the mercury several times in its passage between these places: the
intensity of the light was however very much diminished by the insertion
of the mercury.

107.] The preceding results bear out the conclusion which Plücker
(Pogg. Ann. 107, p. 89, 1859) arrived at from the consideration of the
action of a magnet on the discharge, viz. that the positive column starts
from the positive electrode; they also confirm the result which Spottis-
woode and Moulton (Phil. Trans. 1879, p. 165) deduced from the consider-
ation of what they have termed ‘relief’ effects, that the time taken by the
negative electricity to leave the cathode is greater than the time taken by
the positive luminosity to travel over the length of the tube.

Negative Rays or Molecular Streams.

108.] Some of the most striking of the phenomena shown by the dis-
charge through gases are those which are associated with the negative
electrode. These effects are most conspicuous at low pressures, but Spot-
tiswoode and Moulton’s experiments (Phil. Trans. 1880, pp. 582, 85 seq.)
show that they exist over a wide range of pressure. The sides of the tube
exhibit a brilliant phosphorescence, behaving as if something were shot out
at right angles, or nearly so, to the surface of the cathode, which had the
power of exciting phosphorescence on any substance on which it fell, pro-
vided that this substance is one which becomes phosphorescent under the
action of ultra-violet light. The portions of the tube enclosed within the
surface formed by the normals to the cathode will, when the pressure of
the gas is low, show a bright green phosphorescence if the tube is made of
German glass, while the phosphorescence will be blue if the tube is made
of lead glass. Perhaps the easiest way of describing the general features of
this effect is to say that they are in accordance with Mr. Crookes’ theory,
that particles of gas are projected with great velocities at right angles, or
nearly so, to the surface of the cathode, and that these particles in a highly
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exhausted tube strike the glass before they have lost much momentum by
collision with other molecules, and that the bombardment of the glass by
these particles is intense enough to make it phosphoresce. The following
extract from Priestley’s History of Electricity, p. 294, 1769, is interesting
in connection with this view: ‘Signior Beccaria observed that hollow glass
vessels, of a certain thinness, exhausted of air, gave a light when they were
broken in the dark. By a beautiful train of experiments, he found, at
length, that the luminous appearance was not occasioned by the breaking
of the glass, but by the dashing of the external air against the inside, when
it was broke. He covered one of these exhausted vessels with a receiver,
and letting the air suddenly on the outside of it, observed the very same
light. This he calls his new invented phosphorous.’

109.] If a screen made either of an insulator or a conductor is placed
between the electrode and the walls of the tube, a shadow of the screen is
thrown on the walls of the tube, the shadow of the screen remaining dark
while the glass round the shadow phosphoresces brightly. In this way many
very beautiful and brilliant effects have been produced by Mr. Crookes and
Dr. Goldstein, the two physicists who have devoted most attention to this
subject. One of Mr. Crookes’ experiments in which the shadow of a Maltese
cross is thrown on the walls of the tube is illustrated in Fig. 43.

Fig. 43.

110.] As we have already mentioned, the colour of the phosphorescence
depends on the nature of the phosphorescing substance; if this substance
is German glass the phosphorescence is green, if it is lead glass the phos-
phorescence is blue. Crookes found that bodies phosphorescing under this
action of the negative electrode give out characteristic band spectra, and
he has developed this observation into a method of the greatest importance
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for the study of the rare earths: for the particulars of this line of research
we must refer the reader to his papers ‘On Radiant Matter Spectroscopy,’
Phil. Trans. 1883, Pt. III, and 1885, Pt. II.

The way the spectrum is produced is represented in Fig. 44, the sub-
stance under examination being placed in a high vacuum in the path of
the normals to the cathode.

111.] Crookes also found that some substances, when submitted for long
periods to the action of these rays, undergoes remarkable modifications,
which seems to suggest that the phosphorescence is attended (or caused
by?) chemical changes slowly taking place in the phosphorescent body. He
also observed that glass which has been phosphorescing for a considerable
time seems to get tired, and to respond less readily to this action of the
cathode. Thus, for example, if after the experiment in Fig. 44 has been
proceeding for some time the cross is shaken down, or a new cathode used
whose line of fire does not cut the cross, the pattern of the cross will
still be seen on the glass, but now it will be brighter than the adjacent
parts instead of darker. The portions outside the pattern of the cross have
got tired by their long phosphorescence, and respond less vigorously to
the stimulus than the portions forming the cross which were previously
shielded. Crookes found this ‘exhaustion’ of the glass could survive the
melting and reblowing of the bulb.

Fig. 44.

By using a curved surface for the negative electrode, such as a portion
of a hollow cylinder or of a spherical shell, this effect of the negative rays
may be concentrated to such an extent that a platinum wire placed at the
centre of the cylinder or sphere becomes red hot.

112.] The negative rays are deflected by a magnet in the same way as
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they would be if they consisted of particles moving away from the negative
electrode and carrying a charge of negative electricity. This deflection is
made apparent by the movement of the phosphorescence on the glass when
a magnet is brought near the discharge tube.

On the other hand they are not deflected when a charged body is
brought near the tube; this does not prove, however, that the rays do
not consist of electrified particles, for we have seen that gas conveying an
electric discharge is an extremely good conductor, and so would be able to
screen the inside of the tube from any external electrostatic action. Crookes
(Phil. Trans. 1879, Pt. II, p. 652) has shown, moreover, that two pencils
of these rays repel each other, as they would do if each pencil consisted
of particles charged with the same kind of electricity. The experiment by
which this is shown is represented in Fig. 45; a, b are metal discs either or
both of which may be made into cathodes, a diaphragm with two openings
d and e is placed in front of the disc, and the path of the rays is traced
by the phosphorescence they excite in a chalked plate inclined at a small
angle to their path. When a is the cathode and b is idle, the rays travel
along the path df , and when b is the cathode and a idle they travel along
the path ef , but when a and b are cathodes simultaneously the paths of
the rays are dg and eh respectively, showing that the two streams have
slightly repelled each other.

Fig. 45.

113.] Crookes (Phil. Trans. 1879, Part II, p. 647) found that if a disc
connected with an electroscope is placed in the full line of fire of these
rays it receives a charge of positive electricity. This is not, however, a
proof that these rays do not consist of negatively electrified particles, for
the experiments described in Art. 81 show that electricity does not pass
at all readily from a gas to a metal, and the positive electrification of the
disc may be a secondary effect arising from the same cause as the positive
electrification of a plate when exposed to the action of ultra-violet light.
For since the action of these rays is the same as that of ultra-violet light
in producing phosphorescence in the bodies upon which they fall, it seems
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not unlikely that the rays may resemble ultra-violet light still further and
make any metal plate on which they fall a cathode.

Hertz (Wied. Ann. 19, p. 809, 1883) was unable to discover that these
rays produced any magnetic effect.

Fig. 46.

The paths of the negative rays are
governed entirely by the shape and po-
sition of the cathode, they are quite in-
dependent of the shape or position of
the anode. Thus, if the cathode and
anode are placed at one end of an exhausted tube, as in Fig. 46, the cath-
ode rays will not bend round to the anode, but will go straight down the
tube and make the opposite end phosphoresce.

Any part of the tube which is made to phosphoresce by the action
of these rays seems to acquire the power of sending out such rays itself,
or we may express the same thing by saying that the rays are diffusely
reflected by the phosphorescent body (Goldstein, Wied. Ann. 15, p. 246,
1882). Fig. 47 represents the appearance presented by a bent tube when
traversed by such rays, the darkly shaded places being the parts of the
tube which show phosphorescence.

Fig. 47.

114.] These rays seem to be emitted by any negative electrode, even
if this be one made by putting the finger on the glass of the tube near
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the anode. This produces a discharge of negative electricity from the glass
just underneath the finger, and the characteristic green phosphorescence
(if the tube is made of German glass) appears on the opposite wall of the
tube; this phosphorescence is deflected by a magnet in exactly the same
way as if the rays came from a metallic electrode. This experiment is
sufficient to show the inadequacy of a theory that has sometimes been
advanced to explain the phosphorescence, viz. that the particles shot off
from the electrode are not gaseous particles, but bits of metal torn from
the cathode; the phosphorescence being thus due to the disintegration of
the negative electrode, which is a well-known feature of the discharge in
vacuum tubes. The preceding experiment shows that this theory is not
adequate, and Mr. Crookes has still further disproved it by obtaining the
characteristic effects in tubes when the electrodes were pieces of tinfoil
placed outside the glass.

115.] Goldstein (Wied. Ann. 11, p. 838, 1880) found that a sudden
contraction in the cross section of the discharge tube produces on the side
towards the anode the same effect as a cathode. These quasi-cathodes
produced by the contraction of the tube are accompanied by all the effects
which are observed with metallic cathodes, thus we have the dark space,
the phosphorescence, and the characteristic behaviour of the glow in a
magnetic field.

116.] Spottiswoode and Moulton (Phil. Trans. 1880, pp. 615–622) have
observed a phosphorescence accompanying the positive column. They
found that in some cases when this strikes the gas the latter phospho-
resces. They ascribe this phosphorescence to a negative discharge called
from the sides of the tube by the positive electricity in the positive column.

Mechanical Effects produced by the Negative Rays.

117.] Mr. Crookes (Phil. Trans. 1879, Pt. I, p. 152) has shown that
when these rays impinge on vanes mounted like those in a radiometer the
vanes are set in rotation. This can be shown by making the axle of the
vanes run on rails as in Fig. 48. When the discharge passes through the
tube, the vanes travel from the negative to the positive end of the tube.
It is not clear, however, that this is a purely mechanical effect; it may,
as suggested by Hittorf, be due to secondary thermal effects making the
vanes act like those of a radiometer. In another experiment the vanes
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Fig. 48.

are suspended as in Fig. 49, and can be screened from the negative rays
by the screen e; by tilting the tube the vanes can be brought wholly or
partially out of the shadow of the screen. When the vanes are completely
out of the shade they do not rotate as the bombardment is symmetrical;
when, however, they are half in and half out of the shadow, they rotate
in the same direction as they would if exposed to a bombardment from
the negative electrode. The deflection of the negative rays by a magnet
is well illustrated by this apparatus. Thus, if the vanes are placed wholly
within the shadow no rotation takes place; if, however, the south pole of

Fig. 49.
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an electro-magnet is brought to S, the shadow is deflected from the former
position and a part of the vanes is thus exposed to the action of the rays;
as soon as this takes place the vanes begin to rotate.

118.] The thinnest layer of a solid substance seems absolutely opaque
to these radiations. Thus Goldstein (Phil. Mag. [5] 10, p. 177, 1880) found
that a thin layer of collodion placed on the glass gave a perfectly black
shadow, and Crookes (Phil. Trans. 1879, Part I, p. 151) found that a thin
film of quartz, which is transparent to ultra-violet light, produced the same
effect. This last result is of great importance in connection with a theory
which has received powerful support, viz. that these ‘rays’ are a kind of
ethereal vibration having their origin at the cathode. If this view were
correct we should not expect to find a thin quartz plate throwing a perfectly
black shadow, as quartz is transparent to ultra-violet light. To make the
theory agree with the facts we have further to assume that no substance
has been discovered which is appreciably transparent to these vibrations∗.
The sharpness and blackness of these shadows are by far the strongest
arguments in support of the impact theory of the phosphorescence.

119.] Though Crookes’ theory that the phosphorescence is due to the
bombardment of the glass by gaseous particles projected from the negative
electrode is not free from difficulties, it seems to cover the facts better than
any other theory hitherto advanced. On one point, however, it would seem
to require a slight modification: Crookes always speaks of the molecules
of the gas receiving a negative charge. We have, however (see Art. 3),
seen reasons for thinking that a molecule of a gas is incapable of receiving
a charge of electricity, and that free electricity must be on the atoms as
distinct from the molecules. If this view is right, we must suppose that the
gaseous particles projected from the negative electrode are atoms and not
molecules. This does not introduce any additional difficulty into the theory,
for in the region round the cathode there is a plentiful supply of dissociated
molecules or atoms; of these, those having a negative charge may under

∗Since the above was written, Hertz (Wied. Ann. 45, p. 28, 1892) has found that
thin films of gold leaf do not cast perfectly dark shadows but allow a certain amount of
phosphorescence to take place behind them, which cannot be explained by the existence
of holes in the film. It seems possible, however, that this is another aspect of the
phenomenon observed by Crookes (Art. 113) that a metal plate exposed to the full
force of these rays becomes a cathode; in Hertz’s experiments the films may have been
so thin that each side acted like a cathode, and in this case the phosphorescence on the
glass would be caused by the film acting like a cathode on its own account.
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the repulsion of the negative electricity on the cathode be repelled from it
with considerable violence.

Fig. 50.

120.] An experiment which I made in the
course of an investigation on discharge with-
out electrodes seems to afford considerable ev-
idence that there is such a projection of atoms
from the cathode. The interpretation of this
evidence depends upon the fact that the pres-
ence in a gas of atoms, or the products of a
previous discharge through the gas, greatly fa-
cilitates the passage of a subsequent discharge.
The experiment is represented in Fig. 50: the
discharge tube A was fused on to the pump,
and two terminals c and d were fused through
the glass at an elbow of the tube. These ter-
minals were connected with an induction coil,
and the pressure in the discharge tube was such
that the electrodeless discharge would not pass.
When the induction coil was turned on in such
a way that c was the negative electrode the
electrodeless discharge at once passed through the tube, but no effect at
all was produced when c was positive and d negative.

121.] Assuming with Mr. Crookes that it is the impact of particles
driven out of the region around the negative electrode which produces the
phosphorescence, it still seems an open question whether the luminosity is
due to the mechanical effect of the impulse or whether the effect is wholly
electrical. For since these particles are charged, their approach, collision
with the glass, and retreat, will produce much the same electrical effect
as if a body close to the glass were very rapidly charged with negative
electricity and then as rapidly discharged. Thus the glass in the neigh-
bourhood of the point of impact of one of these particles is exposed to a
very rapidly changing electric polarization, the effect of which, according
to the electromagnetic theory of light, would be much the same as if light
fell on the glass, in which case we know it would phosphoresce.

The sharpness of the shadows cast by these rays shows that the phos-
phorescence cannot be due to what has been called a ‘lamp action’ of the
particles, each particle acting like a lamp, radiating light, and causing the
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glass to phosphoresce by the light it emits.
122.] The distance which these particles travel before losing their power

of affecting the glass is surprising, amounting to a large multiple of the
mean free path of the molecules of the gas when in a molecular condi-
tion; it is possible, however, that they travel together, forming something
analogous to the ‘electrical wind,’ and that their passage through the gas
resembles the passage of a mass of air by convection currents rather than a
process of molecular diffusion. We must remember, too, that since atoms
are smaller than molecules, the mean free path of a gas in the atomic
condition would naturally be greater than when in the molecular.

123.] Strikingly beautiful as the phenomena connected with these ‘neg-
ative rays’ are, it seems most probable that the rays are merely a local
effect, and play but a small part in carrying the current through the gas.
There are several reasons which lead us to come to this conclusion: in the
first place, we have seen that the great mass of luminosity in the tube starts
from the anode and travels down the tube with an enormously greater ve-
locity then we can assign to these particles; again, this discharge seems
quite independent of the anode, so that the rays may be quite out of the
main line of the discharge. The exact function of these rays in the dis-
charge is doubtful, it seems just possible that they may constitute a return
current of gas by which the atoms which carry the discharge up to the
negative electrode are prevented from accumulating in its neighbourhood.

124.] These rays have been used by Spottiswoode and Moulton (Phil.
Trans. 1880, p. 627) to determine a point of fundamental importance in
the theory of the discharge, viz. the relative magnitudes of the following
times:—

(1) The period occupied by a discharge.
(2) The time occupied by the discharge of the positive electricity from

its terminal.
(3) The time occupied by the discharge of the negative electricity from

its terminal.
(4) The time occupied by molecular streams in leaving a negative ter-

minal.
(5) The time occupied by positive electricity in passing along the tube.
(6) The time occupied by negative electricity in passing along the tube.
(7) The time occupied by the particles composing molecular streams in

passing along the tube.
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(8) The time occupied by electricity in passing along a wire of the length
of the tube.

The phenomenon which was most extensively used by Spottiswoode
and Moulton in investigating the relative magnitude of these times was
the repulsion of one negative stream by another in its neighbourhood. This
effect may be illustrated in several ways: thus, if the finger or a piece of tin-
foil connected to earth be placed on the discharge tube, not too far away
from the anode, the portion of the glass tube immediately underneath the
finger becomes by induction a cathode and emits a negative stream; this
stream produces a phosphorescent patch on the other side of the tube,
diametrically opposite to the finger. If two fingers or two pieces of tin-foil
are placed on the tube two phosphorescent patches appear on the glass, but
neither of these patches occupies quite the position it would if the other
patch were away. Another experiment (see Spottiswoode and Moulton,
Phil. Trans. 1880, Part II, p. 614) which also illustrates the same effect is
the following. A tube, Fig. 51, was taken, in which there was a flat piece
of aluminium containing a small hole; when the more distant terminal was
made negative, a bright image A of the hole appeared on the side of the tube
in the midst of the shadow cast by the plate. When the tube was touched
on the side on which this image appeared, but at a point on the negative
side of the image, it was found that the image was splayed out to B, part
of it moving down the tube away from the negative terminal. This seems
to show that the negative electrode formed by the finger pushes away from
it the rays forming the image. From this case Spottiswoode and Moulton
reasoned as follows (Phil. Trans. 1880, Part II, p. 632): ‘This image was
splayed out by the finger being placed on the tube. Now a magnet displaced

Fig. 51.
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it as a whole without any splaying out. This then pointed to a variation
in the relative strength of the interfering stream and the stream interfered
with, and such variation must have occurred during the period that they
were encountering one another, and were moving in the ordinary way of
such streams, for it showed itself in a variation in the extent to which the
streams from the negative terminal were diverted. We may hence conclude
that the time requisite for the molecules to move the length of the tube
was decidedly less than that occupied by the discharge, but was sufficiently
comparable with it to allow the diminution of intensity of the streams from
the sides of the tube to make itself visible before the streams from the
negative terminal experienced a similar diminution.’

125.] This may serve as an example of the method used by Spottiswoode
and Moulton in comparing the time quantities enumerated in Art. 124. We
regret that we have not space to describe the ingenious methods by which
they brought other time quantities into comparison, for these we must refer
to their paper; we can only quote the final result of their investigation.
They arrange (l. c. pp. 641–642) the time quantities in groups which are in
descending order of magnitude, the quantities in any group are exceedingly
small compared with those in any group above them, while the quantities
in the same group are of the same order of magnitude.

A. The interval between two discharges.
B. The time occupied by the discharge of the negative electricity from

its terminal.
The time occupied by negative streams in leaving a negative termi-
nal.
The time occupied by the particles composing molecular streams in
passing along the tube.

C. The time occupied by positive electricity in passing along the tube.
The time occupied by negative electricity in passing along the tube.

D. The time occupied by positive discharge.
The time required for the formation of positive luminosity at the
seat of positive discharge.
The time required for the formation of the dark space at the seat of
negative discharge.

E. The time occupied by either electricity in passing along a wire of
the length of the tube.

The time of a complete discharge is of the order B.
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It will be seen that one of the conclusions given above, viz. that the time
required for the positive luminosity to travel the length of the tube is very
small compared with the time occupied by the negative discharge, is con-
firmed by the experiments with the rotating mirror described in Art. 104.
According to these experiments however C and E are of the same order.

Action of a Magnet upon the Discharge when Electrodes are used.

126.] The appearance and path of the discharge in a vacuum tube
are affected to a very great extent by the action of magnetic force. We
may roughly describe the effect produced by a magnet by saying that
the displacement of the discharge is much the same as that of a perfectly
flexible wire conveying a current in the direction of that through the tube,
the position of the wire coinciding with the part of the luminous discharge
under consideration. This statement, which at first sight seems to bring
the behaviour of the discharge under magnetic force into close analogy
with that of ordinary currents, is apt, however, to obscure an essential
difference between the two cases. A current through a wire is displaced by
a magnetic force because the wire itself is displaced, and there is no other
path open to the current. If, however, the current were flowing through
a large mass of metal, if, for example, the discharge tube were filled with
mercury instead of with rarefied gas, there would (excluding the Hall effect)
be no displacement of the current through it. In the case of the rarefied gas,
however, we have, what we do not have in the metal to any appreciable
extent, a displacement of the lines of flow through the conductor—the
rarefied gas. Thus the effects of the magnetic force on currents through
wires, and on the discharge through a rarefied gas, instead of being, as
they seem at first sight, the same, are apparently opposed to each other.

127.] The explanation which seems the most probable is that by which
we explained the effect of a magnet on the discharge without electrodes:
viz. that when an electric discharge has passed through a gas, the supply of
dissociated molecules, or of molecules in a peculiar condition, left behind
in the line of the discharge, has made that line so much better a conductor
than the rest of the gas, that when the particles composing it are displaced
by the action of the magnetic force, the discharge continues to pass through
them in their displaced position, and maintains by its passage the high
conductivity of this line of particles. On this view the case would be
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very similar to that of a current along a wire, the line of particles along
which the discharge passes being made by the discharge so much better a
conductor than the rest of the gas, that the case is analogous to a metal
wire surrounded by a dielectric.

Fig. 52.

128.] This view seems to be confirmed by
the behaviour of a spark between electrodes
when a blast of air is blown across it; the spark
is deflected by the blast much as a flexible wire
would be if fastened at the two electrodes. On
the preceding view the explanation of this would be, that by the passage
of the spark through the gas, the electric strength of the gas along the line
of discharge is diminished, partly by the lingering of atoms produced by
the discharge, partly perhaps by the heat produced by the spark. When
a blast of air is blowing across the space between the electrodes, the elec-
trically weak gas will be carried with it, so that the next spark, which
will pass through the weak gas, will be deflected. Feddersen’s observations

Fig. 53.

(Pogg. Ann. 103, p. 69, 1858) on the appearance presented by a succession
of sparks in a revolving mirror when a blast of air was directed across the
electrodes, seem to prove conclusively that this explanation is the true one,
for he found that the first spark was quite straight, while the successive
sparks got, as shown in Fig. 52, gradually more and more bent by the blast.

129.] The effects produced by a magnet show themselves in different
ways, at different parts of the discharge. Beginning with the negative
glow, Plücker (Pogg. Ann. 103, p. 88, 1858), who was the first to observe
the behaviour of this part of the discharge when under the action of a
magnet, found that the appearance of the glow in the magnetic field could
be described by saying that the negative glow behaved as if it consisted
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Fig. 54. Fig. 55.

of a paramagnetic substance, such as iron filings without weight and with
perfect freedom of motion. He found that the bright boundary of the
negative glow coincided with the line of magnetic force passing through the
extremity of the negative electrode. Figs. 53, 54, 55, 56, which are taken
from Plücker’s paper, show the shape taken by the glow when placed in

Fig. 56.

the magnetic field due to a strong electro-magnet, the tube being placed
in Figs. 54, 55 so that the lines of magnetic force are transverse to the line
of discharge; while in Figs. 53 and 56 the line of discharge is more or less
tangential to the direction of the magnetic force.

130.] Hittorf (Pogg. Ann. 136, p. 213 et seq., 1869) found that when
the negative rays were subject to the action of magnetic force, they were
twisted into spirals and sometimes into circular rings. In his experiments
the negative electrode was fused into a small glass tube fused into the
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Fig. 57.

discharge tube, the open end of the small tube projecting beyond the elec-
trode. The negative rays were by this means limited to those which were
approximately parallel to the axis of the small tube, so that it was easy
to alter the angle which these rays made with the lines of magnetic force
either by moving the discharge tube or altering the position of the electro-
magnet. The discharge tube was shaped so that the walls of the tube
were at a considerable distance from the negative electrode. Hittorf found
that when the direction of the negative rays was tangential to the line

of magnetic force passing through the extremity of the cathode, the rays
continued to travel along this line; that when the rays were initially at right
angles to the lines of magnetic force they curled up into circular rings; and
that when the rays were oblique to the direction of the magnetic force they
were twisted into spirals of which two or three turns were visible; the axis
of the spiral being parallel to the direction of the magnetic force. These
effects are illustrated in Figs. 57, 58, 59, and 60. In Figs. 57 and 58 the rays
are at right angles to the lines of magnetic force, while in Figs. 59 and 60
they are oblique to them.

131.] This spiral form is the path which would be traversed by a nega-

Fig. 58.
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Fig. 59.

tively charged particle moving away from the cathode. To prove this, let us
assume that the magnetic field is uniform, and that the axis of z is parallel
to the lines of magnetic force. Let e be the charge on the particle, v its
velocity. Then if we regard the particle as a small conducting sphere, the
mechanical force on it in the magnetic field is, if v is small compared with
the velocity of light, the same (see Art. 16) as that which would be exerted
on unit length of a wire carrying a current whose components parallel to
the axes of x, y, z are respectively

1
3
ev
dx

ds
, 1

3
ev
dy

ds
, 1

3
ev
dz

ds
,

where ds is an element of the path of the particle. Thus, if m is the mass of
the particle, Z the magnetic force, the equations of motion of the particle

Fig. 60.



131.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 133

are

m
d2x

dt2
= 1

3
evZ

dy

ds
, (1)

m
d2y

dt2
= −1

3
evZ

dx

ds
, (2)

m
d2z

dt2
= 0. (3)

Since the force on the particle is at right angles to its direction of
motion, the velocity v of the particle will be constant, and since by (3)
the component of the velocity parallel to the axis of z is constant, the
direction of motion of the particle must make a constant angle, α say, with
the direction of the magnetic force. Since ds/dt is constant, equations
(1)–(3) may be written
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If ρ is the radius of curvature of the path, λ, µ, ν its direction cosines,
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Hence from the preceding equations
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Squaring and adding, we get
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132.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 134

So that
1

ρ
= 1

3

Ze

mv
sinα.

Hence the radius of curvature of the path of the particle is constant,
and since the direction of motion makes a constant angle with that of
the magnetic force, the path of the particle is a helix of which the axis is
parallel to the magnetic force; the angle of the spiral is the complement of
the angle which the direction of projection makes with the magnetic force.
If a is the radius of the cylinder on which the spiral is wound, a = ρ sin2 α,
so that

a = 3
mv

Ze
sinα.

If α = π/2, the spiral degenerates into a circle of which the radius
is 3mv/Ze.

Let the particle be an atom of hydrogen charged with the quantity
of electricity which we find always associated with the atom of hydrogen
in electrolytic phenomena: then since the electro-chemical equivalent of
hydrogen is about 10−4, we have, if N is the number of hydrogen atoms
in one gramme of that substance, Ne = 104 and Nm = 1; hence when the
ray is curled up into a ring of radius a,

a = 10−4 3
v

Z
,

or 3v = 104aZ in hydrogen.
132.] In one of Hittorf’s experiments, that illustrated in Fig. 60, he

estimated the diameter of the ring as less than 1 mm.: the gas in this case
was air, which is not a simple gas; we shall assume, however, that m/e is
the same as for oxygen, or eight times the value for hydrogen. Putting

a = 5× 10−2, and m/e = 8× 10−4, we get

v =
5

24
102Z

The value of Z is not given in Hittorf’s paper; we may be sure, however,
that it was considerably less than 104, and it follows that v must have
been less than 2× 105; this superior limit to the value of v is less than six
times the velocity of sound. Hence the velocity of these particles must be
infinitesimal in comparison with that of the positive luminosity which, as
we have seen, is comparable with that of light.
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133.] A magnet affects the disposition of the negative glow over the
surface of the electrode as well as its course through the gas. Thus Hittorf
(Pogg. Ann. 136, p. 221, 1869) found that when the negative electrode is a
flat vertical disc, and the discharge tube is placed horizontally between the
poles of an electromagnet, with the disc in an axial plane of the electro-
magnet; the disc is cleared of glow by the magnetic force except upon the
highest point on the side most remote from the positive electrode, or the
lowest point on the side nearest that electrode according to the direction
of the magnetic force. In another experiment Hittorf, using as a cathode a
metal tube about 1 cm. in diameter, found that when the discharge tube
is placed so that the axis of the cathode is at right angles to the line join-
ing the poles of the electromagnet the cathode is cleared of glow in the
neighbourhood of the lines where the normals are at right angles to the
magnetic force. These experiments show that the action of a magnet on
the glow is the same as its action on a system of perfectly flexible currents
whose ends can slide freely over the surface of the negative electrode.

Fig. 61.

134.] The positive column is also de-
flected by a magnet in the same way as a
perfectly flexible wire carrying a current in
the direction of that through the discharge
tube. This is beautifully illustrated by an
experiment due to De la Rive in which the
discharge through a rarefied gas is set in con-
tinuous rotation by the action of a magnet.
The method of making this experiment is
shown in Fig. 61; the two terminals a and d
are metal rings separated from each other by
an insulating tube which fits over a piece of
iron resting on one of the poles of an electro-
magnet M . This arrangement is placed in an
egg-shaped vessel from which the air can be
exhausted. To make the experiment success-
ful it is advisable to introduce a small quan-
tity of the vapour of alcohol or turpentine.
The terminals a and d are connected with an
induction coil, which, when the pressure in
the vessel is sufficiently reduced, produces a
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discharge through the gas between the terminals a and d, which rotates
under the magnetic force with considerable velocity. The rotation of the
discharge through the gas is probably due, as we have seen, to the displace-
ment of the particles through which one discharge has already passed; the
displaced particles form an easier path for a subsequent discharge than
the original line of discharge along which none of the dissociated molecules
have been left. The new discharge will thus not be along the same line as
the old one, and the luminous column will therefore rotate. We can easily
see why a simple gas like hydrogen should not show this effect nearly so
well as a complicated one like the vapour of alcohol or turpentine. For
the discharges of the induction coil are intermittent, so that to produce
this rotation the dissociated molecules produced by one discharge must
persist until the arrival of the subsequent one. Now we should expect to
find that when a molecule of a stable gas like hydrogen is dissociated by
the discharge, the recombination of its atoms will take place in a much
shorter time than similar recombination for a complex gas like turpentine
vapour; thus we should expect the effects of the discharge to be more per-
sistent, and therefore the rotation more decided in turpentine vapour than
in hydrogen.

135.] Crookes (Phil. Trans. 1879, Part II, p. 657) has produced some-
what analogous rotations of the negative rays in a very highly exhausted
tube. The shape of the tube he employed is shown in Figure 62. When
the discharge went through this tube, the neck surrounding the negative
pole was covered with two or three bright patches which rotated when the
tube was placed over an electromagnet. Crookes found that the direction
of rotation was reversed when the magnetic force was reversed, but that
if the magnetic force were not altered the direction of rotation was not
affected by reversing the poles of the discharge tube. This is what we
should expect if we remember that the bright spots on the glass are due
to the negative rays, and that these will be at right angles to the negative
electrode; thus the reversal of the poles of the tube does not reverse the
direction of these rays; it merely alters their distance from the pole of the
electromagnet. The curious thing about the rotation was that it had the
opposite direction to that which would have been produced by the action
of a magnet on a current carrying electricity in the same direction as that
carried by the negative rays, showing clearly that this rotation is due to
some secondary effect and not to the primary action of the magnetic force



136.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 137

on the current.

Fig. 62.

136.] An experiment due to Goldstein,
which may seem inconsistent with the view
we have taken, viz. that the deflection of the
discharge is due to the deflection of the line
of least electric strength, should be mentioned
here. Goldstein (Wied. Ann. 12, p. 261, 1881)
took a large discharge tube, 4 cm. wide by
20 long, the electrodes being at opposite ends
of the tube. A piece of sodium was placed in
the tube which was then quickly filled with dry
nitrogen, the tube was then exhausted until a
discharge passed freely through the tube, and
the sodium heated until any hydrogen it might
have contained had been driven off. When this
had been done the tube was refilled with nitro-
gen and then exhausted until the positive col-
umn filled the tube with a reddish purple light.
The sodium was then slowly heated until its
vapour began to come off, when the discharge
in the lower part of the tube over the sodium
became yellow as it passed through sodium
vapour, while the discharge at the top of the
tube remained red as the sodium vapour did
not extend all the way across the tube. The
positive discharge was now deflected by a mag-
net and driven to the top of the tube out of
the region occupied by the sodium vapour, the
discharge was now entirely red and showed no
trace of sodium light. The experiment does
not seem inconsistent with the view we have advocated, as we cannot sup-
pose that more than an infinitesimal quantity of sodium vapour travelled
across the tube under the action of the magnetic force, and it does not
follow that because we suppose the line of discharge to be weakened by the
presence of the dissociated molecules that these molecules are the only ones
affected by the discharge; it seems much more probable that they serve as
nuclei round which the chemical changes which transmit the discharge take
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place.
137.] The striations are affected by magnetic force; in Figs. 53 and 56

may be seen the distortion of striæ when the discharge tube is placed in a
magnetic field. If the negative glow is driven away from the line joining the
terminals by magnetic force, the positive column lengthens and fills part of
the space previously occupied by the negative glow; if the positive column
is striated new striæ appear, so that in this case we have a creation of striæ
by the action of magnetic force. The most remarkable effect of a magnet
on the striated discharge, however, is that discovered by Spottiswoode and
Fletcher Moulton, and Goldstein; Spottiswoode and Moulton (Phil. Trans.
1879, Part I, p. 205) thus describe the effect: ‘If a magnet be applied to a
striated column, it will be found that the column is not simply thrown up
or down as a whole, as would be the case if the discharge passed in direct
lines from terminal to terminal, threading the striæ in its passage. On the
contrary, each stria is subjected to a rotation or deformation of exactly
the same character as would be caused if the stria marked the termination
of flexible currents radiating from the bright head of the stria behind it
and terminating in the hazy inner surface of the stria in question. An
examination of several cases has led the authors of this paper to conclude
that the currents do thus radiate from the bright head of a stria to the inner
surface of the next, and that there is no direct passage from one terminal of
the tube to the other.’ Goldstein (Wied. Ann. 11, p. 850, 1880) found that
the striated column could by the action of magnetic force be broken up into
a number of bright curves, of the same kind as those observed by Hittorf
in the negative rays (see Art. 130), the number of bright curves being the
same as the number of striæ which had disappeared; each striation was
transformed by the magnetic force into a separate curve, and these curves
were separated from each other by dark spaces. We may conclude from
these experiments that the positive column does not consist of a current of
electricity traversing the whole of its length in the way that such a current
would traverse a metal cylinder coincident with the positive column, but
that it rather consists of a number of separate currents, each striation
corresponding to a current which is to a certain extent independent of
those which precede or follow. The discharge along the positive column
might perhaps be roughly illustrated by placing pieces of wire equal in
length to the striæ and separated by very minute air spaces along the line
of discharge.
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138.] Goldstein found that the rolling up of the striæ by the magnetic
force was most marked at the end of the positive column nearest the neg-
ative electrode: the following is a translation of Goldstein’s description of
this process (l.c. p. 852). The appearance is very characteristic when in
the unmagnetized condition the negative glow penetrates beyond the first
striation into the positive column. The end of the negative glow is then
further from the cathode than the first striation or, even if the rarefaction
is suitable, than the second or third. Nevertheless the end of the negative
glow rolls itself under the magnetic action up to the cathode in the mag-
netic curve which passes through the cathode. Then separated from this
by a dark space follows on the side of the anode a curve in which all the
rays of the first striation are rolled up, then a similar curve for the second
striation, and so on.

We shall have occasion to refer to these experiments again in the dis-
cussion of the theory of the discharge.

On the Distribution of Potential along an Exhausted Tube through which
an Electric Discharge is passing.

139.] The changes which take place in the potential as we pass along
the discharge tube are extremely interesting, as they present a remarkable
contrast to those which take place along a metal wire through which a
steady uniform current is passing; in this case the potential-gradient is
uniform along the wire, but changes when the current changes, being by
Ohm’s law proportional to the intensity of the current; in the exhausted
tube, on the other hand, the potential-gradient varies greatly in different
parts of the tube, but in the positive column is almost independent of the
intensity of the current passing through the gas. The potentials measured
are those of wires immersed in the rarefied gas, and the question arises,
whether the potentials of these wires are constant, as they would be if the
wires were in a steady current, or whether they are variable, the potentials
determined in these experiments being the mean values about which the
potentials of the wires fluctuate? This question is the same as, whether
the current through the gas is continuous or intermittent? On this point
considerable difference of opinion has existed among physicists. There is
no doubt that by the aid of a battery consisting of a large number of cells
a discharge can be got, which, if not continuous, has such a high rate of
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intermittence that no unsteadiness can be detected when it is observed in
a rotating mirror making 100 revolutions per second; this is sufficient to
prove that if the intermittence exists at all it must be exceedingly rapid.
As long, however, as the discharge retains the property of requiring a large
potential difference to exist between the electrodes, this difference varying
continuously with the pressure, while the latter varies from that of an
atmosphere to the pressure in the discharge tube, we should expect the
electrodes to act like condensers continually being charged and discharged
as they are at atmospheric pressures, in other words we should expect the
discharge to be intermittent. When, however, the discharge passes as the
‘arc discharge,’ see Art. 169, the potential difference falls to a comparatively
small value, and it is probable that this discharge is much more nearly
continuous than the striated one.

It ought also to be remembered that the current through the gas may
be interrupted even though that through the leads is continuous. For since
the current through the gas does not obey the same laws as when it goes
through a metallic conductor, the current across a section of the discharge
tube need not at any specified instant be the same as that across the section
of one of the leads. The average current must of course be the same in the
two cases, but only the average current and not that at any particular
instant. To quote an illustration given by Spottiswoode and Moulton, the
discharge tube may act like the air vessel of a fire engine; all the electricity
that goes in comes out again, but no longer with the same pulsation. The
tube may sometimes contain more and sometimes less free electricity, and
may act as an expansible vessel would act if it formed part of the path of
an incompressible fluid.

The rapidity of the intermittence can to some extent be tested by ob-
serving whether or not the discharge is deflected by the approach of a
conductor. When the discharge is intermittent and the interval between
the discharges so long that the intermittence of the discharge can be de-
tected either by the eye or by a slowly rotating mirror, the discharge is
deflected when a conductor is brought near it; when however the inter-
mittence is very rapid, the discharge is not affected by the approach of
the conductor. This effect has been very completely investigated by Spot-
tiswoode and Moulton (Phil. Trans. 1879, Part I, p. 166; 1880, Part II,
p. 564).

140.] We shall begin by considering Hittorf’s experiments on the poten-
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tial gradient (Wied. Ann. 20. p. 705, 1883). The discharge tube, Fig. 63,
which was 5.5 cm. in diameter and 33.7 cm. long, had aluminium wires
2 mm. in diameter fused into the ends for electrodes, the anode, a, was
2 cm. long, the cathode, c, 7 cm. In addition to the electrodes five alu-
minium wires, b, d, e, f , g, half a millimetre in diameter, were fused into
the tube. The difference of potential between any two of these wires could
be determined by connecting them to the plates of a condenser, and then
discharging the condenser through a galvanometer. The deflection of the
galvanometer was proportional to the charge in the condenser, which again
was proportional to the difference of potential between the wires. The
discharge was produced by means of a large number of cells of Bunsen’s
chromic acid battery, and the intensity of the current was varied by insert-
ing in the circuit a tube containing a solution of cadmium iodide, which is
a very bad conductor. No intermittence in the discharge could be detected
either by a mirror rotating 100 times a second or a telephone. The tube
was filled with nitrogen, as this gas has the advantage of not attacking the
electrodes and of not being absorbed by them so greedily as hydrogen. The
results of some of the measurements are given in the following Table, l. c.
p. 727:—

Pressure of Nitrogen .6 mm.

Number fixing the experiment 1 2 3 4 5 6 7 8
Number of cells . . . . . 500 500 500 600 700 800 900 1000
Intensity of current in mil-

lionths of an Ampère . . 244 814 1282 3175 5189 7000 8791 11192
Kick of galvanometer due to

the charging of the con-
denser to the potential dif-
ference between—

ac . . . . . 133 132 133.5 141.5 150 157 165 173
ab . . . . . 22 22.5 22 21.5 21 21 21 21
bd . . . . . 14 13 13 12 12.5 12 12 12.25
de . . . . . 13 13 13 14 14 13.5 12 12.5
ae . . . . . 52 50 49 47 47 47 47 47
fg . . . . . — 2.25 3 4 3.75 44 3.25 3

The difference of potential in volts can be approximately got by multi-
plying the galvanometer deflection by 6. In experiment 1 the negative glow
covered about 1.5 cm. of the cathode, and the positive light extended to f .
In experiment 2 the negative glow covered 6 cm. of the cathode, and in 3
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Fig. 63.

and the following experiments the whole of the cathode. In experiments
1, 2, 3 the thickness of the negative glow remained the same; in the later
experiments where the negative glow covered the whole of the cathode its
thickness increased as the intensity of the current increased, and in 7 and 8
it extended to the walls of the tube. The table shows that no changes in
the potential differences occurred until the negative glow began to increase
in thickness. We see that by far the greatest fall in the potential occurs
in the immediate neighbourhood of the cathode, the rise in potential from
the negative electrode to the outside of the negative glow being far greater
than the rise in all the rest of the tube; we also see that the changes which
take place when the thickness of the negative glow alters take place in this
part of the tube, and that the potential differences in the positive column
are independent of the strength of the current. The portions bd and de of
the positive column, which are very nearly equal in length, have also prac-
tically the same potential differences; and these are each less than that
of the portion ab which contains the anode, although the latter portion is
considerably shorter. The wires f , g were in all these experiments in the
dark space between the negative glow and the positive column. The small
difference of potential between these wires is very noteworthy.

141.] Hittorf also investigated the potential differences for lower pres-
sures of the gas than that used in the last experiment; for this purpose
the tube in Fig. 63 was not suitable, as the negative glow was very much
interfered with by the walls of the tube, he therefore used a tube shaped
like that in Fig. 64, which was purposely made wide in the region round
the negative electrode. The diameter of the positive part of the tube was
4 cm., that of the negative 12 cm. The length of the negative electrode
was 15 cm., that of the positive 3 cm. In this case only two wires, b and d,
were inserted in the tube. The results of experiments with this tube are
given in the following table:—
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Number fixing the experiment 1 2 3 4 5 6
Pressure of the nitrogen in millimetres

of mercury . . . . . . . . . .70 .35 .175 .088 .044 .022
Number of cells . . . . . . . . 600 600 600 600 600 600
Strength of current in millionths of an

Ampère . . . . . . . . . . 2870 2076 1791 1360 916 488
Kick of galvanometer due to the charg-

ing of the condenser to the potential
difference between—

1 ac . . . . . 151 140 145 157 168 178
2 ab . . . . . 21 15 12 9.5 8 7
3 bd . . . . . 30 19 12 8 5 4.25
4 ad . . . . . 51 34 24 17.5 13 11.25

Number fixing the experiment 7 8 9 10 11
Pressure of the nitrogen in millimetres

of mercury . . . . . . . . . .011? .0055? .0029? .0014? .0007?
Number of cells . . . . . . . . 600 800 1000 1200 1400
Strength of current in millionths of an

Ampère . . . . . . . . . . 326 610 814 814 1100
Kick of galvanometer due to the charg-

ing of the condenser to the potential
difference between—

1 ac . . . . . 184 242 298 352 422
2 ab . . . . . 7 7 8 8.5 8.75
3 bd . . . . . 4 4 3.75 2.5 2.25
4 ad . . . . . 11 11.5 12 11.5 10.5

The negative glow in all these experiments covered the cathode, and in
all but the first three it extended to the walls of the tube. The appearance
of the glow at the higher exhaustions is shown in Fig. 64, where the shaded
portions represent the bright parts of the discharge; it will be seen from
the figure that the positive column was striated.

142.] The table shows that at high exhaustions the potential difference
between the electrodes increases as the density of the gas diminishes, but
that this increase is confined to the neighbourhood of the cathode; the
ratio of the change in potential near the cathode to that in the rest of
the tube increases as the pressure of the gas diminishes. The potential
difference in the positive light diminishes as the pressure is reduced, but
the diminution in the potential difference is not so rapid as the diminution
in the pressure. The table seems to suggest that the potential gradient in
the positive column tends towards a constant value which is independent
of the density. We must remember however that Hittorf’s experiments do
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Fig. 64.

not give the potential difference required to initiate the discharge through
the gas, but the distribution of potential which accompanies the passage
of electricity through the gas when the discharge has been established for
some time, and where there are a plentiful supply of dissociated molecules
produced by the passage of previous discharges. Hittorf found that the
number of cells which would maintain a discharge after it was once started
was frequently quite insufficient to initiate it, and the gas had to be broken
through by a discharge from another source.

143.] The experiments described in Art. 79 on the discharge without
electrodes, when the interval between two discharges was long enough to
give the gas through which the discharge had passed an opportunity of
returning to its normal condition before the passage of the next discharge,
show that even when no electrodes are used the electromotive intensity re-
quired to start the discharge has a minimum value at a particular pressure,
and that when the pressure is reduced below this value the electromotive
intensity required for discharge increases.

144.] The supply of dissociated molecules furnished by previous dis-
charges also explains another peculiarity of these experiments. It will be
seen from the table that at a pressure of .0007 mm. of mercury, a potential
difference which gave a galvanometer deflection of 10.5, corresponding to
about 63 volts, was all that occurred in a length of 12 cm. of the positive
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light; it does not follow however that a potential gradient of about 5 volts
per centimetre would be sufficient to initiate the discharge even if the great
change in potential at the cathode were absent. In fact the experiments
previously described on the discharge without electrodes show that it re-
quires a very much greater electromotive intensity than this even when the
cathode is entirely done away with.

The table shows that the potential difference between a and b, a space
which includes the anode, has at the higher exhaustions passed its mini-
mum value and commenced to increase.

145.] Though the potential differences between wires immersed in
the positive column is independent of the strength of the current pass-
ing through the tube, yet in such a tube as Fig. 63 the potential differences
between wires in the middle of the tube may be affected by variations in the
current if these variations are accompanied by changes in the appearance
of the discharge.

Let us suppose, for example, that the tube is filled with nitrogen at
a pressure of from 2 to 3 mm. of mercury, then when the intensity of the
current is very small the tube will appear to be dark throughout almost the
whole of its length, the positive column and negative glow being reduced
to mere specks in the neighbourhood of the electrodes; when however the
intensity of the current increases the positive column increases in length,
and if the increase is great enough to make it envelop two wires which were
previously in the dark Faraday space, the difference of potential between
these wires will be found to be very much greater than when the gas round
them was non-luminous. This is illustrated for lower pressures by the table
in Art. 140, which shows that the potential gradient between f and g, the
wires in the dark space between the positive column and the negative glow,
was very much less than the potential gradient in the positive column. It is
shown however still more clearly in the following set of experiments made
with the tube shown in Fig. 63 (l. c. p. 739).
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Pressure of Nitrogen 3.95 mm. of Mercury.
Temperature 12◦C.

Number fixing the
experiment . . 1 2 3 4 5 6 7

Number of cells . 700 700 700 800 900 1000 1200
Intensity of the cur-

rent in millionths
of an Ampère . 1465 2035 2391 2483 2830 3541 5820

Kick of the galvano-
meter from the
charge in the
condenser due
to the poten-
tial difference
between—

1 ac . . 166–168 175–168 190–188 212–208 238–232 255 292–285
2 ab . . — — — — 63 60 79
3 bd . . 16.5 18 18.5 25 43 61 56.5
4 de . . 17.5 18 17 18 20 26 62
5 fg . . 10 10.5 11.5 12 13 13 12.5

146.] In experiments 1–3 the tube was quite dark, except quite close to
the electrodes; the anode had a thin coating of positive light. The negative
glow extended in experiment 1 over 1 cm. of the cathode, in experiment 2
over 3 cm., and in experiment 3 over 3 cm. In experiment 3 the beginning
of a brush discharge was discernible at the anode. In consequence of the
wires being in the dark Faraday space instead of the positive column, it
will be noticed that the potential difference between b and d is very little
greater than in the experiments described in Art. 140, though the pressure
is more than six times greater.

147.] In experiment 4 the positive column reached past b; it will be
seen that the potential difference between b and d rose to 25, while the
differences between d and e and between f and g, which were still in the
dark, remained unaltered. In experiment 5 the positive column reached
past the middle of bd; the potential difference in bd rose from 25 to 43, the
potential differences between the wires in the dark still being unaltered.
In experiment 6 the positive light filled the whole space ad; the potential
difference between b and d rose to 61, and that between d and e also began
to rise as d was now in the positive column; this difference increased very
much in experiment 7, when the positive column reached to e.
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148.] We now pass on to the effect of an alteration in the strength of
the current on the potential difference at the cathode. We have already
remarked that if the negative glow does not spread over the whole of the
cathode, the only effect of an increase in the intensity of the current is
to make the negative glow spread still further over the cathode, without
altering the potential difference. Until the glow has covered the electrode,
there is, according to Hittorf, no considerable increase in temperature at
the cathode: when however the intensity of the current is increased beyond
the point at which the whole of the cathode is covered by the glow, the
temperature of the cathode begins to increase; when the current through
the gas is very strong, the cathode, and sometimes even the anode, becomes
white hot. When this is the case the character of the discharge changes
in a remarkable way, all luminosity disappears from the gas, which when
examined by the spectroscope does not show any trace of the lines of its
spectrum. The tube with its white hot electrodes surrounded by the dark
gas presents a remarkable appearance, and it is especially to be noted that
the electrodes are raised to incandescence by a current, which if it passed
through them when they formed part of a metallic circuit, would hardly
make them appreciably hot.

Hittorf also found (Wied. Ann. 21. p. 121, 1884) that if in a vacuum
tube conveying an ordinary luminous discharge, a platinum spiral which
could be raised by a battery to a white heat was placed so as to be in the
path of the discharge, the latter lost all luminosity in the neighbourhood
of the spiral when this was white hot. If the spiral was allowed to cool, the
luminosity appeared again before the spiral had cooled below a bright red
heat.

149.] For experiments of this kind aluminium electrodes melt too easily.
Hittorf used in most of his experiments iridium electrodes, which can be
raised to a very high temperature without melting. These were raised to
a white heat before any measurements were made, so as to get rid of any
gas they might have occluded. The length of the electrodes was 48 mm.
The result of some experiments on nitrogen is given in the following table
(Wied. Ann. 21, p. 111, 1884); in this, when the number of cells is given as
600 × x, it means that x sets of cells, each containing 600 elements, were
connected up in parallel.
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Experiments with Nitrogen.
Iridium electrodes at a distance of 15 mm.

Number fixing the experiment 1 2 3 4 5
Pressure of the nitrogen in millimetres

of mercury . . . . . . . . . 19.65 31.9 53.1 53.1 52.4
Number of cells . . . . . . . . 600× 3 600× 3 600× 3 600× 4 400× 6
Strength of current in Ampères .535 1.225 1.4 2.0 2.1
Kick of the galvanometer due to the

charge in the condenser produced by
the potential difference between the
electrodes . . . . . . . . . 75–82 25–32 25–32 15–20 17–20

In the first experiment a reddish-yellow positive column stretched at
first from the anode to an intensely bright patch on the cathode; the cath-
ode however soon became white hot along the whole of its length, and then
showed no trace of the negative glow, nor were any nitrogen lines detected
when the region round the cathode was examined by the spectroscope. The
tip of the anode was white hot.

From the second experiment we see that though the density of the
nitrogen was much greater, the potential difference was less than half what
it was in the first experiment. This is due to the electrodes being hotter in
this experiment than in the preceding one. In the third experiment only
half of the cathode was white hot, but the length of the anode which was
incandescent was greater than in the preceding experiment. In the fourth
experiment, in which a current of 2 Ampères passed through the gas, the
end of the anode was hotter than that of the cathode, in fact with this
current the anode, though made of iridium, began to melt. In the ordinary
arc lamp, in which we have probably a discharge closely resembling that
in this experiment, the anode is also hotter than the cathode when the
current is intense.

In this case the gas was quite dark. A very remarkable feature shown
by it is the smallness of the potential difference between the electrodes, not
amounting to more than 100 volts, though the gas was at the pressure of
53.1 millimetres, and the distance between the electrodes 15 mm. When
the electrodes were cold, the battery power used, about 1200 volts, was not
sufficient to break down the gas: the discharge had to be started by sending
a spark from a Leyden jar through the tube. The conduction through the
gas in this case is of the same character as that described in Art. 169.

150.] Hittorf also made experiments on hydrogen and carbonic oxide;
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the results for hydrogen are given in the following table (Wied. Ann. 21,
p. 113, 1884):—

Experiments with Hydrogen.
Distance of the Iridium electrodes 15 mm.

Number fixing the experiment 1 2 3 4 5 6
Pressure of hydrogen in mil-

limetres of Hg . . . . . 20 33.8 47.05 47.05 47.05 68.55
Number of cells . . . . 400× 6 400× 6 400× 6 600× 4 800× 3 800× 3
Intensity of current in

Ampères . . . . . . . .5465 .3415 .3074 .9222 .9905 .8197
Kick of the galvanometer due

to the charge in the con-
denser produced by the po-
tential difference between
the electrodes . . . . . 100 107–108 110 100–110 107–110 110

In experiment 1 the pressure and the current were almost the same as
for experiment 1, Art. 149, in nitrogen; the potential difference between
the electrodes was however much greater in hydrogen than in nitrogen,
though the potential difference required to initiate a discharge in hydrogen
is considerably less than in nitrogen. In these experiments the potential
difference between the electrodes for this dark discharge seems almost in-
dependent of the current and of the density of the gas.

Experiments with Carbonic Oxide Gas.
Distance between Iridium electrodes 15 mm.

Number fixing the experiment . . . . . . . 1 2 3 4
Pressure of CO in millimetres of mercury . . . 13.1 22.75 51.7 75.85
Number of cells . . . . . . . . . . . . . 800× 3 800× 3 800× 3 800× 3
Intensity of current in Ampères . . . . . . . .8880 .9734 1.3662 1.2978
Kick of the galvanometer due to the charge in the

condenser produced by the potential difference
between the electrodes . . . . . . . . . 92–100 89–92 40 42

The great fall in potential, which occurs between experiments 2 and 3
on CO, was accompanied by a loss of luminosity; in 1 and 2 there was a
little positive blue light at the anode, but in 3 this had disappeared, and
the discharge was quite dark and showed in the spectroscope no trace of
the carbonic oxide bands.
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Fig. 65.

151.] When repeating these experiments with carbon elec-
trodes instead of iridium ones, Hittorf found that with strong
currents and at pressures between 10 mm. and 2 mm. the dis-
charge through hydrogen took a very peculiar form, it consisted
of ring-shaped striæ, the insides of which were dark. These rings
extended through the tubes and encircled both the anode and the
cathode, as shown in Fig. 65.

152.] The preceding experiments show that when the electrodes
are white hot, the negative glow disappears, and the potential
difference between the electrodes when a current is passing through
the gas sinks to a fraction of the value it has when the electrodes
are cold and the negative glow exists. Hittorf (Wied. Ann. 21, p. 133)
has shown by a direct experiment that when the cathode is white hot a
very small electromotive force is sufficient to maintain the discharge. The
arrangement he used is shown in Fig. 66. A thin carbon filament which
serves as a cathode is stretched between two conductors mn, and can be
raised to a white heat by a current passing through it and these conductors;
the anode a is vertically below the cathode and remains cold. When the
pressure was very low, Hittorf found that 1 cell of his battery, equivalent
to about 2 volts, would maintain a current between the anode and cathode
when they were separated by 6 cm.; in this case the discharge was quite
dark. When ten or more cells were used a pale bluish light spread over
the anode. It should be noticed that the single cell does not start the
current, it only maintains it: the current has previously to be started by the
application of a much greater potential difference. Hittorf generally started
the current by discharging a Leyden jar through the tube. No current at all
will pass if the poles are reversed so that the anode is hot and the cathode
cold. In these experiments it is necessary for the cathode to be at a white
heat for an appreciable current to pass between the electrodes; very little
effect seems to be produced on the potential difference at the cathode until
the latter is hotter than a bright red heat. The current produced by a
given electromotive force is greater at higher exhaustions than at low ones,
but Hittorf found he could get appreciable effects at pressures up to 9 or
10 mm.

153.] In considering the results of experiments in which carbon fila-
ments or platinum wires are raised to incandescence, we must remember
that, as Elster and Geitel have shown (Art. 43), electrification is produced
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by the incandescent body, the region around which receives a charge of
electricity; though whether the carrier of this charge is the disintegrated
particles of the incandescent wire, or the dissociated molecules of the gas
itself, is not clear. This electrification often makes the interpretation of
experiments in which incandescent bodies are used ambiguous. Thus for
example, Hittorf in one experiment (Wied. Ann. 21, p. 137, 1884) used
a U-shaped discharge tube, in one limb of which a carbon filament was
raised to incandescence; the other limb of the tube contained a small gold
leaf electroscope; when the pressure of the gas in the tube was very low,
Hittorf found that the electroscope would retain a charge of negative elec-
tricity but immediately lost a positive charge. This experiment does not
however show conclusively that positive electricity escapes more easily than
negative from a metal into a gas which is in the condition in which it con-
ducts electricity, because the same effect would occur if the incandescent
carbon filament produced a negative electrification in the gas around it.

Fig. 66.

154.] The way in which the passage
of electricity from metal to gas, or vice
versâ, is facilitated by increasing the tem-
perature of the metal to the point of in-
candescence is illustrated by an effect ob-
served in the experiments on hot gases de-
scribed in Art. 37. It was found that when
a current was passing between electrodes
immersed in a platinum tube at a bright
yellow heat and containing some gas, such
as iodine, which conducts well, the cur-
rent was at once stopped if a large piece of
cold platinum foil was lowered between the
electrodes, although there was a strong up-
current of gas in the tube which prevented
a cold layer of gas being formed against
the platinum foil: as soon, however, as the
foil became incandescent the current from
one or two Leclanché cells passed freely. It
would appear, therefore, that even when
the gas is in the condition in which it con-
ducts electricity freely, some of the cath-
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ode potential difference will remain as long as the cathode itself is not
incandescent.

155.] The passage of electricity from a gas to a negative electrode
seems, as we shall see later, to require something equivalent to chemical
combination between the charged atoms of the metal and the atoms of the
gas which carry the discharge; and the reason for the disappearance of the
fall in potential at the cathode when the latter is incandescent is probably
due to this combination taking place under these circumstances much more
easily than when the electrode is cold.

156.] Warburg (Wied. Ann. 31, p. 545, 1887: 40, p. 1, 1890) has made
a valuable series of experiments on the circumstances which influence the
fall of potential at the cathode. He has investigated the effect produced
on this fall by altering the gas, the size and material of the electrodes, and
the amount of impurity in the gas. Hittorf, as we have seen, had already
shown that as long as there is room for the negative glow to spread over
the surface of the cathode, the cathode fall in potential is approximately
independent of the intensity of the current.

In Warburg’s experiments, the fall in potential at the cathode, by which
is meant the potential difference between the cathode and a wire at the
luminous boundary of the negative glow, was measured by a quadrant
electrometer. Warburg found that, so long as the whole of the cathode was
not covered by the negative glow, the fall in potential at the cathode was
nearly independent of the density of the gas: this is shown by the following
table (l. c. p. 579), in which E represents the potential difference between
the electrodes, which were made of aluminium, e the potential fall at the
cathode, E and e being measured in volts, p the pressure of the gas, dry
hydrogen, measured in millimetres of mercury, i the current through the
gas in millionths of an Ampère.

p. e. E − e. i.

9.5 191 139 6140
6.4 190 103 4740
4.4 190 70 4810
3.0 189 50 2640
1.79 191 40 1730
1.20 192 39 1360
.80 191 39 508

This table shows that though the fall in potential in the positive light
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decreased as the pressure diminished, the fall in potential at the cathode
remained almost constant.

157.] In imperfectly dried nitrogen, which contained also a trace of
oxygen, the cathode potential difference depended to some extent on the
metal of which the electrode was made; platinum, zinc, and iron electrodes
had all practically the same potential fall; for copper electrodes the fall was
about 3 per cent. and for aluminium electrodes about 15 per cent. less than
for platinum. In hydrogen which contained a trace of oxygen, the potential
fall for platinum, silver, copper, zinc, and steel was practically the same,
about 300 volts. In the case of the last three metals, however, the value
of the cathode potential fall at the beginning of the experiment was much
lower than 300 volts, and it was not until after long sparking that it rose to
its normal value; Warburg attributed this to the presence at the beginning
of the experiment of a thin film of oxide which gradually got dissipated
by the sparking; he found by direct experiment that the potential fall of
a purposely oxidised steel electrode was less than the value reached by a
bright steel electrode after being used for some time. The potential fall
for aluminium and magnesium electrodes was about 180 volts, and was
thus considerably smaller than for platinum electrodes (cf. Art. 47); these
metals, however, are easily oxidised; and as, unlike other metals, they do
not disintegrate when used as cathodes, the film of oxide would not get
removed by use.

158.] The fact that a large number of metals give the same potential
fall, while others give a varying one, seems to indicate that this potential
fall depends upon whether the electrodes do or do not take part in some
chemical change occurring at the cathode; and the connection between
this fall in potential and the chemical changes which take place near the
cathode seems still more clearly shown by the surprisingly large effects
produced by a small quantity of impurity in the gas. Warburg found that
the fall of potential at the cathode in nitrogen which contained traces both
of moisture and oxygen was 260 volts, while the same nitrogen, after being
very carefully dried, gave a cathode fall of 343 volts: thus, in this case,
a mere trace of moisture had diminished the cathode fall by 25 per cent.,
the removal of the trace of oxygen produced equally remarkable effects, see
Art. 160. This points clearly to the influence exerted by chemical actions
at the cathode on the fall of potential in that region; since a mere trace
of a substance is often sufficient to start chemical reactions which would
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be impossible without it: thus, for example, Pringsheim (Wied. Ann. 32,
p. 384, 1887) found that unless traces of moisture were present, hydrogen
and chlorine gas would not combine to form hydro-chloric acid under the
action of sunlight unless it was very intense.

159.] The fall of potential at the cathode seems to be lowered as much
by a trace of moisture as by a larger quantity, as long as the total quantity of
moisture in the nitrogen remains small; if, however, the amount of aqueous
vapour is considerable, the fall in potential is greater than for pure nitrogen;
thus in a mixture of nitrogen and aqueous vapour, in which the pressure
due to the nitrogen was 3.9 mm., that due to the aqueous vapour 2.3 mm.,
Warburg found that the fall in potential was about 396 volts, as against
about 343 volts for nitrogen containing a trace of oxygen; the increase
in the fall of potential at the cathode was, however, not nearly so great
comparatively as the increase in the potential differences along the positive
column.

In hydrogen, Warburg found that a trace of aqueous vapour increased
the potential difference at the cathode instead of diminishing it as in ni-
trogen.

160.] Warburg (Wied. Ann. 40, p. 1, 1890) also investigated the effects
produced by removing from the nitrogen or hydrogen any trace of oxygen
that might have been present. This was done by placing sodium in the
discharge tube, and then after the other gas had been let into the tube,
heating up the sodium, which combined with any oxygen there might be
in the tube. The effect of removing the oxygen from the nitrogen was very
remarkable: thus, in nitrogen free from oxygen, the fall of potential at the
cathode when platinum electrodes were used was only 232 volts as against
343 volts when there was a trace of oxygen present; when magnesium
electrodes were used the fall in potential was 207 volts; in hydrogen free
from oxygen the fall of potential was 300 volts with platinum electrodes,
and 168 volts with magnesium electrodes; thus with platinum electrodes the
potential fall in hydrogen is greater than in nitrogen, while with magnesium
electrodes it is less.

161.] Warburg also investigated a case in which the conditions for
chemical change at the cathode were as simple as possible, one in which
the gas was mercury vapour (with possibly a trace of air) and the cathode
a mercury surface; he found that the negative dark space was present, and
that the cathode fall was very considerable, amounting to about 340 volts;
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this, at the pressures used in these experiments between 3.5 mm. and
14.0 mm., was much greater than the potential difference in a portion of
the positive light about half as long again as the piece at the cathode, for
which the potential fall was measured.

162.] In air free from carbonic acid, but containing a little moisture,
Warburg (Wied. Ann. 31, p. 559, 1887) found that the potential fall was
about 340 volts: this is very nearly the value found by Mr. Peace for
the smallest potential difference which would send a spark between two
parallel plates. When we consider the theory of the discharge we shall see
that there are reasons for concluding that it is impossible to produce a
spark by a smaller potential difference than the cathode fall of potential in
the gas through which the spark has to pass.

The researches made by Hittorf on the distribution of potential along
the tube show, as we have seen, Art. 140, that the potential gradient is by
no means constant; to produce the changes in this gradient which occur in
the neighbourhood of the cathode, there must in that region be a quantity
of free electricity in the tube. Schuster (Proc. Roy. Soc. 47, p. 542, 1890)
concludes from his measurements of the potential in the neighbourhood of
the cathode that if ρ is the volume density of the free positive electricity
at a distance x from the cathode, ρ varies as ε−κx.

163.] The measurements of potential along the positive column have
been less numerous than those of the negative dark space. Hittorf, De la
Rue and Hugo Müller concur in finding that the potential gradient close
to the anode is, though not comparable with that at the cathode, greater
than that in the middle of the tube.

164.] The potential gradient in the positive column is not like the fall
in potential at the cathode approximately independent of the density, it
diminishes as the pressure of the gas diminishes: but as the pressure of the
gas diminishes, the distance between two consecutive striations increases,
and though I can find no experiments bearing on this point, it would be
a matter of great interest to know whether or not the potential difference
along a length of the positive column equal to the distance between two
striations, where these are regular, is approximately independent of the
density of the gas.

165.] De la Rue and Hugo Müller (Phil. Trans. 1878, Part I, p. 159)
measured the potential gradients along a tube in which two wide portions
were connected by a piece of capillary tubing, narrow enough to constrict
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the striæ; they found the potential gradient much greater along the capil-
lary portion than along the wide one. Thus the potential difference along
4.25 inches of the positive column in the wide tube, which was about 15

16
of

an inch in diameter, was, on an arbitrary scale, 75, while the potential
difference along a portion of the positive column, which included 2 inches
of the wide tube and 3.75 inches of the capillary tube (1

8
of an inch in diam-

eter), was 138; the potential gradients along the wide and narrow portions
are thus in the proportion of 1 to 1.55.

Fig. 67.

In this case the cathode was in the wide part
of the tube; when the tube round the cathode
is so narrow that it restricts the negative glow,
the increase in the potential difference at the
cathode produced by this restriction makes it
very much more difficult to get a discharge to
pass through the narrow tube than through a
wider one. An experiment due to Hittorf (Wied.
Ann. 21, p. 93, 1884) illustrates this effect in a
very remarkable way; at a pressure of .03 mm. of
mercury, it took 1100 of his cells to force the dis-
charge through a tube 1 cm. in diameter, while
300 cells were sufficient to force it between simi-
lar electrodes the same distance apart in a tube
11 cm. in diameter, filled with the same kind of
gas at the same pressure.

166.] When the electrodes are placed so near
together that the dark space round the cath-
ode extends to the anode, the appearance of the discharge is completely
changed: this is very well shown in an experiment due to Hittorf (Pogg.
Ann. 136, p. 213, 1869) represented in Fig. 67; the electrodes were parallel
to each other, and the pressure of the gas in the discharge tube was so low
that the dark space round the cathode extended beyond the anode; the pos-
itive discharge in this case, instead of turning towards the cathode, started
from the bend in the anode on the side furthest away from the cathode,
and then crept along the surface of the glass until it reached the bound-
ary of the negative dark space. I observed a similar effect in the course
of some experiments on the discharge between large parallel plates (Proc.
Camb. Philos. Soc. 5, p. 395, 1886); when the pressure of the gas was very
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small, the positive column, instead of passing between the plates, went, as
in Fig. 68, from the under side of the lower plate which was the positive
electrode, and after passing between the glass and the plates reached right
up to the negative glow, which was above the negative plate: the space
between the plates was quite dark and free from glow.

Fig. 68.

Lehmann (Molekularphysik, bd. 2, p. 295) has observed with a micro-
scope the appearance of the discharge passing between electrodes of dif-
ferent shapes, placed very close together; they exhibit in a very beautiful
way the same peculiarities as those just described; Lehmann’s figures are
represented in Fig. 69.

When the distance between the electrodes is less than the thickness of
the dark space, it is very difficult to get the discharge to pass between them;
this is very strikingly illustrated by another experiment of Hittorf’s (Wied.
Ann. 21, p. 96, 1884) which is represented in Fig. 70. The two electrodes
were only 1 mm. apart, but the regions surrounding them were connected
by a long spiral tube 33

4
m. long; in spite of the enormous difference between

the lengths of the two paths, the discharge, when the pressure was very low,
all went round through the spiral, and the space between the electrodes
remained quite dark.

167.] In cases of this kind the potential difference required to produce
discharge between two electrodes must be diminished by increasing the dis-
tance between them. For in Hittorf’s experiments, the potential difference
between the electrodes was equal to the potential fall at the cathode, plus
the change in potential due to the 33

4
m. of positive light in the spiral,

while if the shortest distance between the electrodes had been increased
until it was just greater than the thickness of the negative dark space,
the potential difference between the electrodes when the discharge passed
would only have amounted to the cathode fall, plus the potential difference
due to a short positive column instead of to one 33

4
metres long, so that

the potential difference would have been less than when the electrodes are
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Fig. 69.

nearer together. Peace’s experiment described in Art. 53 is a direct proof
of the truth of this statement for higher pressure, and is free from the
objection to which the preceding deduction from Hittorf’s experiment is
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liable, that the cathode fall may not be the same when the discharge starts
in the large vessel when the negative glow is unrestricted, as it is when the
discharge passes through the narrow tubes, the walls of which constrict the
negative glow.

Fig. 70.

168.] These results explain a peculiar effect which is observed when
the discharge passes between slightly curved electrodes at not too great a
distance apart; until the pressure is very low the discharge passes across
the shortest distance between the electrodes, but after a very low pressure
is reached the discharge leaves the centre of the field, and in order to get a
longer spark length departs further and further from it as the pressure of
the gas is reduced.

The Arc Discharge.

169.] The ‘arc discharge,’ of which the well-known arc lamp is a fa-
miliar example, is characterised by the passage of a large current and the
incandescence of both the terminals, as well as by the comparatively small
potential difference between them; we considered a case of this discharge
in Art. 148, the gas was, however, in that case, at a low pressure; the cases
when the gas is at higher pressures are of special interest, on account of
the extensive use made of this form of discharge for lighting purposes.

If the current through a vacuum tube with electrodes is gradually in-
creased, the discharge, as Gassiot found in 1863, gradually changes from
the ordinary type of the vacuum tube discharge with the negative space
and a striated positive column to the arc discharge, in which there is com-
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paratively little difference between the appearances at the terminals. The
terminals are brilliantly incandescent while the gas remains comparatively
dark, being probably in the state in which it has a large supply of dissoci-
ated molecules by means of which it can transmit the current even though
the potential gradient is small.

The connection between spark length, potential difference and current
in the arc discharge, has been investigated by many physicists, who have all
found that the potential difference V is almost independent of the current
and can be expressed by the formula

V = a+ bl,

where l is the spark length and a and b are constants. Ayrton and Perry
(Phil. Mag. [5] 15, p. 346, 1883), using a formula which is identical with
the preceding one if the sparks are not very short, found that for carbon
electrodes a = 63 volts and b = 21.6 volts, if l is measured in centimetres.
The value of a probably depends on the quality of the carbon of which the
electrodes are made, as other observers, who have also used carbon elec-
trodes, have found considerably smaller values for a. When more volatile
substances than carbon are used the values of a are smaller, the more
volatile the substance the smaller in general being the value of a. This is
borne out by the following determinations made by Lecher (Wied. Ann. 33,
p. 625, 1888); the length l in these equations is measured in centimetres,
and V in volts:—

Horizontal Carbon Electrodes . . . . . V = 33 + 45l.
Vertical Carbon Electrodes . . . . . . V = 35.5 + 57l.
Platinum Electrodes, (.5 cm. in diameter) V = 28 + 41l.
Iron Electrodes, (.55 cm. in diameter) . . V = 20 + 50l.
Silver Electrodes, (.49 cm. in diameter) . V = 8 + 60l.

170.] The form of the expression for V shows that the potential required
to maintain the current between two incandescent electrodes cannot fall
short of a certain minimum value, however short the arc may be. The
preceding measurements for a show that this potential difference, though
small compared with the ‘cathode fall’ when the electrodes are cold, is
much greater than that which Hittorf in his experiments (see Art. 152)
found necessary to maintain a constant current when the cathode was
incandescent; we must remember, however, that in Lecher’s experiments
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the gas was at atmospheric pressure, while in Hittorf’s the pressure was
very low.

171.] Lecher (l. c.) investigated the potential gradient in the arc by
inserting a spare carbon electrode, and found that it was far from uniform:
thus when the difference of potential between the anode and the cathode
was 46 volts, there was a fall of 36 volts close to the anode, and a smaller fall
of ten volts near the cathode. The result that the great fall of potential in
the arc discharge occurs close to the anode is confirmed by an experiment
made by Fleming (Proc. Roy. Soc. 47, p. 123, 1890), in which a spare
carbon electrode was put into the arc; when this electrode was connected
with the anode sufficient current went round the new circuit to ring an
electric bell, but when it was connected to the cathode the current which
went round the circuit was not appreciable.

Fig. 71.

172.] The term in the expression
for the potential in Art. 169, which is
independent of the length of the arc,
and which involves an expenditure of
energy when electricity travels across
an infinitesimally small air space, is
probably connected with the work re-
quired to disintegrate the electrodes,
since the more volatile are the elec-
trodes the smaller is this term.

173.] The disintegration of the elec-
trodes is a very marked feature of the
arc discharge, and it is not, as in the
case when small currents pass through
a highly exhausted gas, confined to the
negative electrode; in fact, when car-
bon electrodes are used, the loss in
weight of the anode is greater than
that of the cathode, the anode getting
hollowed out and taking a crater-like
form.

174.] Perhaps the most interesting
examples of the arc discharge are those which occur when we are able
by means of transformers to produce a great difference of potential, say
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thirty or forty thousand volts between two electrodes, and also to transmit
through the arc a very considerable current. In this case the arc presents
the appearance illustrated in Fig. 71. The discharge, instead of passing
in a straight line between the electrodes, rises from the electrodes in two
columns which unite at the top, where striations are often seen though
these do not appear in the photograph from which Fig. 71 was taken. The
vertical columns are sometimes from eighteen inches to two feet in length,
they flicker slowly about and are very easily blown out, a very slight puff
of air being sufficient to extinguish them. The air blast apparently breaks
the continuity of the belt of dissociated molecules along which the current
passes, and the current is stopped just as a current through a wire would be
stopped if the wire were cut. The discharge is accompanied by a crackling
sound, as if a number of minute sparks were passing between portions of
the arc temporarily separated by very short intervals of space.

175.] The relation between the losses of weight of the anode and the
cathode in the arc discharge depends however very much on the material
of which the electrodes are made; thus Matteucci (Comptes Rendus, 30,
p. 201, 1850) found that for copper, silver and brass electrodes the cathode
lost more than the anode, while for iron the loss in weight of the anode
was greater than that of the cathode.

The electrodes in the arc discharge are at an exceedingly high tem-
perature, in fact probably the highest temperatures we can produce are
obtained in this way. With carbon electrodes the anode is much hotter
than the cathode (compare Art. 149). Since the temperature of the elec-
trodes is so high, it is probable that they are disintegrated partly by the
direct action of the heat and not wholly by purely electrical processes such
as those which occur in electrolysis; for this reason, we should not expect
to find any simple relation between the loss in weight of the electrode and
the quantity of electricity which has passed through the arc. Grove (Phil.
Mag. [3] 16, p. 478, 1840), who used a zinc anode sufficiently large for the
temperature not to rise about its melting point, came to the conclusion
that the amounts of zinc lost and oxygen absorbed by the electrode were
chemically equivalent to the oxygen liberated in a voltameter placed in the
circuit. On the other hand, Herwig, (Pogg. Ann. 149, p. 521, 1873), who
investigated the relation between the loss of weight of a silver electrode in
the arc and the amount of chemical decomposition in a voltameter placed
in the same circuit, was however unable to find any simple law connecting
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the two. The brightness of the light given by carbon electrodes is much
increased by soaking them in a solution of sodium sulphate.

176.] The particles projected from the electrodes in the arc discharge
are presumably charged with electricity, since they are deflected by a mag-
net; thus some of the electricity passing between the electrodes will be
carried by these particles. Comparatively few experiments bearing on this
point have, however, been made on the arc discharge, and we have not the
information which would enable us to estimate how much of the current is
carried by the disintegrated electrodes and how much by the gas.

Fleming (Proc. Roy. Soc. 47, p. 123, 1890) has suggested that all the
current is carried by particles torn off the electrodes, that these particles
are projected (chiefly from the cathode) with enormous velocities, and that
the incandescence of the electrodes is due to the heat developed by their
bombardment by these particles; the hollowing out of the anode is on this
theory supposed to be due to a kind of sand blast action exerted by the
particles coming from the negative electrode.

On this theory, if I understand it rightly, the gas by which the electrodes
are enveloped plays no part in the discharge. I do not think that the theory
is consistent with Hittorf’s and Gassiot’s observations on the continuity
of the arc discharge with the ordinary striated discharge produced in a
vacuum tube through which only a very small current is passing, nor does
it seem in accordance with what we know about the high conductivity
of gases which are at a high temperature or through which an electric
discharge has recently passed.

The Heat produced by the Discharge.

177.] Though the electric discharge is generally accompanied by intense
light, the average temperature of the molecules of the gas through which
it passes is often by no means high. Thus E. Wiedemann (Wied. Ann. 6,
p. 298, 1879) has found that the average temperature of a column of air
at a pressure of about 3 mm. made luminous by the passage of the dis-
charge can be under 100◦C. As, however, any instrument which we may
use to measure the temperature of the gas merely measures the average
temperature of molecules filling a considerable space, the fact that this
temperature is low does not preclude the existence of a small number of
molecules moving with velocities immensely greater than the mean velocity
corresponding to the temperature indicated by the thermometer.
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On the other hand, the fact that the gas is luminous during the dis-
charge does not afford conclusive evidence of the existence of molecules in
a state comparable with that of the majority of the molecules in a gas at
a very high temperature, for mere increase of temperature unaccompanied
by chemical changes seems to have little effect in increasing the luminosity
of a gas; thus in one of Hittorf’s experiments already mentioned, where the
temperature of the electrodes was great enough to melt iridium, the gas
surrounding them when examined by the spectroscope did not show any
spectroscopic lines. It would seem that the interchange of atoms between
the molecules which probably goes on when the discharge passes through
the gas is much more effective in making it luminous than mere increase
in temperature unaccompanied by chemical changes.

178.] Many experiments have been made by G. and E. Wiedemann,
Hittorf, and others on the distribution along the line of discharge of the heat
produced by the spark. Hittorf’s experiments are the easiest to interpret,
since by means of a large battery he produced through the discharge tube
a current which, if not absolutely continuous, was so nearly so, that no
want of continuity could be detected either by a revolving mirror or by a
telephone; the gas had therefore a much better chance of getting into a
steady state than if intermittent discharges such as those produced by an
induction coil had been used.

Hittorf (Wied. Ann. 21, p. 128, 1884) inserted three thermometers in
the discharge tube, one close to the cathode, another in the bright part
of the negative glow, and the third in the positive column. He found,
using small currents and low gaseous pressures, that the temperature of
the thermometer next the cathode was the highest, that of the one in the
negative glow the next, and that of the one in the positive column the
lowest.

The distribution of temperature depends very much upon the intensity
of the current. Hittorf found that when the strength was increased the
difference between the temperatures of his thermometers increased also.
When however the increase in the current is so great that the discharge
becomes an arc discharge, then, at any rate when carbon electrodes are
used, the temperature at the anode is higher than that of the cathode;
with weak currents we have seen that it is lower.

E. Wiedemann (Wied. Ann. 10, p. 225 et seq., 1880) found that the
distribution of temperature along the discharge depended on the pressure.
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In his experiments the temperature at the anode was slightly higher than
that at the cathode when the pressure was about 26 mm. of mercury, at
lower pressures the cathode was the hotter, and the difference between
the temperatures of the cathode and the anode increased as the pressure
diminished.

Differences between the Phenomena at the Positive and Negative
Electrodes.

179.] We have seen already that when the pressure of the gas is small
the two electrodes present very different appearances, there are however
many differences between an anode and a cathode even at atmospheric
pressure.

Fig. 72.

The appearance of the spark discharge at the two electrodes is different.
The following figure is from a photograph of the spark in air at atmospheric
pressure. It will be noticed that the sparks seem to reach a definite point
on the negative electrode, but to spread over a considerable area of the
positive. Bright dots of light are often to be seen on the positive electrode
but not on the negative, these are still more striking at lower pressures.
When the spark is branched as in Fig. 73, the branches point to the negative
electrode.

Fig. 73.

If the electrodes are not of the same size, the spark length for the same
potential difference seems to depend upon whether the larger or smaller
electrode is used as the cathode, though it is a disputed question whether
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this difference exists if the spark is not accompanied by some other form
of discharge. Thus, if for example the electrodes are spheres of different
sizes, Faraday (Experimental Researches, § 1480) found that the spark
length was greater when the smaller sphere was positive than when it was
negative. We may express this result by saying that when the electric field
is not uniform the gas does not break down so easily when the greatest
electromotive intensity is at the cathode as it does when it is at the anode.

Macfarlane’s measurements (Phil. Mag. [5] 10, p. 403, 1880) of the
potential difference required to start a discharge between a ball and a disc
are in accordance with this result, as he found that for a given length of
spark the potential difference between the electrodes was smaller when the
ball was positive than when it was negative.

Fig. 74. Fig. 75.

180.] De la Rue and Hugo Müller (Phil. Trans. 1878, Part I, p. 55)
observed analogous effects in the experiments they made with their large
chloride of silver battery on the sparking distance between a point and a
disc. They found that for potential differences between 5000 and 8000 volts
the sparking distance was greatest when the point was positive and the
disc negative, while for smaller potential differences they found that the
opposite result was true. The appearance of the discharge at the positive
point they found was different from that at the negative. The discharge at
the negative point is represented in Fig. 74, that at the positive in Fig. 75.

181.] Wesendonck (Wied. Ann. 38, p. 222, 1889), however, concludes
from his experiments that there are no polar differences of this kind when
the discharge passes entirely as a spark, and that the differences which
have been observed are due to the coexistence of other kinds of discharge
such as a brush and glow.

The existence of this kind of discharge would put the gas into a condi-
tion in which it is electrically weak and thus ill-fitted to resist the passage
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of the spark. This explanation does not seem inconsistent with Faraday’s
experiment, for, as we shall see in the next paragraph, the negative brush
is formed more easily than the positive one. Thus if the sparks in his exper-
iments only passed when they were preceded by the formation of brushes
at both the electrodes, it might be produced if the greatest electromotive
intensity was at the place where the brush was formed with the greatest
difficulty—the anode—while it might not be produced if the smallest in-
tensity was at the anode, thus the gas would be electrically weaker in the
first case than in the second.

182.] Considerable polar differences seem undoubtedly to occur in
the brush and glow discharges. Thus Faraday (Experimental Researches,
§ 1501) found that if two equal spheres were electrified until they discharged
their electricity by a brush discharge into the air, the discharge occurred
at a lower potential for the negative ball than for the positive; more elec-
tricity thus accumulates on the positive ball than on the negative before
the brush occurs, so that when the positive brush does take place it is finer
than the negative one.

Fig. 76.

The brush discharge is also intermittent, and since the positive brush
requires a greater accumulation of electricity than the negative one, the
interval between consecutive discharges is greater for the positive than for
the negative brush.

The positive and negative brushes are represented in Fig. 76, copied
from a figure given by Faraday.

In the brush discharge the electricity seems to be carried partly by
particles of metal torn from the electrodes. Nahrwold (Wied. Ann. 31,
p. 473, 1887) has confirmed the conclusion that the negative brush is more
easily formed than the positive.

Wesendonck (Wied. Ann. 39, p. 601, 1890) has shown that when the
discharge passes as a glow discharge from a point into air, hydrogen, or
nitrogen, the potential at which the discharge begins is less when the point
is negative than when it is positive.
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Fig. 77.

Lichtenberg’s Figures and Kundt’s Dust Figures.

Fig. 78.

183.] Very tangible differences between the
discharges from the positive and negative elec-
trodes at ordinary pressures are obtained if
we allow the discharge from one or other of
the electrodes to pass on to a non-conducting
plate covered with some badly conducting
powder. If, for example, we powder a plate
with a mixture of red minium and yellow sul-
phur and then cause a discharge from a posi-
tively electrified point to pass to the plate, the
sulphur, which by friction against the minium
is negatively electrified, adheres to the posi-
tively electrified parts of the plate, and will be found to be arranged in a
star-like form like that represented in Fig. 77. If, on the other hand, the
discharge is taken from a negatively electrified body the appearance of the
minium on the plate is that represented in Fig. 78. These are known as
Lichtenberg’s figures; the positive ones are larger than the negative.

If the electrodes are made of very bad conductors, such as wood, there
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is no difference between the positive and the negative figures.
184.] Very beautiful figures are obtained if a plate of glass covered with

a non-conducting powder, such as lycopodium, is placed on a metal plate,
and two wires connected with the poles of an induction coil made to touch
the powdered surface of the glass. When the discharge passes the powder
arranges itself in patterns which are finely branched and have a moss-like
appearance at the anode and a more feathery or lichenous appearance at
the cathode. The accompanying figure is from a paper by Joly (Proc. Roy.
Soc. 47, p. 84, 1890); the negative electrode is on the left.

Fig. 79.

185.] As Lehmann has remarked (Molekularphysik, bd. 11, p. 303), the
differences between the positive and negative figures are what we should
expect if the discharge passed as a brush from the positive electrode and
as a glow from the negative one. He has verified by direct observation that
this is frequently the case.

A good deal of light is also, I think, thrown on the difference between
the positive and negative figures by Fig. 80, which is given by De la Rue and
Hugo Müller (Phil. Trans. 1878, Part I, p. 118) as the discharge produced
by 11, 000 of their chloride of silver cells in free air. It will be noticed
that there is at the negative electrode a continuous discharge superposed
on the streamers which are the only form of discharge at the positive, this
continuous discharge will fully account for the comparative want of detail
in the negative figure.

186.] Kundt’s figures are obtained by scattering non-conducting pow-
ders over a horizontal metal plate, instead of, as in Lichtenberg’s figures,
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Fig. 80.

over a non-conducting one. If the plate be shaken after a discharge has
passed from a negative point to the positive plate, it will be found that
the powder will fall from every part of the plate except a small circle un-
der the negative electrode, where the powder sticks to the plate and forms
what is called Kundt’s ‘dust figure.’ The dimensions of this circle are very
variable, ranging in Kundt’s original experiments (Pogg. Ann. 136, p. 612,
1869) from 10 to 200 mm. in diameter. If the point is positive and the
plate negative Kundt’s figures are only formed with great difficulty.

Mechanical Effects produced by the Discharge.

187.] We have already considered the mechanical effects produced by
the projection of particles from the cathode: many other such effects are
however produced by the electric discharge. One of the most interesting of
these is that described by De la Rue and Hugo Müller (Phil. Trans. 1880,
p. 86): they found that when the discharge from their large chloride of
silver battery passed through air at the pressure of 53 mm. of mercury, the
pressure of the air was increased by about 30 per cent., and they proved,
by measuring the temperature, that the increase in pressure could not be
accounted for by the heat produced by the spark.

This effect can easily be observed if a pressure gauge is attached to
any ordinary discharge tube, the gas inside being most conveniently at a
pressure of from 2 to 10 mm. of mercury. At the passage of each spark
there is a quick movement of the liquid in the gauge as if it had been
struck by a blow coming from the tube; immediately after the passage of
the spark the liquid in the gauge springs back to within a short distance
of its position of equilibrium, and then slowly creeps back the rest of the
way. This creeping effect is probably due to the slow escape of the heat
produced by the passage of the spark. The gauge behaves as if a wave of
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high pressure rushed through the tube when the spark passed.
188.] Meissner, Abhand. der König. Gesellschaft, Göttingen, 16, p. 98

et seq., 1871 (who seems to have been the first to observe this effect,
though in his experiments it was not developed to such an extent as in
De la Rue’s and Müller’s), found that if a tube provided with a gauge were
placed between the plates of a condenser there was an increase of pressure
when the plates were charged or discharged, and no effect as long as the
charge on the condenser remained constant. In this case there was no
spark between the plates of the condenser, and the effect must have been
due to the passage through the gas of the electricity which, when it was in
equilibrium before the spark passed, was spread over the glass of the tube.

Meissner observed this effect when the tube was filled with oxygen,
hydrogen, carbonic acid, and nitrogen, though it was very small when the
tube was filled with hydrogen.

189.] The effect seems too great to be accounted for merely by the
increased statical pressure due to the decomposition of the molecules of
the gas by the discharge, for in De la Rue’s experiment, where the gas was
contained in a large vessel and the discharge passed as a narrow thread
between the electrodes, the pressure was increased by about 30 per cent.

Fig. 81.
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Now if this increase of pressure was due to the splitting up of the molecules
into atoms it would require about one-third of the molecules to be so split
up by a discharge which only occupied an infinitesimal fraction of the
volume of the gas.

190.] It would seem more probable that in this case we had something
analogous to the driving off of particles from an electrified point, as in the
ordinary phenomenon of the ‘electrical wind,’ or that of the projection of
particles from the cathode which occurs when the discharge passes through
a gas at a very low pressure; the difference between this case and the one
we are considering being that in the latter, since the pressure is greater,
the molecules shot off from the cathode communicate their momentum to
the surrounding gas instead of retaining it until they strike against the
walls of the discharge tube. This would have the effect of diminishing the
density of the gas in the neighbourhood of the line of discharge, and would
therefore increase the density and pressure in other parts of the tube.

Fig. 82.

191.] Töpler (Pogg. Ann. 134, p. 194, 1868) has investigated by means
of a stroboscopic arrangement the disturbance in the air produced by the
passage of a spark. The following figures taken from his paper show the
regions when the gas is expanded in the neighbourhood of the spark line
at successive small intervals of time after the passage of the spark. It will
be noticed that these regions show periodic swellings and contractions as
if the centres of greatest disturbance were distributed at regular and finite
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intervals along the line of discharge. A similar appearance was observed
by Antolik (Pogg. Ann. 154, p. 14, 1875) when the discharge passed over a
plate covered with fine powder; the powder placed itself in ridges at regular
intervals along the line of discharge.

192.] This effect is also beautifully illustrated in an experiment made by
Joly (Proc. Roy. Soc. 47, p. 78 et seq., 1890), in which the discharge passed
from one strip of platinum to another between plates of glass placed so close
together that they showed Newton’s rings; it was only with difficulty that
the discharge could be got through this narrow space at all, it declined to
go through the centre of the rings, and went out of its way to get through
the places where the distance between the plates was greatest. Where it
passed it made furrows on the glass at right angles to the line of discharge
and separated by regular intervals; a magnified representation of these is
shown in Fig. 82, taken from Joly’s paper. When the air between the plates
was replaced by hydrogen these furrows had a tendency to be more widely
separated.

193.] The explosive effects produced by the spark are well illustrated
by an experiment due to Hertz (Wied. Ann. 19, p. 87, 1883), in which the
anode was placed at the bottom of a glass tube with a narrow mouth, while
the cathode was placed outside the tube and close to the open end. The
tube and the electrodes were in a bell jar filled with dry air at a pressure
of 40–50 mm. of mercury. When the discharge from a Leyden jar charged
by an induction-coil passed, the glow accompanying it was blown out of
the tube and extended several centimetres from the open end. In this
experiment, as in the well-known ‘electric wind,’ the explosive effects seem
to be more vigorous at the anode than they are at the cathode.

Chemical Action of the Electric Discharge.

194.] When the electric discharge passes through a gas, it produces in
the majority of cases perceptible chemical changes, though whether these
changes are due to the electrical action of the spark, or whether they are
secondary effects due to a great increase of temperature occurring either
at the electrodes or along the path of the discharge, is very difficult to
determine when the discharge takes the form of a bright spark.

195.] For this reason we shall mainly consider the chemical changes
produced by those forms of discharge in which the thermal effects are as
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small as possible, though even in these cases, since we can only measure the
average temperature of a large number of molecules, it is always possible
to account for any chemical effect by supposing that although the average
temperature is not much increased by the discharge, a small number of
molecules have their kinetic energy so much increased that they can enter
into fresh chemical combinations.

The thermal explanation of the chemical changes requires that they
should be subsequent to, and not contemporaneous with the passage of
the discharge; on the view adopted in this book chemical changes of some
kind are necessary before the discharge can pass at all, though it by no
means follows that the chemical changes which are instrumental in carrying
the current are those which are finally apparent. When electricity passes
through a liquid electrolyte the substances liberated at the electrodes are
in consequence of secondary chemical actions frequently different from the
ions which carry the current.

Fig. 83.

196.] A very convenient method of producing discharges as free as
possible from great heat is by using a Siemens’ ozonizer, represented in
Fig. 83. Two glass tubes are fused together, and the gas through which
the discharge takes place circulates between them, entering by one of the
side tubes and leaving by the other; the inside of the inner tube and the
outside of the outer are coated with tin-foil, and are connected with the
poles of an induction-coil. When the coil is working a quiet discharge passes
as a series of luminous threads between the surfaces of the glass opposed
to each other. This form of discharge is often called the ‘silent discharge,’
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and by French writers l’effluve electrique.
When air or oxygen is sent through a tube of this kind when the coil is

working a considerable amount of ozone is produced.
Ozone is not produced by the action of a steady electric field on oxygen

or air unless the field is intense enough to produce a discharge through the
gas (see J. J. Thomson and R. Threlfall, Proc. Roy. Soc. 40, p. 340, 1886).

Meissner (Abhandlungen der König. Gesell. Göttingen, 16, p. 3, 1871)
found that ozone was produced in tubes placed between the plates of a
condenser when the condenser was charged or discharged, although no
sparks passed between the plates, but that no ozone was produced when
the charges on the plates of the condenser were kept constant. This was
probably due to the passage through the gas of electricity which had dis-
tributed itself over the walls of the tube under the inductive action of the
charged plates of the condenser.

Bichat and Guntz (Annales de Chimie et de Physique [6], 19, p. 131,
1890) ascribe the formation of ozone, even by the silent discharge, to purely
thermal causes. They regard the bright thread-like discharge surrounded by
the non-luminous gas as a column of very hot oxygen surrounded by a cold
atmosphere, and consider the conditions analogous to those which obtain
in a St. Claire Deville ‘chaud froid’ tube, by the aid of which they state
that Troost and Hautefeuille have produced ozone from oxygen without
the use of the electric discharge.

197.] By the aid of the silent discharge a great many chemical changes
are produced, of which the following are given by Lehmann, Molekular-
physik, (bd. 2, p. 328.) Carbonic acid is split up by the discharge into
carbonic oxide, oxygen, and ozone: water vapour into hydrogen and oxy-
gen: when the discharge passes through acetylene a solid and a liquid are
produced: phosphoretted hydrogen yields under similar circumstances a
solid: methyl hydride gives marsh gas, hydrogen, and an acid: nitrous
oxide splits up into nitrogen and oxygen: nitric oxide into nitrous oxide,
nitrogen and oxygen.

A mixture of carbonic acid and marsh gas gives a viscous fluid; nitrogen
partly combines with ammonia: carbonic oxide and hydrogen give a solid
product: carbonic oxide and marsh gas a resinous substance: nitrogen and
hydrogen ammonia.

Dextrine, benzine, and sodium absorb nitrogen under the influence of
the discharge, and enter into chemical combination with it. Hydrogen
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forms with benzine and turpentine resinous compounds.
198.] Berthelot (Annales de Chimie et de Physique, [5], 10, p. 55,

1877) has shown that the absorption of nitrogen by dextrine takes place
under very small electromotive intensities; he showed this by connecting the
inside and the outside coatings of the ozonizer to points at different heights
above the surface of the ground, and found that this difference of potential,
which varied in the course of the experiments from +60 to −180 volts, was
sufficient to produce in the course of a few weeks an appreciable absorption
of nitrogen by a solution of dextrine in contact with it. The potential
differences in these experiments were so small, and their rate of variation
so slow, that it seems improbable that any discharge could have passed
through the nitrogen, and the experiments suggest that chemical action
between a gas and a substance with which it is in contact can be produced
by the action of a variable electric field without the passage of electricity
through the bulk of the gas. Berthelot suggests that plants may, under
the influence of atmospheric electricity, absorb nitrogen by an action of
this kind. This suggestion also raises the very important question as to
whether the chemical changes which accompany the growth of plants can
have any influence on the development of atmospheric electricity.

199.] We must now consider the relation between the quantity of elec-
tricity which passes through a gas and the amount of chemical action which
takes place in consequence. It is necessary here to make a distinction, which
has been too much neglected, between the part of this action which occurs
at the electrodes and the part which occurs along the length of the spark.
When a current of electricity passes through a liquid electrolyte the only
evidence of chemical decomposition is to be found at the electrodes. When,
however, the electric discharge passes through a gas the chemical changes
are not confined to the electrodes but occur along the line of the discharge
as well. This is proved by the fact that when the electrodeless discharge
passes through oxygen ozone is produced, as is testified by the existence
for several seconds after the discharge has discharge passes through oxy-
gen ozone is produced, as is testified by the existence for several seconds
after the discharge has passed of a beautiful phosphorescent glow: the
same thing is also proved by the behaviour of the discharge when it passes
through acetylene; the first two or three sparks are of a beautiful light
green colour, while all subsequent discharges are a kind of whitish pink,
showing that the first two or three sparks have decomposed the gas.
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200.] Since chemical decomposition is not confined to the electrodes its
amount must depend upon the length of the spark; this has been proved
by Perrot (Annales de Chimie et de Physique [3], 61, p. 161, 1861), who
compared the amounts of water vapour decomposed in the same time in
a number of discharge tubes placed in series, the spark lengths in the
tubes ranging from two millimetres to four centimetres; he found that the
volumes of gas decomposed varied from 2 c.c. to 52 c.c., and that neither the
longest nor the shortest spark produced the maximum effect. By placing a
voltameter in the circuit Perrot found that in one of his tubes the amount of
water vapour decomposed by the sparks was about 20 times the amount of
water decomposed in the voltameter. It is evident from this that if we wish
to arrive at any simple relation between the quantity of electricity passing
through the gas and the amount of chemical decomposition produced we
must separate the part of the latter which occurs along the length of the
spark from that which takes place at the electrodes.

Fig. 84.

201.] This seems to have been done in a remarkable investigation made
more than thirty years ago by Perrot (l.c.), which does not seem to have
attracted the attention it merits, and which would well repay repetition.
The apparatus used by Perrot in his experiments is represented in Fig. 84
from his paper. The spark passed between two platinum wires sealed into
glass tubes, c f g, d f g, which they did not touch except at the places
where they were sealed: the open ends, c, d, of these tubes were about
2 mm. apart, and the wires terminated inside the tubes at a distance of
about 2 mm. from the ends. The other ends of these tubes were inserted
under test tubes e e, in which the gases which passed up the tubes were
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collected. The air was exhausted from the vessel A and the water vapour
through which the discharge passed was obtained by heating the water
in the vessel to about 90◦C.: special precautions were taken to free this
water from any dissolved gas. The stream of vapour arising from this water
drove up the tubes the gases produced by the passage of the spark; part
of these gases was produced along the length of the spark, but in this case
the hydrogen and oxygen would be in chemically equivalent proportions;
part of the gases driven up the tubes would however be liberated at the
electrodes, and it is this part only that we could expect to bear any simple
relation to the quantity of electricity which had passed through the gas.

When the sparking had ceased, the gases which had collected in the
test tubes e and e were analysed; in the first place they were exploded by
sending a strong spark through them, this at once got rid of the hydrogen
and oxygen which existed in chemically equivalent proportions and thus
got rid of the gas produced along the length of the spark. After the ex-
plosion the gases left in the tubes were the hydrogen or oxygen in excess,
together with a small quantity of nitrogen, due to a little air which had
leaked into the vessel in the course of the experiments, or which had been
absorbed by the water. The results of these analyses showed that there was
always an excess of oxygen in the test tube in connection with the positive
electrode, and an excess of hydrogen in the test tube connected with the
negative electrode, and also that the amounts of oxygen and hydrogen in
the respective tubes were very nearly chemically equivalent to the amount
of copper deposited from a solution of copper sulphate in a voltameter
placed in series with the discharge tube.

These results are so important that I shall quote one of Perrot’s exper-
iments in full (l.c. pp. 182–3).

Duration of experiment 4 hours. 8.5 milligrammes of copper deposited
in the voltameter from copper sulphate; this amount of copper is chemically
equivalent to 3 c.c. of hydrogen and 1.5 c.c. of oxygen at atmospheric
pressure.

In the test tube over the negative electrode there were at the end of
the experiment 37.5 c.c. of gas, after the explosion by the spark this was
reduced to 3.1 c.c., so that by far the greater part of the gas collected
consisted of hydrogen and oxygen in chemically equivalent proportions,
produced not at the electrodes but along the line of the spark. 5.3 c.c.
of oxygen were added to the original gas, which was again exploded and
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the contraction was 4.5 c.c.; in the original gas in the test tube there was
therefore an excess of 3 c.c. of hydrogen and .1 c.c. of something besides
hydrogen and oxygen, probably nitrogen. In the test tube over the positive
electrode there were 35.8 c.c. of gas at the end of the experiment, after the
explosion by the spark this was reduced to 1.6 c.c. 1.8 c.c. of oxygen
were added, but there was no explosion when the spark passed; 8.7 c.c. of
hydrogen were added and the mixture exploded when the spark passed;
the contraction produced was 9.6 c.c., showing that the excess of oxygen
originally present was 1.4 c.c. and that .2 c.c. of nitrogen were mixed with
it. Thus the excesses of hydrogen and oxygen in the tubes were very nearly
chemically equivalent to the amount of copper deposited in the voltameter.
This is also borne out by the following results of other experiments made
by Perrot (l.c. p. 183).

2nd experiment. Duration of experiment 4 hours. Copper deposited in
voltameter 6 milligrammes, chemically equivalent to 2.12 c.c. of hydrogen
and 1.06 c.c. of oxygen.

Gas in the test tube over the positive electrode 35.10 c.c.; excess of
oxygen .95 c.c.; nitrogen .2 c.c.

Gas in the test tube over the negative electrode 32.40 c.c.; excess of
hydrogen 2.10 c.c.; nitrogen .1 c.c.

4th experiment. Duration of experiment 3 hours. Copper deposited in
voltameter 5.5 milligrammes, chemically equivalent to 1.94 c.c. of hydrogen
and to .97 c.c. of oxygen.

Gas in the test tube over the positive electrode 25.10 c.c.; excess of
oxygen .85 c.c.; nitrogen .15 c.c.

Gas in the test tube over the negative electrode 27.70 c.c.; excess of
hydrogen 1.8 c.c.; nitrogen .21 c.c.

6th experiment. Duration of experiment 31
2

hours. Copper deposited in
voltameter 6 milligrammes, chemically equivalent to 2.12 c.c. of hydrogen
and to 1.06 c.c. of oxygen.

Gas in the test tube over the positive electrode 30.20 c.c.; excess of
oxygen .90 c.c.; nitrogen .2 c.c.

Gas in the test tube over the negative pole 32.50 c.c.; excess of hydrogen
2.05 c.c.; nitrogen .2 c.c.

These results seem to prove conclusively (assuming that the discharge
passed straight between the platinum wires and did not pass through a
layer of moisture on the sides of the tubes) that the conduction through
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water vapour is produced by chemical decomposition, and also that in a
molecule of water vapour the atoms of hydrogen and oxygen are associated
with the same electrical charges as they are in liquid electrolytes.

202.] Another way in which the chemical changes which accompany the
passage of the spark through a gas manifest themselves is by the production
of a phosphorescent glow, which often lasts for several seconds after the
discharge has ceased. In a great many gases this glow does not occur, it
is however extremely bright in oxygen. A convenient way of producing
the glow is to take a tube about a metre long filled with oxygen at a low
pressure, and produce an electrodeless discharge at the middle of the tube.
From the bright ring produced by the discharge a phosphorescent haze
will spread through the tube moving sufficiently slowly for its motion to
be followed by the eye. The haze seems to come from the ozone, and the
phosphorescence to be due to the gradual reconversion of the ozone into
oxygen. This view is borne out by the fact that if the tube is heated the
glow is not formed by the discharge, but as soon as the tube is allowed to
cool down the glow is again produced: thus the glow, like ozone, cannot
exist at a high temperature.

The spectrum of this glow in oxygen is a continuous one, in which,
however, a few bright lines can be observed if very high dispersive power
is used. The glow is also formed in air, though not so brightly as in pure
oxygen. When electrodes are used it seems to form most readily over the
negative electrode, especially if this is formed of a flat surface of sulphuric
acid.

I have experimented with a large number of gases in order to see whether
or not the glow was formed when the electrodeless discharge passed through
them. I have never detected any glow in a single gas (as distinct from a
mixture) unless that gas was one which formed polymeric modifications,
but all the gases I examined which do polymerize have shown the after-
glow. The gases in which I have found the glow are oxygen, cyanogen
(in which it is extremely persistent, though not so bright as in oxygen),
acetylene, and vinyl chloride, all of which polymerize.

A bulb filled with oxygen seems to retain its power of glowing unim-
paired, however much it may be sparked through. In bulbs filled with the
other gases, however, the glow after long sparking is not so bright as it was
originally. This seems to suggest that the polymeric modification produced
by the sparking does not get completely reconverted into the original form.
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Spark facilitated by rapid changes in the intensity of the Electric Field.

203.] Jaumann (Sitzb. d. Wien Akad. 97, p. 765, 1888) has made some
interesting experiments on the effect on the spark length of small but rapid
changes in the electrical condition of the electrodes. The arrangement
used for these experiments is represented in Fig. 85, which is taken from
Jaumann’s paper.

Fig. 85.

The main current from an electrical machine charged the condenser B,
while a neighbouring condenser C could be charged through the air-space F;
C was a small condenser whose capacity was only .55 m., while B was a bat-
tery of Leyden Jars whose capacity was 1000 times that of C. Another
circuit connected with the machine led to a thin wire placed about 5 mm.
above a plate e which was connected to the earth. A glow discharge passed
between the wire and the plate, and the difference of potential between the
inside and outside coatings of the jar B was constant and equal to about
12 electrostatic units. When the knobs of the air-break F were pushed
suddenly together a spark about .5 mm. in length was produced at F, and
in addition a bright spark 5 mm. long jumped across the air space at e
where there was previously only a glow. The passage of the spark at F put
the two condensers B and C into electrical communication, and this was
equivalent to increasing the capacity of B by about one part in a thousand;
this alteration in the capacity produced a corresponding diminution in the
potential difference between its coatings. This disturbance of the electrical
equilibrium would give rise to small but very rapid oscillations in the po-
tential difference between the wire and the plate e, and this variable field
seemed able to send a spark across e, where when the potential was steady
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nothing but a glow was to be seen.
204.] It thus appears that a gas is electrically weaker under oscillating

electric fields than under steady ones, for it is not apparent why the addi-
tion of the capacity of the small condenser to that of B should produce any
considerable difference in the electromotive intensity at e. It is true that
while the discharge is oscillating the tubes of electrostatic induction are
not distributed in the same way as they are when the field is steady, and
some concentration of these tubes may very likely take place, but it does
not seem probable that the disturbance produced by so small a condenser
would be sufficient to account for the large effects observed by Jaumann,
unless, as he supposes, the gas is electrically weaker in variable electric
fields.

Another point which might affect the electromotive intensity at e is
the following: the comparatively small difference of potential between the
wire and the plate is partly due to the glowing air-space at e acting as
a conductor, this conductivity is due to dissociated molecules produced
by the discharge, and it is likely that this would exhibit what are called
‘unipolar’ properties, that is, that its conductivity for a current in one di-
rection would not be the same as for one in the opposite. Even when the
change produced in the distribution of electricity is not so great as that
due to an actual reversal of the current it is conceivable that the conduc-
tivity of the space at e might depend upon the way the electricity was
distributed over the wire and plate. Thus when this distribution of elec-
tricity was altered, the air, by becoming a worse conductor, might cause
the electricity to accumulate on the wire and thus increase the electromo-
tive intensity at e. Since, however, there is a condenser of large capacity in
electrical connection with the wire any increase in its electrification would
be slow, whereas the spark observed by Jaumann seems to have followed
that across F without the lapse of any appreciable interval.

205.] The observations of other physicists seem to afford confirmatory
evidence of the way in which electric discharge is facilitated by rapid alter-
ations in the electromotive intensity. Thus Meissner (Abhand. der König.
Gesell. Göttingen, 16, p. 3, 1871; see also Art. 196) found that ozone was
produced in a tube placed between the plates of a condenser when these
were suddenly charged or discharged, while none was produced when the
charges on the plates were kept constant; the potential difference in this
experiment was not sufficient to cause a spark to pass between the plates.
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Again, R. v. Helmholtz and Richarz (Wied. Ann. 40, p. 161, 1890) using
an induction coil that would give sparks in air about 4 inches long, found
that when the electrodes were separated by about a foot and encased in wet
linen bags to stop any particles of metal that might be given off from them,
a steam jet some distance away from the electrodes showed very distinct
signs of condensation whenever the current in the primary of the coil was
broken. A steam jet is a very sensitive detector of chemical decomposition,
free atoms producing condensation of the steam even when no particles of
dust are present.

Fig. 86.

If we suppose that the electric field produces a polarized arrangement
of the molecules of the gas, then considering the case when the left-hand
electrode is the negative one, the right-hand the positive, there will be
between the electrodes a chain of molecules arranged as in the first line in
Fig. 86, the positively charged atoms being denoted by A, the negatively
charged ones by B. If the field is now reversed, the molecules will be
arranged as in the second line in Fig. 86. If the reversal takes place very
slowly, the molecules will reverse their polarity by swinging round, but if
the rate of reversal is very rapid the resistance offered by the inertia of
the molecules to this rotation will give rise to a tendency to produce the
reversal of polarity of the molecules by chemical decomposition without
rotation. This may be done by the molecules splitting up and rearranging
themselves as in the third line of Fig. 86.

I have observed the effect of the reversal of the electric field when ex-
perimenting on the discharge produced in hydrogen at low pressures by a
battery consisting of a large number of storage cells. I found that when the
electromotive force was insufficient to produce continuous discharge, a mo-
mentary discharge occurred when the battery was reversed; this discharge
merely flashed out for an instant, and took place when no discharge could
be obtained by merely making or breaking the circuit without reversing the
battery. A momentary discharge, however, occurred on making the circuit
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long before the electromotive force was sufficient to maintain a permanent
discharge.

206.] Jaumann (l. c.) gives some examples of brushes which are formed
at places where the electromotive intensity for steady charges is not a max-
imum. He explains these by supposing that the variations in the density
of the electricity are more rapid at some parts of the electrodes than at
others, and that ceteris paribus the discharge takes place most readily at
the places where the rate of variation of the charge is greatest. Some of
these brushes are represented in Fig. 87, taken from Jaumann.

Fig. 87.

Theory of the Electric Discharge.

207.] The phenomena attending the electric discharge through gases are
so beautiful and varied that they have attracted the attention of numerous
observers. The attention given to these phenomena is not, however, due
so much to the beauty of the experiments, as to the wide-spread convic-
tion that there is perhaps no other branch of physics which affords us so
promising an opportunity of penetrating the secret of electricity; for while
the passage of this agent through a metal or an electrolyte is invisible,
that through a gas is accompanied by the most brilliantly luminous effects,
which in many cases are so much influenced by changes in the conditions
of the discharge as to give us many opportunities of testing any view we



208.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 185

may take of the nature of electricity, of the electric discharge, and of the
relation between electricity and matter.

Though the account we have given in this chapter of the discharge
through gases is very far from complete, it will probably have been sufficient
to convince the student that the phenomena are very complex and very
extensive. It is therefore desirable to find some working hypothesis by
which they can be coordinated: the following method of regarding the
discharge seems to do this to a very considerable extent.

208.] This view is, that the passage of electricity through a gas as
well as through an electrolyte, and as we hold through a metal as well, is
accompanied and effected by chemical changes; also that ‘chemical decom-
position is not to be considered merely as an accidental attendant on the
electrical discharge, but as an essential feature of the discharge without
which it could not occur’ (Phil. Mag. [5], 15, p. 432, 1883). The nature
of the chemical changes which accompany the discharge may be roughly
described as similar to those which on Grotthus’ theory of electrolysis are
supposed to occur in a Grotthus chain. The way such chemical changes
effect the passage of the electricity has been already described in Art. 31,
when we considered the way in which a tube of electrostatic induction
contracted when in a conductor. The shortening of a tube of electrostatic
induction is equivalent to the passage of electricity through the conductor.

In conduction through electrolytes the signs of chemical change are so
apparent both in the deposition on the electrodes of the constituents of
the electrolyte and in the close connection, expressed by Faraday’s Laws,
between the quantity of electricity transferred through the electrolyte and
the amount of chemical change produced, that no one can doubt the im-
portance of the part played in this case by chemical decomposition in the
transmission of the electric current.

209.] When electricity passes through gases, though there is (with
the possible exception of Perrot’s experiment, see Art. 200) no one phe-
nomenon whose interpretation is so unequivocal as some in electrolysis, yet
the consensus of evidence given by the very varied phenomena shown by
the gaseous discharge seems to point strongly to the conclusion that here,
as in electrolysis, the discharge is accomplished by chemical agency.

Perrot, in 1861, seems to have been the first to suggest that the dis-
charge through gases was of an electrolytic nature. In 1882 Giese (Wied.
Ann. 17, pp. 1, 236, 519) arrived at the same conclusion from the study of
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the conductivity of flames.
Before applying this view to explain in detail the laws governing the

electric discharge through gases, it seems desirable to mention one or two
of the phenomena in which it is most plainly suggested.

The experiments bearing most directly on this subject are those made
by Perrot on the decomposition of steam by the discharge from a Ruhmko-
rff’s coil (see Art. 200). Perrot found that when the discharge passed
through steam there was an excess of oxygen given off at the positive pole
and an excess of hydrogen at the negative, and that these excesses were
chemically equivalent to each other and to the amount of copper deposited
from a voltameter containing copper sulphate placed in series with the dis-
charge tube. If this result should be confirmed by subsequent researches, it
would be a direct and unmistakeable proof that the passage of electricity
through gases, just as much as through electrolytes, is effected by chemical
means. It would also show that the charge of electricity associated with an
atom of an element in a gas is the same as that associated with the same
atom in an electrolyte.

210.] Again, Grove (Phil. Trans. 1852, Part I, p. 87) made nearly forty
years ago some experiments which show that the chemical action going on
at the positive electrode is not the same as that at the negative. Grove
made the discharge from a Ruhmkorff’s coil pass between a steel needle
and a silver plate, the distance between the point of the needle and the
plate being about 2.5 mm.; the gas through which the discharge passed was
a mixture of hydrogen and oxygen at pressures about 2 cm. of mercury.
When the silver plate was positive and the needle negative a patch of
oxide was formed on the plate, while if the plate were originally negative
no oxidation occurred. When the silver plate had been oxidised while being
used as a positive electrode, if the current were reversed so that the plate
became the negative electrode, the oxide was reduced by the hydrogen
and the plate became clean. When pure hydrogen was substituted for
the mixture of hydrogen and oxygen no chemical action could be observed
on the plate, which was however a little roughened by the discharge; if
however the plate was oxidised to begin with, it rapidly deoxidised in the
hydrogen, especially when it was connected with the negative pole of the
coil. Reitlinger and Wächter (Wied. Ann. 12, p. 590, 1881) found that the
oxidation was very dependent upon the quantity of water vapour present;
when the gas was thoroughly dried very little oxidation took place. The
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effect may therefore be due to the decomposition of the water vapour into
hydrogen and oxygen, an excess of oxygen going to the positive and an
excess of hydrogen to the negative pole.

Ludeking (Phil. Mag. [5], 33, p. 521, 1892) has found that when the
discharge passes through hydriodic acid gas, iodine is deposited on the
positive electrode but not on the negative.

211.] Again, chemical changes take place in many gases when the elec-
tric discharge passes through them. Perhaps the best known example of
this is the formation of ozone by the silent discharge through oxygen. There
are however a multitude of other instances, thus ammonia, acetylene, phos-
phoretted hydrogen, and indeed most gases of complex chemical constitu-
tion are decomposed by the spark.

Another fact which also points to the conclusion that the discharge
is accomplished by chemical means is that mentioned in Art. 38, that
the halogens chlorine, bromine, and iodine, which are dissociated at high
temperatures, and which at such temperatures have already undergone the
chemical change which we regard as preliminary to conduction, have then
lost all power of insulation and allow electricity to pass through them with
ease.

Then, again, we have the very interesting result discovered by
R. v. Helmholtz (Wied. Ann. 32, p. 1, 1887), that a gas through which
electricity is passing and one in which chemical changes are known to be
going on both affect a steam jet in the same way.

212.] Again, one of the most striking features of the discharge through
gases is the way in which one discharge facilitates the passage of a second;
the result is true whether the discharge passes between electrodes or as an
endless ring, as in the experiments described in Art. 77. Closely connected
with this effect is Hittorf’s discovery (Wied. Ann. 7, p. 614, 1879) that a
few galvanic cells are able to send a current through gas which is conveying
the electric discharge. Schuster (Proceedings Royal Soc., 42, p. 371, 1887)
describes a somewhat similar effect. A large discharge tube containing
air at a low pressure was divided into two partitions by a metal plate
with openings round the perimeter, which served to screen off from one
compartment any electrical action occurring in the other, if a vigorous
discharge passed in one of these compartments, the electromotive force of
about one quarter of a volt was sufficient to send a current through the air
in the other.
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Since such electromotive forces would not produce any discharge
through air in its normal state, these experiments suggest that the chemical
state of the gas has been altered by the discharge.

213.] We shall now go on to discuss more in detail the consequences
of the view that dissociation of the molecules of a gas always accompanies
electric discharge through gases. We notice, in the first place, that the
separation of one atom from another in the molecule of a gas is very unlikely
to be produced by the unaided agency of the external electric field. Let
us take the case of a molecule of hydrogen as an example; we suppose
that the molecule consists of two atoms, one with a positive charge, the
other with an equal negative one. The most obvious assumption, which
indeed is not an assumption if we accept Perrot’s results, to make about the
magnitude of the charges on the atoms is that each is equal in magnitude
to that charge which the laws of electrolysis show to be associated with an
atom of a monovalent element. We shall denote this charge by e; it is the
one molecule of electricity which Maxwell speaks about in Art. 260 of the
Electricity and Magnetism.

The electrostatic attraction between the atoms is the molecule

e2

r2
,

where r is the distance between them. If the other molecules of hydrogen
present do not help to split up the molecule, the force tending to pull the
atoms apart is

2Fe,

where F is the external electromotive intensity.
The ratio of the force tending to separate the atoms, to their electro-

static attraction, is thus 2Fr2/e; now at atmospheric pressure discharge
will certainly take place through hydrogen if F in electrostatic units is as
large as 100, while at lower pressures a very much smaller value of F will
be all that is required. To be on the safe side, however, we shall suppose
that F = 102; then, assuming that the electrochemical equivalent of hy-
drogen is 10−4 and that there are 1021 molecules per cubic centimetre at
atmospheric pressure, since the mass of a cubic centimetre of hydrogen is
1/11×103 of a gramme, e in electromagnetic units will be 104/11×1024, or
e in electrostatic units will be about 2.7× 10−11 and r is of the order 10−8,
hence 2Fr2/e, the ratio under consideration, will be about 1/1.4×103; this
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is so small that it shows the separation of the atoms cannot be effected by
the direct action of the electric field upon them when the molecule is not
colliding with other molecules. If the atoms in a molecule were almost but
not quite shaken apart by a collision with another molecule, the action of
the electric field might be sufficient to complete the separation.

The electric field, however, by polarizing the molecules of the gas, may
undoubtedly exert a much greater effect than it could produce by its direct
action on a single molecule. When the gas is not polarized, the forces ex-
erted on one molecule by its neighbours act some in one direction, others
in the opposite, so that the resultant effect is very small; when, however,
the medium is polarized, order is introduced into the arrangement of the
molecules, and the inter-molecular forces by all tending in the same direc-
tion may produce very large effects.

214.] The arrangement of the molecules of a gas in the electric field
and the tendency of the inter-molecular forces may be illustrated to some
extent by the aid of a model consisting of a large number of similar small
magnets suspended by long strings attached to their centres. The positive
and negative atoms in the molecules of the gas are represented by the poles
of the magnets, and the forces between the molecules by those between the
magnets. The way the molecules tend to arrange themselves in the electric
field is represented by the arrangement of the magnets in a magnetic field.

The analogy between the model and the gas, though it may serve to il-
lustrate the forces between the molecules, is very imperfect, as the magnets
are almost stationary, while the molecules are moving with great rapidity,
and the collisions which occur in consequence introduce effects which are
not represented in the model. The magnets, for example, would form long
chains similar to those formed by iron filings when placed in the magnetic
field; in the gas, however, though some of the molecules would form chains,
they would be broken up into short lengths by the bombardment of other
molecules. The length of these chains would depend upon the intensity of
the bombardment to which they were subjected, that is upon the pressure
of the gas; the greater the pressure the more intense the bombardment,
and therefore the shorter the chain.

We shall call these chains of molecules Grotthus’ chains, because we
suppose that when the discharge passes through the gas it passes by the
agency of these chains, and that the same kind of interchange of atoms
goes on amongst the molecules of these chains as on Grotthus’ theory
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of electrolysis goes on between the molecules on a Grotthus’ chain in an
electrolyte.

The molecules in such a chain tend to pull each other to pieces, and
the force with which the last atom in the chain is attracted to the next
atom will be much smaller than the force between two atoms in an isolated
molecule; this atom will therefore be much more easily detached from the
chain than it would from a single molecule, and thus chemical change, and
therefore electric discharge, will take place much more easily than if the
chains were absent.

215.] As far as the electrical effects go, it does not matter whether the
effect of the electric field is merely to arrange chains which already exist
scattered about in the gas, or whether it actually produces new chains; we
are more concerned with the presence of such chains than with their method
of production. The existence of a small number of such chains (and it only
requires a most insignificant fraction of the whole number of molecules to be
arranged in chains to enable the gas to convey the most intense discharge)
would have important chemical results, as it would greatly increase the
ability of the gas to enter into chemical combination.

Fig. 88.

216.] The way in which the electric discharge passes along such a chain
of molecules is similar to the action in an ordinary Grotthus’ chain. Thus,
let A1B1, A2B2, A3B3, &c., Fig. 88, represent consecutive molecules in such
a chain, the A’s being the positive atoms and the B’s the negative. Let one
atom, A1, at the end of the chain be close to the positive electrode. Then
when the chain breaks down the atom A1 at the end of the chain goes to
the positive electrode, B1 the other atom in this molecule, combining with
the negative atom A2 in the next molecule, B2 combining with A3; the last
molecule being left free and serving as a new electrode from which a new
series of recombinations in a consecutive chain originates. There would
thus be along the line of discharge a series of quasi-electrodes, at any of
which the products of the decomposition of the gas might appear.

The whole discharge between the electrodes consists on this view in a
series of non-contemporaneous discharges, these discharges travelling con-
secutively from one chain to the next.

The experiment described in Art. 105 shows that this discharge starts
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from the positive electrode and travels to the negative with a velocity
comparable with that of light. The introduction of these Grotthus’ chains
enables us to see how the velocity of the discharge can be so great, while
the velocity of the individual molecules is comparatively small. The small-
ness of the velocity of these molecules has been proved by spectroscopic
observations; many experiments have shown that there is no appreciable
displacement in the lines of the spectrum of the gas in the discharge tube
when the discharge is observed end on, while if the molecules were moving
with even a very small fraction of the velocity of light, Döppler’s princi-
ple shows that there would be a measurable displacement of the lines. It
does not indeed require spectroscopic analysis to prove that the molecules
cannot be moving with half the velocity of light; if they did it can easily
be shown that the kinetic energy of the particles carrying the discharge
of a condenser would have to be greater than the potential energy in the
condenser before discharge.

When, however, we consider the discharge as passing along these Grot-
thus’ chains, since the recombinations of the different molecules in the
chain go on simultaneously, the electricity will pass from one end of the
chain to the other in the time required for an atom in one molecule to
travel to the oppositely charged atom in the next molecule in the chain.
Thus the velocity of the discharge will exceed that of the individual atoms
in the proportion of the length of the chain to the distance between two
adjacent atoms in neighbouring molecules. This ratio may be very large,
and we can understand therefore why the velocity of the electric discharge
transcends so enormously that of the atoms.

217.] We thus see that the consideration of the smallness of the elec-
tromotive intensity required to produce chemical change or discharge, as
well as of the enormous velocity with which the discharge travels through
the gas, has led us to the conclusion that a small fraction of the molecules
of the gas are held together in Grotthus’ chains, while the consideration
of the method by which the discharge passes along these chains indicates
that the spark through the gas consists of a series of non-contemporaneous
discharges, the discharge travelling along one chain, then waiting for a mo-
ment before it passes through the next, and so on. It is remarkable that
many of the physicists, who have paid the greatest attention to the pas-
sage of electricity through gases, have been driven by their observations to
the conclusion that the electric discharge is made up of a large number of
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separate discharges. The behaviour of striæ under the action of magnetic
force is one of the chief reasons for coming to this conclusion. On this
point Spottiswoode and Moulton (Phil. Trans. 1879, part 1, p. 205) say, ‘If
a magnet be applied to a striated column, it will be found that the column
is not simply thrown up or down as a whole, as would be the case if the
discharge passed in direct lines from terminal to terminal, threading the
striæ in its passage. On the contrary, each stria is subjected to a rotation
or deformation of exactly the same character as would be caused if the
stria marked the termination of flexible currents radiating from the bright
head of the stria behind it and terminating in the hazy inner surface of the
stria in question. An examination of several cases has led the authors of
this paper to conclude that the currents do thus radiate from the bright
head of a stria to the inner surface of the next, and that there is no direct
passage from one terminal of the tube to the other.’

With regard to the way the discharge takes place, the same authors
say (Phil. Trans. 1879, part 1, p. 201)—‘If, then, we are right in suppos-
ing that the series of artificially produced hollow shells are analogous in
their structures and functions to striæ, it is not difficult to deduce, from
the explanation above given, the modus operandi of an ordinary striated
discharge. The passage of each of the intermittent pulses from the bright
surface of a stria towards the hollow surface of the next may well be sup-
posed, by its inductive action, to drive from the next stria a similar pulse,
which in its turn drives one from the next stria, and so on. . . . The passage
of the discharge is due in both cases to an action consisting of an indepen-
dent discharge from one stria to the next, and the idea of this action can
perhaps be best illustrated by that of a line of boys crossing a brook on
stepping stones, each boy stepping on the stone which the boy in front of
him has left.’

Goldstein (Phil. Mag. [5] 10, p. 183, 1880) expresses much the same
opinion. He says: ‘By numerous comparisons, and taking account of all
apparently essential phenomena, I have been led to the following view:—

‘The kathode-light, each bundle of secondary negative light, as well as
each layer of positive light, represent each a separate current by itself, which
begins at the part of each structure turned towards the kathode, and ends
at the end of the negative rays or of the stratified structure, without the
current flowing in one structure propagating itself into the next, without
the electricity which flows through one also traversing the rest in order.
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‘I suspect, then, that as many new points of departure of the discharge
are present in a length of gas between two electrodes as this shows of
secondary negative bundles or layers—that as according to experiments
repeatedly mentioned all the properties and actions of the discharge at the
kathode are found again at the secondary negative light and with each
layer of positive light, the intimate action is the same with these as it is
with those.’

218.] Thus, if we regard a stria as a bundle of Grotthus’ chains in
parallel rendered visible, the bright parts of the stria corresponding to
the ends of the chain, the dull parts to the middle, the conclusion of the
physicists just quoted are almost identical with those we arrived at by the
consideration of the chains. We therefore regard the stratification of the
discharge as evidence of the existence of these chains, and suppose that a
stria is in fact a bundle of Grotthus’ chains.

219.] As far as phenomena connected with the electric discharge are
concerned, the Grotthus’ chain is the unit rather than the molecule; now
the length of this chain is equal to the length of a stria, which is very much
greater than the diameter of a molecule, than the average distance between
two molecules, or even than the mean free path of a molecule: thus the
structure of a gas, as far as phenomena connected with the electric dis-
charge are concerned, is on a very much coarser scale than its structure
with reference to such properties as gaseous diffusion where the fundamen-
tal length is that of the mean free path of the molecules.

220.] Peace’s discovery that the density—which we shall call the critical
density—at which the ‘electric strength’ of the gas is a minimum depends
upon the distance between the electrodes, proves that the gas, when in an
electric field sufficiently intense to produce discharge, possesses a structure
whose length scale is comparable with the distance between the electrodes
when these are near enough together to influence the critical density. As
this distance is very much greater than any of the lengths recognized in the
ordinary Kinetic Theory of Gases, the gas when under the influence of the
electric field must have a structure very much coarser than that recognized
by that theory. In our view this structure consists in the formation of
Grotthus’ chains.

221.] The striations are only clearly marked within somewhat narrow
limits of pressure. But it is in accordance with the conclusion which all who
have studied the spark have arrived at—that there is complete continuity



222.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 194

between the bright well-defined spark which occurs at high pressures and
the diffused glow which represents the discharge at high exhaustions—to
suppose that they always exist in the spark discharge, but that at high
pressures they are so close together that the bright and dark parts cease
to be separable by the eye.

The view we have taken of the action of the Grotthus’ chains in prop-
agating the electric discharge, and the connection between these chains
and the striations, does not require that every discharge should be visi-
bly striated; on the contrary, since the striations will only be visible when
there is great regularity in the disposition of these chains, we should expect
that it would only be under somewhat exceptional circumstances that the
conditions would be regular enough to give rise to visible striations.

222.] We shall now proceed to consider more in detail the application
of the preceding ideas to the phenomena of the electric discharge. The first
case we shall consider is the calculation of the potential difference required
to produce discharge under various conditions.

It is perhaps advisable to begin with the caution that in comparing the
potential differences required to produce discharge through a given gas we
must be alive to the fact that the condition of the gas is altered for a time
by the passage of the discharge. Thus, when the discharges follow each
other so rapidly that the interval between two discharges is not sufficiently
long to allow the gas to return to its original condition before the second
discharge passes, this discharge is in reality passing through a gas whose
nature is a function of the electrical conditions. Thus, though this gas
may be called hydrogen or oxygen, it is by no means identical with the gas
which was called by the same name before the discharge passed through
it. When the discharges follow each other with great rapidity the supply
of dissociated molecules left by preceding discharges may be so large that
the discharge ceases to be disruptive, and is analogous to that through a
very hot gas whose molecules are dissociated by the heat.

The measurements of the potential differences required to send the
first spark through a gas are thus more definite in their interpretation than
measurements of potential gradients along the path of a nearly continuous
discharge.

The striations on the preceding view of the discharge may, since they
are equivalent to a bundle of Grotthus’ chains, be regarded as forming
a series of little electrolytic cells, the beginning and the end of a stria



222.] THE PASSAGE OF ELECTRICITY THROUGH GASES. 195

corresponding to the electrodes of the cell. Let F be the electromotive
intensity of the field, λ the length of a stria, then when unit of electricity
passes through the stria the work done on it by the electric field is Fλ.
The passage of the electricity through the stria is accompanied just as in
the case of the electrolytic cell, by definite chemical changes, such as the
decomposition of a certain number of molecules of the gas; thus if w is the
increase in the potential energy of the gas due to the changes which occur
when unit of electricity passes through the stria, then neglecting the heat
produced by the current we have by the Conservation of Energy

Fλ = w,

or the difference in potential between the beginning and end of a stria is
equal to w. If the chemical and other changes which take place in the
consecutive striæ are the same, the potential difference due to each will
be the same also. There is however one stria which is under different
conditions from the others, viz. that next the negative electrode, i.e. the
negative dark space. For in the body of the gas, the ions set free at an
extremity of the stria, are set free in close proximity to the ions of opposite
sign at the extremity of an adjacent stria. In the stria next the electrode
the ions at one end are set free against a metallic surface. The experiments
described in the account we have already given of the discharge show that
the chemical changes which take place at the cathode are abnormal; one
reason for this no doubt is the presence of the metal, which makes many
chemical changes possible which could not take place if there were nothing
but gas present. This stria is thus under exceptional circumstances and
may differ in size and fall of potential from the other striæ. Hittorf’s
experiments, Art. 140, show that the fall of potential at the cathode is
abnormally great. If we call this potential fall K and consider the case
of discharge between two parallel metal plates; the discharge on this view,
starting from the positive electrode, goes consecutively across a number n
of similar striæ, one of which reaches up to the positive electrode, the fall
of potential across each of these is w; the discharge finally crosses the stria
in contact with the negative electrode in which the fall of potential is K;
thus V , the total fall of potential as the discharge goes from the positive
to the negative electrode, is given by the equation

V = K + nw. (1)
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If l is the distance between the plates, λ0 the length of the stria next the
cathode, λ the length of the other stria, then

n =
l − λ0

λ
.

Substituting this value for n in (1) we get

V =

(
K − wλ0

λ

)
+
l

λ
w,

which may be written
V = K ′ + al. (2)

According to this equation the curve representing the relation between
potential difference and spark length for constant pressure is a straight line
which does not pass through the origin. The curves we have given from the
papers by Paschen and Peace show that this is very approximately true.
The curves show that for air K ′ would at atmospheric pressure be about
600 volts from Paschen’s experiments and about 400 volts from Peace’s.

If R is the electromotive intensity required to produce a spark of length l
between two parallel infinite plates, then since R = V/l

R =
K ′

l
+ a. (3)

Since K ′ is positive, the electromotive intensity required to produce dis-
charge increases as the length of the spark diminishes; in other words, the
electric strength of a thin layer of gas is greater than that of a thick layer.
The electric strength will sensibly increase as soon as K ′/l becomes ap-
preciable in comparison with a, this will occur as soon as l ceases to be a
very large multiple of the length of a stria. Thus the thickness of the layer
when the ‘electric strength’ begins to vary appreciably is comparable with
the length of a stria at the pressure at which the discharge takes place; this
length is very large when compared with molecular distances or with the
mean free path of the molecules of the gas; hence we see why the change
in the ‘electric strength’ of a gas takes place when the spark length is very
large in comparison with lengths usually recognized in the Kinetic Theory
of Gases.

According to formula (3), the curve representing the relation between
electromotive intensity and spark length is a rectangular hyperbola; this is
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confirmed by the curves given by Dr. Liebig for air, carbonic acid, oxygen
and coal gas (see Fig. 19), and by those given by Mr. Peace for air.

223.] The preceding formulæ are not applicable when the distance be-
tween the electrodes is less than λ0 the length of the stria next the cathode.
But if the discharge passes through the gas and is not carried by metal dust
torn from the electrodes we can easily see that the electric strength must
increase as the distance between the electrodes diminishes. For as we have
seen, the molecules which are active in carrying the discharge are not torn
in pieces by the direct action of the electric field but by the attraction of
the neighbouring molecules in the Grotthus’ chain. Now when we push
the electrodes so near together that the distance between them is less than
the normal length of the chain, we take away some of the molecules from
the chain and so make it more difficult for the molecules which remain to
split up any particular molecule into atoms, so that in order to effect this
splitting up we must increase the number of chains in the field, in other
words, we must increase the electromotive intensity.

Peace’s curves, Fig. 27, showing the relation between the potential dif-
ference and spark length are exceedingly flat in the neighbourhood of the
critical spark length. This shows that the potential difference required
to produce discharge increases very slowly at first as the spark length is
shortened to less than the length of a Grotthus’ chain.

We now proceed to consider the relation between the spark potential
and the pressure. As we have already remarked, the length of a Grotthus’
chain depends upon the density of the gas; the denser the gas the shorter
the chain: this is illustrated by the way in which the striæ lengthen out
when the pressure is reduced. The experiments which have been made on
the connection between the length of a stria and the density of the gas are
not sufficiently decisive to enable us to formulate the exact law connecting
these two quantities, we shall assume however that it is expressed by the
equation

λ = βρ−k,

where λ is the length of a stria, ρ the density of the gas, and β, k positive
constants.

Equation (1) involves K the fall of potential at the cathode and w the
fall along a stria as well as λ. Warburg’s experiments (Art. 160) show that
the cathode fall K is almost independent of the pressure, and although no
observations have been made on the influence of a change in the pressure
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on the value of w, it is not likely that w any more than K depends to any
great extent upon the pressure. If we substitute the preceding value of λ
in equation (2) we get

V = K ′ +
l

β
ρkw.

Both Paschen’s and Peace’s experiments show that when the spark length
is great enough to include several striæ the curve representing the relation
between the spark potential and density for a constant spark length, though
very nearly straight, is slightly convex to the axis along which the densities
are measured. This shows that k is slightly, but only slightly, greater than
unity.

224.] It is interesting to trace the changes which take place in the
conditions of discharge between two electrodes at a fixed distance apart as
the pressure of the gas gradually diminishes.

When the pressure is great the striæ are very close together, so that if
the distance between the electrodes is a millimetre or more, a large number
of striæ will be crowded in between them. As the pressure diminishes the
striæ widen out, and fewer and fewer of them can find room to squeeze in
between the electrodes, and as the number of striæ between the electrodes
diminishes, the potential required to produce a spark diminishes also, each
stria that is squeezed out corresponding to a definite diminution in the
spark potential. This diminution in potential will go on until the striæ
have all been eliminated with the exception of one. There can now be
no further reduction in the number of striæ as the pressure diminishes,
and the Grotthus’ chain which is left, and which is required to split up
the molecules to allow the discharge to take place, gets curtailed as the
pressure falls by a larger and larger fraction of its natural length, and
therefore has greater and greater difficulty in effecting the decomposition
of the molecules, so that the electric strength of the gas will now increase
as the pressure diminishes. There will thus be a density at which the
electric strength of the gas is a minimum, and that density will be the one
at which the length of the stria next the cathode is equal or nearly equal
to the distance between the electrodes. Thus the length of a stria at the
minimum strength will have to be very much less when the electrodes are
very near together than when they are far apart, and since the stria-length
is less the density at which the ‘electric strength’ is a minimum will be very
much greater when the electrodes are near together than when they are far
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apart. This is most strikingly exemplified in Mr. Peace’s experiments, for
when the distance between the electrodes was reduced from 1/5 to 1/100 of
a millimetre the critical pressure was raised from 30 to 250 mm. of mercury.
The mean free path of a molecule of air at a pressure of 30 mm. is about
1/400 of a millimetre.

225.] The existence of a critical pressure, or pressure at which the elec-
tric strength is a minimum, when the discharge passes between electrodes
can thus be explained if we recognize the formation of Grotthus’ chains in
the gas, and the theory leads to the conclusion which, as we have seen,
is in accordance with the facts, that the critical pressure depends on the
spark length.

226.] We have seen that when the distance between the electrodes is
less than the length of the stria next the negative electrode, the intensity of
the field required to produce discharge will increase as the distance between
the electrodes diminishes. Peace’s observations show that this increase is
so rapid that the potential difference between the electrode when the spark
passes increases when the spark length is diminished, or in other words,
that the electromotive intensity increases more rapidly than the reciprocal
of the length of a Grotthus’ chain. This will explain the remarkable results
observed by Hittorf (Art. 170) and Lehmann (Art. 170) when the electrodes
were placed very near together in a gas at a somewhat low pressure. In
such cases it was found that the discharge instead of passing in the straight
line between the electrodes took a very roundabout course. To explain this,
suppose that in the experiment shown in Fig. 68 the electrodes are nearer
together than the length of the chain next the electrode, i.e. the negative
dark space; then if the discharge passed along the shortest path between
the plates, the potential difference required would, by Peace’s experiments,
considerably exceed K, the normal cathode potential fall; if however the
discharge passed as in the figure along a line of force, whose length is greater
than the negative dark space, the potential difference required would be
K plus that due to any small positive column which may exist in the
discharge. The latter part of the potential difference is small compared
with K, so that the potential difference required to produce discharge
along this path will only be a little in excess of K, while that required to
produce discharge along the shortest path would, by Peace’s experiments,
be considerably greater than K, the discharge will therefore pass as in the
figure in preference to taking the shortest path.
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227.] Since a term in the expression (1) for the potential difference
required to produce a spark of given length is inversely proportional to the
length of a stria, anything which diminishes the length of a stria will tend
to increase this potential difference. Now the length of a stria is influenced
by the size of the discharge tube as soon as the length becomes comparable
with the diameter of the tube; the narrower the tube the shorter are the
striæ. Hence we should expect to find that it would require a greater
potential difference to produce at a given pressure a spark through a narrow
tube than through a wide one. This is confirmed by the experiments made
by De la Rue and Hugo Müller, described in Art. 169.

228.] We do not at present know enough about the laws which govern
the passage of electricity from a gas to a solid, or from a solid to a gas, to
enable us to account for the difference between the appearances presented
by the discharge at the cathode and anode of a vacuum tube; it may, how-
ever, be well to consider one or two points which must doubtless influence
the behaviour of the discharge at the two electrodes.

We have seen (Art. 108) that the positive column in the electric dis-
charge starts from the positive electrodes, and that with the exception of
the negative rays, no part of the discharge seems to begin at the cathode;
we have also seen that the potential differences in the neighbourhood of
the cathode are much greater than those near the anode. These results
might at first sight seem inconsistent with the experiments we have de-
scribed (Art. 40) on the electrical effect on metal surfaces of ultra-violet
light and incandescence. In these experiments we saw that under such
influences negative electricity escaped with great ease from a metallic elec-
trode, while, on the other hand, positive electricity had great difficulty in
doing so. In the ordinary discharge through gases it seems, on the contrary,
to be the positive electricity which escapes with ease, while the negative
only escapes with great difficulty. We must remember, however, that the
vehicle conveying the electricity may not be the same in the two cases.
When ultra-violet light is incident on a metal plate, there seems to be
nothing in the phenomena inconsistent with the hypothesis that the nega-
tive electrification is carried away by the vapour or dust of the metal. In
the case of vacuum tubes, however, the electricity is doubtless conveyed
for the most part by the gas and not by the metal. In order to get the
electricity from the gas into the metal, or from the metal into the gas,
something equivalent to chemical combination must take place between
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the metal and the gas. Some experiments have been made on this point by
Stanton (Proc. Roy. Soc. 47, p. 559, 1890), who found that a hot copper
or iron rod connected to earth only discharged the electricity from a posi-
tively electrified conductor in its neighbourhood when chemical action was
visibly going on over the surface of the rod, e.g. when it was being oxidised
in an atmosphere of oxygen. When it was covered with a film of oxide it
did not discharge the adjacent conductor; if when coated with oxide it was
placed in an atmosphere of hydrogen it discharged the electricity as long as
it was being deoxidised, but as soon as the deoxidation was complete the
leakage of the electricity stopped. On the other hand, when the conductor
was negatively electrified, it leaked even when no apparent chemical action
was taking place. I have myself observed (Proc. Roy. Soc. 49, p. 97, 1891)
that the facility with which electricity passed from a gas to a metal was
much increased when chemical action took place. If this is the case, the
question as to the relative ease with which the electricity escapes from the
two electrodes through a vacuum tube, depends upon whether a positively
or negatively electrified surface more readily enters into chemical combina-
tion with the adjacent gas, while the sign of the electrification of a metal
surface under the influence of ultra-violet light may, on the other hand,
depend upon whether the ‘Volta-potential’ (see Art. 44) for the metal in
its solid state is less or greater than for the dust or vapour of the metal.

229.] In framing any theory of the difference between the positive and
negative electrodes, we must remember that at the electrodes we have
either two different substances or the same substance in two different states
in contact, and it is in accordance with what we know of the electrical
effects produced by the contact of different substances that the gas in the
immediate neighbourhood of the electrodes should be polarized, that is,
that the molecular tubes of induction in the gas should tend to point in a
definite direction relatively to the outward drawn normals to the electrode:
let us suppose that the polarization is such that the negative ends of the
tubes are the nearest to the electrode: we may regard the molecules of
the gas as being under the influence of a couple tending to twist them
into this position. If now this electrode is the cathode, then before these
molecules are available for carrying the discharge, they must be twisted
right round against the action of an opposing couple, so that to produce
discharge at this electrode the electric field must be strong enough to twist
the molecules out of their original alignment into the opposite one, it must
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therefore be stronger than in the body of the gas where the opposing couple
does not exist: a polarization of this kind would therefore make the cathode
potential gradient greater than that in the body of the gas.



CHAPTER III.

CONJUGATE FUNCTIONS.

230.] The methods given by Maxwell for solving problems in Elec-
trostatics by means of Conjugate Functions are somewhat indirect, since
there is no rule given for determining the proper transformation for any
particular problem. Success in using these methods depends chiefly upon
good fortune in guessing the suitable transformation. The use of a general
theorem in Transformations given by Schwarz (Ueber einige Abbildungsauf-
gaben, Crelle 70, pp. 105–120, 1869), and Christoffel (Sul problema delle
temperature stazionarie, Annali di Matematica, I. p. 89, 1867), enables us
to find by a direct process the proper transformations for electrostatical
problems in two dimensions when the lines over which the potential is given
are straight. We shall now proceed to the discussion of this method which
has been applied to Electrical problems by Kirchhoff (Zur Theorie des Con-
densators, Gesammelte Abhandlungen, p. 101), and by Potier (Appendix
to the French translation of Maxwell’s Electricity and Magnetism); it has
also been applied to Hydrodynamical problems by Michell (On the Theory
of Free Stream Lines, Phil. Trans. 1890, A. p. 389), and Love (Theory of
Discontinuous Fluid Motions in two dimensions, Proc. Camb. Phil. Soc. 7,
p. 175, 1891).

231.] The theorem of Schwarz and Christoffel is that any polygon
bounded by straight lines in a plane, which we shall call the z plane, where
z = x+ιy, x and y being the Cartesian coordinates of a point in this plane,
can be transformed into the axis of ξ in a plane which we shall call the
t plane, where t = ξ+ιη, ξ and η being the Cartesian coordinates of a point
in this plane; and that points inside the polygon in the z plane transform
into points on one side of the axis of ξ. The transformation which effects
this is represented by the equation

dz

dt
= C(t− t1)

α1
π
−1(t− t2)

α2
π
−1 . . . (t− tr)

αr
π
−1 . . . (t− tn)

αn
π
−1, (1)
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where α1, α2, . . . αn are the internal angles of the polygon in the z plane;
t1, t2, . . . tn are real quantities and are the coordinates of points on the axis
of ξ corresponding to the angular points of the polygon in the z plane.

To prove this proposition, we remark that the argument of dz/dt, that
is the value of θ when dz/dt is expressed in the form Rειθ where R is real,
remains unchanged as long as z remains real and does not pass through
any one of the values t1, t2, . . . tn; in other words, the part of the real axis
of t between the points tr and tr+1 corresponds to a straight line in the
plane of z.

We must now investigate what happens when t passes through one of
the points such as tr on the axis of ξ. With centre tr describe a small semi-
circle BDC on the positive side of the axis of ξ, and consider the change in
dz/dt as t passes round BDC from B to C.

Fig. 89.

Since we suppose ω, the radius of this semi-circle, indefinitely small, if
any finite change in dz/dt occurs in passing round this semi-circle it must
arise from the factor (t− tr)

αr
π
−1.

Now for a point on the semi-circle BDC

t− tr = ωειθ,

(t− tr)
αr
π
−1 = ω

αr
π
−1ει(

αr
π
−1)θ,

hence, since θ decreases from π to zero as the point travels round the semi-
circle, the argument of (t− tr)

αr
π
−1, and therefore of dz/dt, is increased by

π−αr, that is the line corresponding to the portion tr tr+1 of the axis of ξ
makes with the line corresponding to the portion tr−1 tr, the angle π− αr;
in other words, the internal angle of the polygon in the z plane at the point
corresponding to tr is αr.

If we imagine a point to travel along the axis of ξ in the plane of t
from t = −∞ to t = +∞ and then back again from +∞ to −∞ along a
semi-circle of infinite radius with its centre at the origin of coordinates in
the t plane, then, as long as the point is on the axis of ξ, the corresponding
point in the plane z is on one of the sides of the polygon. To find the path
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in z corresponding to the semi-circle in t we put

t = Rειθ,

where R is very great and is subsequently made infinite: equation (1) then
becomes

dz

dt
= CR

α1+α2+...αn
π

−nει{
α1+α2+...αn

π
−n}θ, (2)

since R is infinite compared with any of the quantities t1, t2, . . . tn.
Since along the semi-circle

dt = ιRειθ dθ,

equation (2) becomes

dz = ιCR
α1+α2+...αn

π
−(n−1)ει{

α1+α2+...αn
π

−(n−1)}θ dθ,

or z = CR
α1+α2+...αn

π
−(n−1) ε

ι{α1+α2+...αn
π

−(n−1)}θ
α1+α2+...αn

π
− (n− 1)

.

Thus the path in the z plane corresponding to the semi-circle in the
plane of z is a portion of a circle subtending an angle α1 + α2 + . . . αn −
(n− 1)π at the origin, and whose radius is zero or infinite according as

α1 + α2 + . . . αn
π

− (n− 1)

is positive or negative.
If this quantity is zero, then equation (2) becomes

dz

dt
=

C

Rειθ
=
C

t
,

hence z = C log t+ A

= C logR + ιCθ + A,

where A is the constant of integration.
Thus as the point in the t plane moves round the semi-circle the point

in the z plane will travel over a length Cπ of a straight line parallel to the
axis of y at an infinite distance from the origin.

232.] Since by equation (1) the value of dz/dt cannot vanish or become
infinite for values of t inside the area bounded by the axis of ξ and the
infinite semi-circle, this area can be conformably transformed to the area
bounded by the polygon in the z plane.
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233.] When we wish to transform any given polygon in the z plane into
the axis of ξ in the t plane we have the values of α1, α2, . . . αn given. As
regards the values of t1, t2, . . . tn some may be arbitrarily assumed while
others will have to be determined from the dimensions of the polygon.
Whatever the values of t1, t2, . . . tn, the transformation (1) will transform
the axis of ξ into a polygon whose internal angles have the required values.
In order that this polygon should be similar to the given one we require
n−3 conditions to be satisfied; hence as regards the n quantities t1, t2, . . . tn,
the values of 3 of them may be arbitrarily assumed, while the remaining
n−3 must be determined from the dimensions of the polygon in the z plane.

234.] The method of applying the transformation theorem to the solu-
tion of two dimensional problems in Electrostatics in which the boundaries
of the conductors are planes, is to take the polygon whose sides are the
boundaries of the conductors, which we shall speak of as the polygon in
the z plane, and transform it by the Schwarzian transformation into the
real axis in a new plane, which we shall call the t plane. If ψ represents the
potential function, φ the stream function, and w = φ + ιψ, the condition
that ψ is constant over the conductors may be represented by a diagram
in the w plane consisting of lines parallel to the real axis in this plane: we
must transform these lines by the Schwarzian transformation into the real
axis in the t plane. Thus corresponding to a point on the real axis in the
t plane we have a point in the boundary of a conductor in the z plane and
a point along a line of constant potential in the w plane, and we make this
potential correspond to the potential of the conductor in the electrostatical
problem whose solution we require.

In this way we find

x+ ιy = f(t),

φ+ ιψ = F (t),

where f and F are known functions; eliminating t between these equations
we get

φ+ ιψ = χ(x+ ιy),

which gives us the solution of our problem.
235.] We shall now proceed to consider the application of this method to

some special problems. The first case we shall consider is the one discussed
by Maxwell in Art. 202 of the Electricity and Magnetism, in which a plate
bounded by a straight edge and at potential V is placed above and parallel



235.] CONJUGATE FUNCTIONS. 207

to an infinite plate at zero potential. The diagrams in the z and w planes
are given in Figs. 90 and 91 respectively.

Fig. 90.

Fig. 91.

The boundary of the z diagram consists of the infinite straight line AB,
the two sides of the line CD, and an arc of a circle stretching from x = −∞
on the line AB to x = +∞ on the line CD. We may assume arbitrarily the
values of t corresponding to three corners of the diagram, we shall thus
assume t = −∞ at the point x = −∞ on the line AB, t = −1 at the point
x = +∞ on the same line, and t = 0 at C. The internal angles of the
polygon are zero at B and 2π at C; hence by equation (1), Art. 231, the
Schwarzian transformation of the diagram in the z plane to the real axis
of the t plane is

dz

dt
= C

t

t+ 1
. (3)

The diagram in the w plane consists of two parallel straight lines; the
internal angle at G, the point corresponding to t = −1, is zero; hence the
Schwarzian transformation to the real axis of t is

dw

dt
= B

1

t+ 1
. (4)

From (3) we have

z = x+ ιy = C{t− log(t+ 1) + ιπ}, (5)

where the constant has been chosen so as to make y = 0 from t = −∞
to −1. When t passes through the value −1, the value of y increases by Cπ,
so that if h is the distance between the plates

h = Cπ,
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hence we have

x+ ιy =
h

π
{t− log(t+ 1) + ιπ}. (6)

From (4) we have

w = φ+ ιψ = B{log(t+ 1)− ιπ};

where the constant of integration has been chosen so as to make ψ = 0
from t = −∞ to t = −1. As t passes through the value −1, ψ diminishes
by Bπ. Hence, as the infinite plate is at zero potential and the semi-infinite
one at potential V , we have

V = −Bπ,

or φ+ ιψ = −V
π
{log(t+ 1)− ιπ}. (7)

Eliminating t from equations (6) and (7), we get

x+ ιy =
h

V

{
φ+ ιψ − V

π

(
1 + ε−(φ+ιψ) π

V

)}
,

which is the transformation given in Maxwell’s Electricity and Magnetism,
Art. 202.

For many purposes, however, it is desirable to retain t in the expressions
for the coordinates x and y and for the potential and current functions
ψ and φ.

Thus to find the quantity of electricity on a portion of the underneath
side of the semi-infinite plate, we notice that on this side of the plate
t ranges from −1 to 0, and that at a distance from the edge of the plate
which is a large multiple of h, t is approximately −1. In this case we have
by (6), if x be the distance from the edge of the plate corresponding to t,

x =
h

π
{t− log(1 + t)},

or since t = −1 approximately

log(t+ 1) = −
{πx
h

+ 1
}
.

The surface density σ of the electricity on a conductor is equal to

− 1

4π

dψ

dν
,
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where dν is an element of the outward drawn normal to the conductor.
When, as in the present case, the conductors are parallel to the axis of x,
dν = ±dy, the + or − sign being taken according as the outward drawn
normal is the positive or negative direction of y; i.e. the positive sign is to
be taken at the upper surface of the plates, the negative sign at the lower.
We thus have

σ = ∓ 1

4π

dψ

dy
= ∓ 1

4π

dφ

dx
.

Since σ = − 1

4π

dψ

dν

and
dψ

dν
=
dφ

ds
,

where ds is an element of the section of the conductor

σ = − 1

4π

dφ

ds

= − 1

4π

dφ

dt

dt

ds
.

The quantity of electricity on a strip of unit depth (the depth being mea-
sured at right angles to the plane of x, y) is equal to∫

σds = − 1

4π

∫
dφ

dt

dt

ds
ds

= − 1

4π
{φ(t2)− φ(t1)},

where t1, t2 are the values of t at the beginning and end of the strip, t2 being
algebraically greater than t1.

The quantity of electricity on the strip of breadth x is equal to

1

4π
{φt − φ0},

and this by equation (7) is equal to

− 1

4π

V

π
log(t+ 1)

=
V

4πh

{
x+

h

π

}
.

Thus the quantity of electricity on the lower side of the plate is the same
as if the density were uniform and equal to that on an infinite plate, the



235.] CONJUGATE FUNCTIONS. 210

breadth of the strip being increased by h/π. This, however, only represents
the electricity on the lower side of the plate, there is also a considerable
quantity of electricity on the top of the plate. To find an expression for
the quantity of electricity on a strip of breadth x, we notice that on the
top of the plate t ranges from zero to infinity, and that when x is a large
multiple of h, t is very large; in this case the solution of the equation

x =
h

π
{t− log(1 + t)}

is approximately

t = π
x

h
+ log

{
1 +

πx

h

}
,

and the quantity of electricity on a strip of breadth x is
1

4π
{φ0 − φt}, and

thus by equation (7) is equal to

V

4π2
log(t+ 1)

=
V

4π2
log
{

1 +
πx

h
+ log

(
1 +

πx

h

)}
.

Thus the quantity of electricity on an infinitely long strip is infinite,
though its ratio to the quantity of electricity on the lower side of the strip
is infinitely small.

The surface density ±dφ/4π dx of the distribution of electricity on the
semi-infinite plate is by equations (6) and (7) equal to

∓ V

4πh

1

t
.

On the underneath side of the plate t is very nearly equal to −1 when the
distance from the edge of the plate is a large multiple of h, so that in this
case the density soon reaches a constant value. On the upper side of the
plate, however, when x is a large multiple of h, t is approximately equal to

πx

h
,

so that the density varies inversely as the distance from the edge of the
plate.

The capacity of a breadth x of the upper plate, i.e. the ratio of the
charge on both surfaces to V , is

x

4πh

[
1 +

h

πx
+

h

πx
log
{

1 +
πx

h
+ log

(
1 +

πx

h

)}]
.
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We see by the principle of images that the distribution of electricity on
the upper plate is the same as would ensue if, instead of the infinite plate at
zero potential, we had another semi-infinite parallel plate at potential −V ,
at a distance 2h below the upper plate, and therefore that in this case the
capacity of a breadth x, when x/h is large, of either plate is approximately

x

8πh

[
1 +

h

πx
+

h

πx
log
{

1 +
πx

h
+ log

(
1 +

πx

h

)}]
.

236.] The next case we shall consider is the one discussed by Maxwell
in Art. 195, in which a semi-infinite conducting plane is placed midway be-
tween two parallel infinite conducting planes, maintained at zero potential;
we shall suppose that the potential of the semi-infinite plane is V . The
diagrams in the z and w planes are given in Figs. 92 and 93 respectively.

Fig. 92.

Fig. 93.

The boundary of the z diagram consists of the infinite line AB, the two
sides of the semi-infinite line CD, and the infinite line EF. We shall assume
t = 0 at C, t = −∞ at the point x = −∞ on the line AB, t = −1 at the
point x = +∞ on the same line, then by symmetry t = +1 at the point
x = +∞ on the line EF, and t = +∞ at the point x = −∞ on the same
line. The internal angles of the polygon are zero at B and E, and 2π at C,
hence by equation (1) the Schwarzian transformation of the diagram in the
z plane to the real axis in the t plane is

dz

dt
=

Ct

(t+ 1)(t− 1)
. (8)

The diagram in the w plane consists of three parallel lines, or rather one
line and the two sides of another; in Fig. 93 the upper side of the lower line
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corresponds to the conductor EF, the lower side to the conductor AB. The
internal angles occur at the points corresponding to t = −1 and to t = +1
and are both zero; hence the transformation which turns the diagram in
the w plane to the real axis in the t plane is

dw

dt
=

B

(t+ 1)(t− 1)
. (9)

From (8) we have

z = x+ ιy = 1
2
C{log{t2 − 1} − ιπ}, (10)

where the constant of integration has been determined so as to make x = 0,
y = 0 at C. When t passes through the values ±1 the value of y increases
by −1

2
Cπ, hence if h is the distance of the semi-infinite plane from either

of the two infinite ones we have

−1
2
Cπ = h,

or x+ ιy =
h

π
{ιπ − log(t2 − 1)}. (11)

From equation (9) we have

w = φ+ ιψ =
V

π
log

t− 1

t+ 1
. (12)

From this equation we get

t2 − 1 =
4(

ε
1
2

π
V

(φ+ιψ) − ε−
1
2

π
V

(φ+ιψ)
)2 .

Substituting this value of t2 − 1 in (11), we get

x+ ιy =
h

π

[
ιπ − 2 log 2 + 2 log

{
ε

1
2
π
V

(φ+ιψ) − ε−
1
2
π
V

(φ+ιψ)
}]

=
h

π

[
ιπ − 2 log 2 + log

{
ε
πφ
V + ε−

πφ
V − 2 cos

πψ

V

}

+ 2ι tan−1


(
ε

1
2
πφ
V + ε−

1
2
πφ
V

)
ε

1
2
πφ
V − ε− 1

2
πφ
V

tan
πψ

2V


 ,

which is equivalent to the result given in Maxwell, Art. 195.
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The quantity of electricity on a portion whose length is CP and breadth
unity of the lower side of the plane CD is

1

4π
{φP − φC} .

Now φC = 0, and when CP is large compared with h, t is very nearly
equal to −1, hence if CP = x we have in this case from (11)

x = −h
π
{log 2 + log(t+ 1)},

and from (12)

φP =
V

π
{log 2− log(t+ 1)},

hence φP =
V

π

{
2 log 2 +

πx

h

}
,

and the quantity of electricity on the strip is

V

4πh
x

{
1 +

2h

πx
log 2

}
.

That is, it is the same as if the distribution were uniform and the same

as for two infinite plates with the breadth of the strip increased by
2h

π
log 2.

Fig. 94.

237.] To find the correction for the thickness of the semi-infinite plate,
we shall solve by the Schwarzian method the problem of a semi-infinite
plate of finite thickness and rectangular section placed midway between
two infinite plates. The two infinite plates are at zero potential, the semi-
infinite one at potential V . The diagram in the z plane is represented in
Fig. 94. The boundary consists of the infinite line AB, the semi-infinite
line CD, the finite line CE, the semi-infinite line EF and the infinite line GH.
We shall assume t = −∞ at the point on the line AB where x is equal
to −∞, t = −1 at the point on the same line where x = +∞ : t = −a at C

(a < 1), t = +a at E, t = +1 at the point on the line GH where x = +∞
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and t = +∞ at the point on the same line where x = −∞. The internal
angles of the polygon are

0 when t = ±1,
3π

2
when t = ±a,

hence the transformation which transforms the boundary of the z diagram
into the real axis of the t plane is

dz

dt
=
C(t+ a)

1
2 (t− a)

1
2

(t+ 1)(t− 1)

=
C(t2 − a2)

1
2

t2 − 1

=
C

{t2 − a2} 1
2

+ 1
2
C(1− a2)

1

{t2 − a2} 1
2

{
1

t− 1
− 1

t+ 1

}
. (13)

The first term on the right-hand side is integrable, and the second and
third become integrable by the substitutions u = 1/t− 1 and u = 1/t + 1
respectively. Integrating (13) we find

z = C log{t+
√
t2 − a2} − C log

√
−a2

+ 1
2
(1− a2)

1
2C log

[
(t− a2 −

√
1− a2

√
t2 − a2)(t+ 1)

(t+ a2 +
√

1− a2
√
t2 − a2)(t− 1)

]
, (14)

where the constant has been chosen so as to make both x and y vanish
when t = 0.

If 2h is the thickness of the semi-infinite plate and 2H the distance
between the infinite plates, then when t passes through the value unity
y increases by H − h. When t is nearly unity we may put

t = 1 +Rειθ,

where R is small, and θ changes from π to zero as t passes through unity.
When t is approximately 1, equation (13) becomes

dz

dt
= 1

2
C(1− a2)

1
2

1

t− 1
,

hence the increase in z as t passes through 1 is

1
2
C(1− a2)

1
2 [logR + ιθ]0π

= −ιπ
2
C(1− a2)

1
2 ,
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but since the increase in z when t passes through this value is ι(H − h),
we have

H − h = −Cπ
2

(1− a2)
1
2 .

When t changes from +∞ to −∞, z diminishes by ι2H; but when t is
very large, equation (13) becomes

dz

dt
=
C

t
,

z = C log t.

Now t = Rειθ,

where R is infinite, and θ changes from 0 to π as t changes from +∞
to −∞; but as t changes from plus to minus infinity, z increases by

C [logR + ιθ]π0
= ιCπ,

and since the diminution in z is ι2H, we have

H = −Cπ
2
.

Thus h = H{1−
√

1− a2},

or a =

√
h(2H − h)

H2
.

The diagram in the w plane is the same as in Art. 236, hence we have

φ+ ιψ =
V

π
log

t− 1

t+ 1
. (15)

The quantity of electricity on the portion of the semi-infinite plate
between O, the point midway between C and E, and P a point on the
upper surface of the boundary, is

1

4π
{φO − φP}.

Now at O, t = 0, hence φO = 0, and if EP is large compared with H,
t at P is approximately equal to 1. In this case we find from (14), writing
EP = x,

x = C log

{
1 +
√

1− a2

a

}
+ 1

2
C{1− a2}

1
2 log

a2

2(1− a2)

+ 1
2
C{1− a2}

1
2 log (t− 1).
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Substituting for C and a their values in terms of H and h we get

− log (t− 1) =
π

H − h

{
x+

H

π
log

2H − h
h

+
H − h
π

log
h(2H − h)

2(H − h)2

}
. (16)

But from equation (15)

φP =
V

π
{log(t− 1)− log 2},

since t at P is approximately equal to 1. Hence the quantity of electricity
on the strip OP is

V

4π{H − h}

{
x+

H

π
log

2H − h
h

+
H − h
π

log
h(2H − h)

(H − h)2

}
.

Thus the breadth of the strip, which must be added to allow for the con-
centration of the electricity near the boundary, is

H

π
log

2H − h
h

+
H − h
π

log
h(2H − h)

(H − h)2
.

If h is very small this reduces to

2H

π
log 2,

which was the result obtained in Art. 236.
The density of the electricity at the point x on the top of the semi-

infinite plate is − 1

4π

dφ

dx
, now

dφ

dx
=
dφ

dt

dt

dx

=
2V

π(t+ 1)(t− 1)

(t+ 1)(t− 1)

C(t2 − a2)
1
2

=
V

πC

2

(t2 − a2)
1
2

= −V
H

1

(t2 − a2)
1
2

.
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Hence the density of the electricity on the plate is

V

4πH

1

(t2 − a2)
1
2

.

This is infinite at the edges C and E. When EP is a large multiple
of H, t = 1 approximately, and the density is

V

4πH

1

{1− a2} 1
2

,

or since (1− a2)
1
2 =

H − h
H

,

the density is uniform and equal to

1

4π

V

H − h
.

238.] Condensers are sometimes made by placing one cube inside an-
other; in order to find the capacity of a condenser of this kind we shall
investigate the distribution of electricity on a system of conductors such as
that represented in Fig. 95, where ABC is maintained at zero potential and
FED at potential V .

Fig. 95.

The diagram in the z plane is bounded
by the lines AB, BC, DE, EF; we shall assume
that t = −∞ at the point on the line AB

where y = +∞, t = 0 at B, t = 1 at the
point on BC where x = +∞, and t = a
at E, where a is a quantity greater than
unity which has to be determined by the
geometry of the system. The internal an-
gles of the polygon in the z plane are π/2
at B, zero at C, 3π/2 at E. The transforma-
tion which turns the boundary of the z polygon into the real axis in the
t plane is by equation (1) expressed by the equation

dz

dt
=
C(a− t) 1

2

t
1
2 (1− t)

. (17)

The diagram in the w plane consists of the real axis and a line parallel
to it. The internal angle of the polygon is at t = 1 and is equal to zero,
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hence the transformation which turns this diagram into the real axis of t
is

dw

dt
=

B

1− t
,

or φ+ ιψ = ιV − V

π
log(1− t),

since V is the increment in ψ when t passes through the value 1.
To integrate (17) put

t = a
u2

1 + u2
.

We have then

dz

du
=

2Ca

(1 + u2){1− (a− 1)u2}

= 2C

{
1

1 + u2
+

a− 1

1− (a− 1)u2

}
.

Hence

z = 2C tan−1 u+
√
a− 1C log

(
1 +
√
a− 1u

1−
√
a− 1u

)
= 2C sin−1

√
t

a
+
√
a− 1C log

{√
a− t+

√
a− 1

√
t√

a− t−
√
a− 1

√
t

}
, (18)

where the constants have been chosen so as to make x and y vanish when
t = 0.

When t = a, we have

x+ ιy = Cπ +
√
a− 1Cιπ.

Hence if h and k are the coordinates of E referred to the axes BC, AB,
we have

h = Cπ,

k = C
√
a− 1π.

We can also deduce these equations from equation (17) by the process
used to determine the constants in Art. 237.

We may write (18) in the form

x+ ιy =
2h

π
sin−1

√
t

a
+
k

π
log

{
(
√
a− t+

√
a− 1

√
t)2

a(1− t)

}
. (19)
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The quantity of electricity on the strip BP, where P is a point on BC, is
equal to

− 1

4π
{φP − φB}

=
1

4π

V

π
log(1− tP ).

Now if BP is large compared with k, the value of t at P is approximately
unity; from (19) we get the more accurate value

− log(1− t) =
π

k
x− 2h

k
sin−1

√
1

a
− 2 log

{
2

√
a− 1

a

}
,

= π
x

k
− 2h

k
tan−1 h

k
− 2 log

2k√
h2 + k2

.

Hence the quantity of electricity on the strip is

− V

4πk

{
x− 2h

π
tan−1 h

k
+

2k

π
log

√
h2 + k2

2k

}
.

Hence the quantity is the same as if the electricity were distributed with
the uniform density −V/4πk over a strip whose breadth was less than BP

by
2h

π
tan−1 h

k
− 2k

π
log

√
h2 + k2

2k
.

In the important case when h = k, this becomes

h

2
+
h

π
log 2.

The surface density of the electricity at any point on BC or ED is

∓ V

4π2C

√
t

a− t
,

the − or + sign being taken according as the point is on BC or ED. This
expression vanishes at B and is infinite at E.

At P, a point on BC at some distance from B, t is approximately unity,
so that the surface density is

− V

4π2C
√
a− 1

= − V

4πk
.
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This result is of course obvious, but it may be regarded as affording a
verification of the preceding solution.

Fig. 96.

239.] Another case of some interest is that represented in Fig. 96, where
we have an infinite plane AB at potential V in presence of a conductor at
zero potential bounded by two semi-infinite planes CD, DE at right angles
to each other. The diagram in the z plane is bounded by the lines AB,
CD, DE and a quadrant of a circle whose radius is infinite. We shall assume
t = −∞ at the point on the line AB where x = −∞, t = 0 at the point
on the same line where x = +∞, t = 1 at D. The internal angles of the
polygon in the z plane are zero at B and 3π/2 at D. The transformation
which turns the boundary of the z polygon into the real axis in the t plane
is therefore, by equation (1),

dz

dt
=
C(1− t) 1

2

t
. (20)

The diagram in the w plane consists of two straight lines parallel to the
real axis, the internal angle being zero at the point t = 0; hence we have

w = φ+ ιψ =
V

π
log t,

since the plane AB is at potential V and CDE at potential zero.
Integrating equation (20), we find when 0 < t < 1,

z = x+ ιy = C

(
2
√

1− t− log
1 +
√

1− t
1−
√

1− t

)
, (21)

where no constant of integration is needed if the origin of coordinates is
taken at D where t = +1. If h is the distance between CD and AB, then
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z increases by ιh when t changes sign, hence we have by equation (20), by
the process similar to that by which we deduced the constant in Art. 237,

h = −Cπ;

so that (21) becomes, 0 < t < 1,

x+ ιy =
h

π

{
log

1 +
√

1− t
1−
√

1− t
− 2
√

1− t
}
. (22)

The quantity of electricity on a strip DP where P is a point on DC is

V

4π2
log tP ,

if tP is the value of t at P. If DP is large compared with h, tP will be very
nearly zero; the value of log tP is then readily got by writing (22) in the
form

x+ ιy =
h

π
{2 log(1 +

√
1− t)− log t− 2

√
1− t}.

So that if x = DP, we have approximately,

− log tP =
π

h

{
x− 2h

π
log 2 +

2h

π

}
,

=
π

h

{
x+

2h

π
(1− log 2)

}
.

Thus the quantity of electricity on DP is

− V

4πh

{
x+

2h

π
(1− log 2)

}
.

We can prove in a similar way that if Q is a point on DE the charge
on DQ is equal to

V

2π2
log

(
πDQ

2h

)
.

240.] If the angle CDE, instead of being equal to π/2, were equal to π/n,
the transformation of the diagram in the z plane to the real axis of t could
be effected by the relation

dz

dt
=
C(t− 1)

n−1
n

t
.

241.] We shall now proceed to discuss a problem which enables us to
estimate the effect produced by the slit between the guard-ring and the
plate of a condenser on the capacity of the condenser.



241.] CONJUGATE FUNCTIONS. 222

Fig. 97.

Fig. 98.

When the plate and the guard-ring are of finite thickness the integration
of the differential equation between z and t involves the use of Elliptic
Functions. In the two limiting cases when the thickness of the plate is
infinitely small or infinitely great, the necessary integrations can however
be effected by simpler means.

We shall begin with the case where the thickness of the plate is very
small, and consider the distribution of electricity on two semi-infinite plates
separated by a finite interval 2k and placed parallel to an infinite plane at
the distance h from it.

We shall suppose that the two semi-infinite plates are at the same po-
tential V , and that the infinite plate is at potential zero. The diagrams in
the z and w planes are represented in Figs. 97 and 98.

The diagram in the z plane is bounded by the infinite straight line ED,
the two sides AB and BC of the semi-infinite line on the right, the two sides
FG, GH of the semi-infinite line on the left, and a semi-circle of infinite radius.
A point traversing the straight portion of the boundary might start from A

and travel to B on the upper side of the line on the right, then from B to C

along the under side, from D to E along the infinite straight line, from F

to G on the under side of the line on the left and from G to H on the upper
side of this line. We shall suppose that t = +∞ at A, t = +1 at B, t = +a
(a < 1) at C, t = −a at F, t = −1 at G, t = −∞ at H. The internal angles
of the polygon in the z plane are 2π at B, zero at C, zero at F, and 2π at G;
hence the transformation which turns the diagram in the z plane into the
real axis of t is expressed by the relation

dz

dt
= C

t2 − 1

t2 − a2
. (23)

The diagram in the w plane consists of two straight lines parallel to the
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real axis and the potential changes by V when t passes through the values
±a: hence we easily find

φ+ ιψ =
V

π
log

t+ a

t− a
+ ιV. (24)

We have from equation (23)

z = C

{
t− (1− a2)

2a
log

t− a
t+ a

+
(1− a2)

2a
ιπ

}
, (25)

where the constant of integration has been chosen so as to make x = 0,
y = 0 when t = 0. The axis of x is ED, the axis of y the line at right angles
to this passing through the middle of GB.

If 2k is the width of the gap and h the vertical distance between the
plates, x = k, y = h, when t = 1, hence we have by (25)

k = C

{
1− (1− a2)

2a
log

1− a
1 + a

}
,

h = C
(1− a2)

2a
π.

Hence a is determined by the equation

k =
h

π

{
2a

1− a2
+ log

1 + a

1− a

}
. (26)

The quantity of electricity on the lower side of the semi-infinite plate
between B and P is, since t increases from P to B,

1

4π
{φP − φB},

or by (24)
V

4π2

{
log

tP + a

tP − a
− log

1 + a

1− a

}
.

But by (25) if BP = x− k, we have

x− k = C

[
tP − 1− 1− a2

2a

{
log

tP − a
tP + a

− log
1− a
1 + a

}]
.

Hence if Q is the quantity of electricity on the lower side of the plate
between B and P,

x− k = C(tP − 1) +
4πh

V
. Q,

Q =
V

4πh
{x− k + C(1− tP )},
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or since tP = a approximately, if P is a considerable distance from B, we
have

Q =
V

4πh
{x− k + C(1− a)}. (27)

The quantity of electricity Q1 on the upper side of the plate, from A

to B, is equal to
1

4π
(φB − φA),

or since t = +∞ at A, and therefore φA vanishes, we have

Q1 = − V

4π2
log

1− a
1 + a

. (28)

We can by equation (26) easily express a in terms of k/h, when this
ratio is either very small or very large. We shall begin by considering the
first case, which is the one that most frequently occurs in practice.

We see from (26) that when k/h is very small, a is very small and is
approximately equal to

π

4

k

h
.

The corresponding value of C is 1
2
k, hence, neglecting (k/h)3,

Q =
V

4πh

{
x− 1

2
k − π

8

k2

h

}
,

Q1 =
V

4π2
2a

=
V

4πh

k

2
.

Hence Q + Q1, the whole quantity of electricity between A and P, is
approximately equal to

V

4πh

{
x− π

8

k2

h

}
.

Hence the quantity of electricity on the plate of the condenser is to
the present degree of approximation the same as if the electricity were
uniformly distributed over the plate with the density it would have if the
slit were absent, provided that the area of the plate is increased by that of
a strip whose width is

k − π

8

k2

h
;
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thus the breadth of the additional strip is very approximately half that of
the slit.

We pass on now to the case when h/k is very small. We see from equa-
tion (26) that in this case a is very nearly equal to unity, the approximate
values of a and C being given by the equations

1− a =
h

πk
,

C = k.

Hence by equations (27) and (28) we have

Q =
V

4πh

{
x− k +

h

π

}
,

Q1 =
V

4π2
log

2πk

h
.

So that the total charge Q+Q1 on AP is equal to

V

4πh

[
x− k +

h

π

{
1 + log

2πk

h

}]
,

and thus the width of the additional strip is

h

π

{
1 + log

2πk

h

}
.

242.] We have hitherto supposed that the potentials of the plates ABC

and FGH are the same; we can however easily modify the investigation so as
to give the solution of the case when ABC is maintained at the potential V1

and FGH at the potential V2. The relation between z and t will not be
affected by this change, but the relation between w and t will now be
represented by the equation

φ+ ιψ =
V2

π
log(t+ a)− V1

π
log(t− a) + ιV1.

The quantity of electricity between B and P, a point on the lower side
of the plate, is

1

4π
{φP − φB}.

Now if BP is large, t at P is approximately equal to a, and

φP =
V2

π
log 2a− V1

π
log(t− a);
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but by equation (25) we have when t is nearly equal to a,

− log(t− a) =
π

h
(x− Ca)− log 2a,

hence φP =
V2 − V1

π
log 2a+

V1

h
(x− Ca).

When h/k is large a is small and approximately equal to πk/4h, and
this equation becomes

φP =
V2 − V1

π
log

πk

2h
+
V1

h
x.

Since t = 1 at B and a is small, we see that φB is approximately equal
to a(V1 +V2)/π or (V1 +V2)k/4h, hence the quantity of electricity between
B and P is approximately equal to

V1

4πh
x− V2 − V1

4π2
log

2h

πk
− V1 + V2

4πh

k

4
.

The charge Q1 on the upper side of the plate ABC between a point P
′

vertically above P and B is, since t increases from B to P
′, equal to

1

4π
{φB − φP ′}.

Now φP ′ =
V2

π
log(tP ′ + a)− V1

π
log(tP ′ − a),

which, since tP ′ is large, may be written as

φP ′ =
V2 − V1

π
log tP ′ .

When BP
′ is large, tP ′ is large also, and by equation (25) is approxi-

mately equal to x/C, that is to 2x/k, thus

φP ′ =
V2 − V1

π
log

2x

k
,

φB = (V1 + V2)
k

4h
;

and therefore Q1, the charge on the upper part of the plate, is given by the
equation

Q1 =
(V1 + V2)

4π

k

4h
− (V2 − V1)

4π2
log

2x

k
;
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thus Q + Q1, the sum of the charges on the upper and lower portions, is
given by the equation

Q+Q1 =
V1

4πh
x− (V2 − V1)

4π2

{
log

2h

πk
+ log

2x

k

}
.

Fig. 99.

243.] We shall now proceed to discuss the other extreme case of the
guard-ring, that in which the depth of the slit is infinite. We shall begin
with the case when the guard-ring and the condenser plate are at the same
potential. The diagram in the w plane is the same as that in Art. 239,
while the diagram in the z plane is represented in Fig. 99. The boundary
of this diagram consists of the semi-infinite lines AB, BC at right angles to
each other, the infinite line DE parallel to BC, the semi-infinite line FG which
is in the same straight line as BC, and the semi-infinite line GH at right
angles to FG. We shall suppose t = +∞ at A, t = +1 at B, t = +a (a < 1)
at C, t = −a at F, t = −1 at G, and t = −∞ at H. The internal angles of
the polygon in the z plane are 3π/2 at B and G and zero at C and F. Thus
the transformation which turns the boundary in the z plane into the real
axis of the t plane is expressed by the equation

dz

dt
= C

(t2 − 1)
1
2

t2 − a2
.

If we are dealing with the portion of the boundary for which t is less
than unity, it is more convenient to write this equation as

dz

dt
= Cι

(1− t2)
1
2

t2 − a2

= Cι

[
1− a2

2a

1

(1− t2)
1
2

{
1

t− a
− 1

t+ a

}
− 1

(1− t2)
1
2

]
.
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Integrating, we find

z = −Cι
[√

1− a2

2a
log

(1− at+
√

1− a2
√

1− t2)

(1 + at+
√

1− a2
√

1− t2)

(t+ a)

(t− a)
+ sin−1 t

]
+ Cπ

√
1− a2

2a
,

where the constant of integration has been chosen so as to make x = 0,
y = 0 when t = 0; ED is the axis of x, and the axis of y is midway between
AB and GH. Writing D for −Cι, the preceding equation takes the form

z = D sin−1 t+D

√
1− a2

2a
log

(1− at+
√

1− a2
√

1− t2)

(1 + at+
√

1− a2
√

1− t2)

(t+ a)

(t− a)

+Dιπ

√
1− a2

2a
. (29)

Now if 2k is the width of the slit, and h the distance of the plate of
the condenser from the infinite plate, x = k, y = h when t = 1, hence
from (29)

k = D
π

2
,

h = D
π

2

√
1− a2

a
,

or a2 =
k2

h2 + k2
.

The relation between w and t is the same as in Art. 239, and we have

w = φ+ ιψ =
V

π
log(t+ a)− V

π
log(t− a) + ιV.

The quantity of electricity Q on the plate of the condenser between
A and P, a point on BC at some considerable distance from B, is

1

4π
{φP − φA};

since t is infinite at the point corresponding to A, we see that φA is zero,
hence

Q =
1

4π
φP

=
V

4π2
log

(tP + a)

(tP − a)
.
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Now the point P corresponds to a point in the t plane where t is very nearly
equal to a; hence we have approximately by (29)

log
tP + a

tP − a
=
π

h

(
x−D sin−1 a− h

π
log(1− a2)

)
=
π

h

(
x− 2k

π
sin−1 k√

h2 + k2
− h

π
log

h2

h2 + k2

)
.

Thus Q =
V

4πh

{
x− 2k

π
sin−1 k√

h2 + k2
− h

π
log

h2

h2 + k2

}
.

In the case which occurs most frequently in practice, that in which k is
small compared with h, we have, neglecting (k/h)2,

Q =
V

4πh
x;

that is, the quantity of electricity on the plate is the same as if the distri-
bution were uniform and the width of the plate were increased by half the
breadth of the slit.

The quantity of electricity on the face AB of the slit is equal to

V

4π2
log

(1 + a)

(1− a)
,

or, substituting the value for a previously found,

V

4π2
log


1 +

k√
h2 + k2

1− k√
h2 + k2

 ,

and this when k/h is small is equal to

V

4πh

2k

π
.

Thus 2/π of the increase in the charge on ABC, over the value it would have
if the surface density were uniformly V/4πh on BC, is on the side AB of the
slit, and (π − 2)/π is on the face of the plate of the condenser.

244.] A slight modification of the preceding solution will enable us to
find the distribution of electricity on the conductors when ABC and FGH are
no longer at the same potential. If V1 is the potential of ABC, V2 that of FGH,
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then the relation between z and t will remain the same as before, while the
relation between w and t will now be expressed by the equation

w = φ+ ιψ =
V2

π
log(t+ a)− V1

π
log(t− a) + ιV1,

or φ+ ιψ =
V2 − V1

π
log (t+ a) +

V1

π
log(t+ a)− V1

π
log(t− a) + ιV1.

Hence the quantity of electricity on QBP where Q is a point on AB at some
distance from B will exceed the quantity that would be found from the
results of the preceding Article by

V2 − V1

4π2
log

tP + a

tQ + a
.

Since P is a point on BC at some distance from B, tP is approximately
equal to a, and since a is small and tQ large we may replace tQ + a by tQ;
making these substitutions the preceding expression becomes

V2 − V1

4π2
log

2a

tQ
. (30)

When t is large, the relation between z and t, which is given by the equation

dz

dt
= C

(t2 − 1)
1
2

t2 − a2
,

is by integrating this equation found to be

x− k + ι(y − h)

= C log(t+
√
t2 − 1) +

√
1− a2

2a
C

{
sin−1 1− at

t− a
− sin−1 1 + at

t+ a

}
,

or substituting for C (the ιD of the preceding Article) its value ι2k/π, we
have

x− k + ι(y − h)

= ι
2k

π
log(t+

√
t2 − 1) + ι

h

π

{
sin−1 1− at

t− a
− sin−1 1 + at

t+ a

}
.

Hence, when t is large we have approximately

log 2t =
π

2k
(y − h).

Substituting this value for log tQ in the expression (30), we find that the
correction to be applied on account of the difference of potential between
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ABC and FGH to the expression given by Art. 243 for the quantity of electricity
on QBP is

−(V2 − V1)

4π2

{
log

√
h2 + k2

4k
+

π

2k
(y − h)

}
,

where y − h = BQ.
245.] The indirect method given by Maxwell, Electrostatics, Chap. XII,

in which we begin by assuming an arbitrary relation between z and w of
the form

x+ ιy = F (φ+ ιψ),

and then proceed to find the problems in electrostatics which can be solved
by this relation, leads to some interesting results when elliptic functions
are employed. Thus, let us assume

x+ ιy = b sn(φ+ ιψ), (31)

and suppose that φ is the potential and ψ the stream function. Let k be
the modulus of the elliptic functions, 2K and 2ιK ′ the real and imaginary
periods. Let us trace the equipotential surface for which φ = K; we have

x+ ιy = b sn(K + ιψ)

=
b

dn(ψ, k′)
, (32)

where dn(ψ, k′) denotes that the modulus of the elliptic function is k′, that
is
√

1− k2, and not k. From equation (32) we see that y = 0, and

x =
b

dn(ψ, k′)
.

Now dn(ψ, k′) is always positive, its greatest value is unity when ψ = 0,
or an even multiple of K ′, its least value is k when ψ is an odd multiple
of K ′, thus the equation

x+ ιy =
b

dn(ψ, k′)

represents the portion of the axis of x between x = b and x = b/k.
If we put φ = −K, we have

x+ ιy = b sn(−K + ιψ),

= − b

dn(ψ, k′)
;
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hence the equipotential surface, −K, consists of the portion of the axis
of x between x = −b and x = −b/k.

Fig. 100.

Thus the transformation (31) solves the case of
two infinite plane strips AB, CD, Fig. 100, of finite
and equal widths, b (1 − k)/k, in one plane placed
so that their sides are parallel to each other.

In the above investigation the potential difference is 2K. The quantity
of electricity on the top of the strip CD is equal to the difference in the
values of ψ at C and D divided by 4π. Now the difference in the values of ψ
at C and D is K ′, hence the quantity of electricity on the top of the strip is

1

4π
K ′.

There is an equal quantity of electricity on the bottom of the strip, so that
the total charge on CD is

1

4π
2K ′.

The difference of potential between the strips is 2K, hence the capacity of
the strip per unit length measured parallel to z is

1

4π

K ′

K
.

The modulus k of the elliptic functions is the ratio of BC to AD, that is
the ratio of the shortest to the longest distance between points in the lines
AB and CD. The values of K and K ′ for given values of k are tabulated in
Legendre’s Traité des Fonctions Elliptiques : so that with these tables the
capacity of two strips of any width can be readily found.

When k is small, that is when the breadth of either of the strips is large
compared with the distance between them, K and K ′ are given approxi-
mately by the following equations,

K =
π

2
,

K ′ = log(4/k) = log(4AD/BC).

Hence in this case the capacity is approximately,

1

2π2
log(4AD/BC).
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Returning to the general case, if σ is the surface density of the electricity
at the point P on one of the strips AB, we have

σ =
1

4π

dψ

dx
;

and since x = − b

dn(ψ, k′)
,

− dx
dψ

= bk′2 sn(ψ, k′) cn(ψ, k′)/ dn2(ψ, k′)

=
1

b
{x2 − b2}

1
2{b2 − k2x2}

1
2

=
k

b

√
CP . DP . AP . BP ;

hence σ = − b

4πk

1√
CP . DP . AP . BP

.

The solution of the case of two strips at equal and opposite potentials,
includes that of a strip at potential K in front of an infinite plane at
potential zero. The solution of this case can be deduced directly from the
transformation

x+ ιy = b dn(φ+ ιψ),

if ψ be taken as the potential and φ as the stream function.

Fig. 101.

246.] Capacity of a Pile of Plates, Fig. 101. If we put

ε
x+ιy
b = sn(φ+ ιψ), (33)

then when φ = K

ε
x+ιy
b = sn(K + ιψ) =

1

dn(ψ, k′)
. (34)

Thus, since dn(ψ, k′) is always real and positive,

y = 0, y = 2πb, y = 4πb, &c.,
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while x varies between the values x1, x2, where

ε
x1
b = 1,

ε
x2
b =

1

k
.

 (35)

When φ = −K,

ε
x+ιy
b = sn(−K + ιψ) = − 1

dn(ψ, k′)
,

hence, since dn(ψ, k′) is always real and positive,

y = πb, y = 3πb, y = 5πb, &c.,

while x varies between the same values as before. Thus, if in equation (33)
we take φ to be the potential and ψ the stream function, the equation will
give the electrical distribution over a pile of parallel strips of finite width,
x2 − x1, the distance between the consecutive strips being πb, alternate
strips being at the same potential. The potential of one set of plates is K,
that of the other −K.

The quantity of electricity on one side of one of the strips per unit
length parallel to z is, as in Art. 245, equal to K ′/4π, and since the charge
on either side is the same, the total charge on the strips is K ′/2π. The
potential difference is 2K, hence the capacity of one of the strips per unit
length is equal to

K ′

4πK
.

We see from equation (35) that

k = ε−
(x2−x1)

b ;

but x2 − x1 = d, the breadth of one of the strip, hence

k = ε−
d
b .

Having found k from this equation, we can by Legendre’s Tables find the
values of K and K ′, and hence the capacity of the strips. When the breadth
of the strips is large compared with the distance between them, d/b is large,
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hence k is small; in this case we have approximately

K =
π

2
,

K ′ = log(4/k) = log(4ε
d
b )

= 2 log 2 +
d

b
,

so that the capacity of one strip is

1

2π2

{
2 log 2 +

d

b

}
.

Returning to the general case, the surface density of the electricity at
a point P on the positive side of one of the strips AB is equal to

1

4π

dψ

dx
.

But by equation (34)

1

b
ε
x
b
dx

dψ
= k′2 sn(ψ, k′) cn(ψ, k′)/ dn2(ψ, k′).

Substituting the values of

sn(ψ, k′), cn(ψ, k′), dn(ψ, k′)

in terms of ε
x
b , we get

dψ

dx
=

1

b

ε
(x2−x1)

2b{
(ε

(x−x1)
b − ε−

(x−x1)
b )(ε

(x2−x)
b − ε

−(x2−x)
b )

} 1
2

.

Hence the surface density is equal to

1

4πb

ε
AB
2b{

(ε
AP
b − ε−

AP
b )(ε

BP
b − ε−

BP
b )
} 1

2

.

The distribution of electricity on any one of the plates is evidently the
same as if the plate were placed midway between two infinite parallel plates
at potential zero, the distance between the two infinite plates being 2πb.

247.] Capacity of a system of 2n plates arranged radially and mak-
ing equal angles with each other, the alternate plates being at the same
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potential, the extremities of the plates lying on two coaxial right circular
cylinders. Let us put (

x+ ιy

b

)n
= sn(φ+ ιψ),

or, transforming to polar coordinates r and θ,(r
b

)n
ειnθ = sn(φ+ ιψ).

Then, as before, we see that when φ = K, nθ = 0 or 2π, or 4π, and so
on, and when φ = −K, nθ = π or 3π, or 5π, &c.; hence this transformation
solves the case of 2n plates arranged radially, making angles π/n with each
other, one set of n plates being at the potential K, the other set at the
potential −K. When φ = K, we have(r

b

)n
=

1

dn(ψ, k′)
.

Hence if r1 and r2 are the smallest and greatest distances of the edges
of a plate from the line to which all the plates converge, we have(r1

b

)n
= 1,(r2

b

)n
=

1

k
,

or k =

(
r1

r2

)n
.

The total charge on both sides of one of the plates is, as before, K ′/2π,
and since the potential difference is 2K the capacity of the plate is K ′/4πK.
When r1 is small compared with r2, k is small, and we have then approxi-
mately

K =
π

2
,

K ′ = log(4/k) = log 4 + n log(r2/r1).

Thus the capacity of a plate is in this case approximately

1

2π2
{log 4 + n log(r2/r1)}.
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Returning to the general case, the surface density of the electricity on
one side of a plate is equal to

1

4π

dψ

dr
;

but since
(r
b

)n
=

1

dn(ψ, k′)
,

n

b

(r
b

)n−1 dr

dψ
= k′2 sn(ψ, k′) cn(ψ, k′)/ dn2(ψ, k′).

Substituting for the elliptic functions their values in terms of r, we find
when φ = K

dψ

dr
=

nbnrn−1

k{(r2n − r1
2n)(r2

2n − r2n)} 1
2

.

Thus the surface density is equal to

1

4π

nr2
nrn−1

{(r2n − r1
2n)(r2

2n − r2n)} 1
2

.

When n = 1, this case coincides with that discussed in Art. 245.
248.] Let us next put

x+ ιy = b cn(φ+ ιψ),

and take ψ for the potential, and φ for the stream function. Then when
ψ = 0, we have

x+ ιy = b cnφ,

hence y = 0, and x can have any value between ±b: thus the equipotential
surface for which ψ is zero is the portion of the axis of x between x = −b,
and x = +b. When ψ = K ′,

x+ ιy = b cn(φ+ ιK ′)

= −bι dnφ

k snφ
;

hence x = 0, and y ranges from +bk′/k to +∞ and from −bk′/k to −∞.
Hence the section of the equipotential surface for which ψ = K ′ is the
portion of the axis of y included between these limits. Thus the section
of the conductors over which the distribution of electricity is given by this
transformation is similar to that represented in Fig. 102, where the axis
of x is vertical.
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Fig. 102.

To find the quantity of electricity
on AB we notice that φ = 0 at A and
is equal to 2K at B, hence the quan-
tity of electricity on one side of AB is
equal to K/2π, thus the total charge
on AB is K/π. The difference of potential between AB and CD or EF is K ′, so
that the capacity of AB is equal to

1

π

K

K ′
.

The modulus k of the elliptic functions is given by the equation

k′

k
=
{1− k2} 1

2

k
=

EC

AB
.

If AB is very large compared with EC then k is very nearly unity, and in this
case we have

K = log(4/k′) = log(4AB/EC),

K ′ =
π

2
;

so that the capacity of AB is

2

π2
log(4AB/EC).

The surface density of the electricity at a point P on either side of AB

is (without any limitation as to the value of k) equal to

1

4π

dφ

dx
,

and since x = b cnφ,

dx

dφ
= −b snφ dnφ

= −k
b

(b2 − x2)
1
2

{
k′2

k2
b2 + x2

} 1
2

= −k
b
CP
√

AP .BP;

hence the surface density is equal to

− b

4πk

1

CP
√

AP .BP
.
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249.] We pass on now to consider the transformation

ε
x+ιy
b = cn(φ+ ιψ),

where φ is taken as the potential and ψ as the stream function.
Over the equipotential surface for which φ = 0, we have

ε
x+ιy
b = cn(ιψ)

=
1

cn(ψ, k′)
.

Hence y = 0, ±πb, ±2πb, . . . ;

while x ranges from 0 to infinity.
For the equipotential surface for which φ = K, we have

ε
x+ιy
b = cn(K + ιψ)

= −ιk′ sn(ψ, k′)

dn(ψ, k′)
.

Hence y = ±1
2
πb, ±3

2
πb, ±5

2
πb . . . ,

while x ranges from minus infinity to a value x1 given by the equation

ε
x1
b =

k′

k
.

Fig. 103.

Thus this transformation gives the distribution of electricity on a pile
of semi-infinite parallel plates at equal intervals πb apart, maintained at
potential zero when in presence of another pile of semi-infinite parallel
plates at the same distance apart maintained at potential K, the planes
of the second set of plates being midway between those of the first. The
second set of plates project a distance x1 into the first set, x1 being given
by the equation εx1/b = k′/k. If the edges of the second set of plates
are outside the first set, then x1 is negative and numerically equal to the
distance between the planes containing the ends of the two sets of plates.
The system of conductors is represented in Fig. 103.
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The quantity of electricity on the two sides of one of the plates is K ′/2π,
hence the capacity of such a plate is

K ′

2πK
.

If the ends of the two sets of plates are in the same plane, then x1 = 0,
and therefore k′ = k, so that K ′ = K; hence the capacity of each plate is
in this case 1/(2π).

When the plates do not penetrate and are separated by a distance
which is large compared with the distance between two parallel plates,
x1 is negative and large compared with b, hence k′ is small, and therefore
k nearly equal to unity; in this case

K ′ =
π

2
,

K = log(4/k′),

= log 4 +
x′

b
,

where x′ = −x1.
Thus the capacity of a plate in this case is approximately equal to

b

4(b log 4 + x′)
.

The surface density at a point on one of the first set of plates at a distance x
from the edge is easily shewn by the methods previously used to be equal,
whatever be the value of k, to

− 1

4πkb

ε
x
b√

(ε
2x
b − 1)(ε

2x
b + ε

2x1
b )

.

250.] The transformation(
x+ ιy

b

)n
= cn(φ+ ιψ),

with φ as the potential and ψ as the stream function, gives the solution
of the case represented in Fig. 104; where the 2n outer planes at potential
zero are supposed to extend to infinity, the 2n inner planes at potential K
bisect the angles between the outer planes, and OA = b.
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Fig. 104.

We can easily prove that in this case the
quantity of electricity on the outer plates is equal
to nK ′/π, so that the capacity of the system is
equal to

n

π

K ′

K
,

when the modulus of the elliptic functions is de-
termined by the relation (

OC

OA

)n
=
k′

k
.

251.] The transformation

x+ ιy = b dn(φ+ ιψ),

where φ is the potential and ψ the stream function, gives the solution of
the case represented in Fig. 105, in which a finite plate is placed in the
space between two semi-infinite plates. For when φ = 0, we have

x+ ιy = b dn ιψ

= b
dn(ψ, k′)

cn(ψ, k′)
; (36)

hence y = 0, and x ranges from +b to +∞ and from −b to −∞, thus giving
the portions EF, CD of the figure.

Fig. 105.

When φ = K, we have

x+ ιy = b dn(K + ιψ)

= bk′
cn(ψ, k′)

dn(ψ, k′)
; (37)

hence y = 0, and x ranges between ±bk′, thus giving the portion AB of the
figure.

The quantity of electricity on the two sides of the plate AB is equal
to K ′/π, hence the capacity of this plate is equal to

1

π

K ′

K
,
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where the modulus k of the elliptic functions is given by the equation

k′ = {1− k2}
1
2 = OA/OC.

When AC is small compared with AB, k′ is nearly equal to unity, and k is
therefore small, in this case we have approximately

K =
π

2
,

K ′ = log(4/k)

= log 4 + 1
2

log
OC2

AC .BC
;

so that in this case the capacity of the plate AB is equal to

1

π2

{
log

OC2

AC .BC
+ 2 log 4

}
.

Returning to the general case, the surface density of the electricity on
one side of the plate AB at a point P is equal to

1

4π

dψ

dx
.

Using equation (37) we find that this is equal to

b

4π

1

{(b2 − x2)(b2k′2 − x2)} 1
2

,

which may be written in the form

b

4π

1

{AP .BP .CP . EP} 1
2

.

The surface density at a point Q on EF may be shown in a similar way,
using (36), to be equal to

− b

4π

1

{(x2 − b2)(x2 − b2k′2)} 1
2

,

which is equal to

− b

4π

1

{AQ .BQ .CQ . EQ} 1
2

.

252.] If we put

ε
x+ιy
b = dn(φ+ ιψ),
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and take as before φ for the potential and ψ for the stream function, then
since, when φ = 0,

ε
x+ιy
b = dn(ιψ)

=
dn(ψ, k′)

cn(ψ, k′)
,

we have y = 0, y = ±πb, y = ±2πb . . ., while x ranges from 0 to +∞. Thus
the equipotential surfaces for which φ vanishes are a pile of parallel semi-
infinite plates stretching from the axis of y to infinity along the positive
direction of x, the distance between two adjacent plates being πb.

When φ = K, we have

ε
x+ιy
b = dn(K + ιψ)

= k′
cn(ψ, k′)

dn(ψ, k′)
;

thus y = 0, y = ±πb, y = ±2πb . . ., while x ranges from −∞ to −x1, where
x1 is given by the equation

ε−
x1
b = k′. (38)

Fig. 106.

Thus the equipotential surfaces
for which φ = K are a pile
of parallel semi-infinite plates
stretching from −∞ to a dis-
tance x1 from the previous set
of plates. The distance between adjacent plates in this set is again πb,
and the planes of the plates in this set are the continuations of those of the
plates in the set at potential zero. This system of conductors is represented
in Fig. 106.

The quantity of electricity on both sides of one of the plates at potential
zero is −K ′/2π, hence the capacity of such a plate is

1

2π

K ′

K
,

the modulus of the elliptic functions being given by equation (38).
When the distance between the edges of the two sets of plates is large

compared with the distance between two adjacent parallel plates, then
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x1 is large compared with b, so that k′ is small; in this case we have
approximately

K ′ =
π

2
,

K = log(4/k′)

= log 4 +
x1

b
;

hence the capacity of a plate is equal to

b

4(x1 + b log 4)
.

The surface density of the electricity at a point P on one of the planes
at potential zero is in the general case easily proved to be equal to

− 1

4πb

ε
x
b{

(ε
2x
b − 1)(ε

2x
b − ε−

2x1
b )
} 1

2

.

Fig. 107.

253.] The transformation(
x+ ιy

b

)n
= dn(φ+ ιψ),

where φ is the potential and ψ the stream function
and n a positive integer, gives the solution of the
case shown in Fig. 107, when the potential of the
outer radial plates is zero and that of the inner K.
The 2n outer plates make equal angles with each
other and extend to infinity.

The quantity of electricity on both sides of one of the outer plates is
−K ′/2π; since there are 2n of these plates the capacity of the system is

n

π

K ′

K
,

the modulus of the Elliptic Functions being given by the equation

k′ = {1− k2}
1
2 =

(
OA

OB

)n
.

254.] We have only considered those applications of elliptic function to
electrostatics where the expression for the capacity of the electrical system
proves to be such that it can be readily calculated in any special case by
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the aid of Legendre’s Tables. There are many other transformations which
are of great interest analytically, though the want of tables of the special
functions involved makes them of less interest for experimental purposes
than those we have considered. Thus, for example, the transformation

x+ ιy = Z(φ+ ιψ),

where Z is the function introduced by Jacobi and defined by the equation

Z(u) =

∫ u

dn2 u du− E

K
,

if ψ is the potential and φ the stream function, gives the distribution of
electricity in the important case of a condenser formed by two parallel and
equal plates of finite breadth.



CHAPTER IV.

ELECTRICAL WAVES AND OSCILLATIONS.

255.] The properties of electrical systems in which the distribution of
electricity varies periodically and with sufficient rapidity to call into play
the effects of electric inertia, are so interesting and important that they
have attracted a very large amount of attention ever since the principles
which govern them were set forth by Maxwell in his Electricity and Mag-
netism. We shall in this Chapter consider the theory of such vibrating
electrical systems, while the following Chapter will contain an account of
some remarkable experiments by which the properties of such systems have
been exhibited in a very striking way.

256.] We shall begin by writing down the general equations which we
shall require in discussing the transmission of electric disturbances through
a field in which both insulators and conductors are present.

Let F , G, H be the components of the vector potential parallel to the
axes of x, y, z respectively, P , Q, R the components of the electromotive
intensity, and a, b, c those of the magnetic induction in the same direc-
tions, let φ be the electrostatic potential, σ the specific resistance of the
conductor, µ and µ′ the magnetic permeabilities of the conductor and di-
electric respectively, and K and K ′ the specific inductive capacities of the
conductor and dielectric respectively, then we have

P = −dF
dt
− dφ

dx
,

Q = −dG
dt
− dφ

dy
,

R = −dH
dt
− dφ

dz
.


(1)
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We have also

a =
dH

dy
− dG

dz
,

hence
da

dt
=

d

dy

dH

dt
− d

dz

dG

dt
,

so that

similarly

da

dt
=
dQ

dz
− dR

dy
;

db

dt
=
dR

dx
− dP

dz
,

dc

dt
=
dP

dy
− dQ

dx
.


(2)

If α, β, γ are the components of the magnetic force, u, v, w those of
the total current, then (Maxwell’s Electricity and Magnetism, Art. 607)

4πu =
dγ

dy
− dβ

dz
,

4πv =
dα

dz
− dγ

dx
,

4πw =
dβ

dx
− dα

dy
.


(3)

In the metal the total current is the sum of the conduction and polariza-
tion currents; the conduction current parallel to x is P/σ, the polarization

current
K

4π

dP

dt
, or if P varies as ειpt, the polarization current is

K

4π
ιp · P .

Thus the ratio of the conduction to the polarization current is
4π

Kσιp
, and

since σ in electromagnetic measure is of the order 104 for the commoner
metals and K in the same measure of the order 10−21, we see that unless
the vibrations are comparable in rapidity with those of light we may neglect
the polarization current in the metal in comparison with the conduction
current. Thus in the conductor we have

4π

σ
P =

dγ

dy
− dβ

dz
=

1

µ

(
dc

dy
− db

dz

)
,

and therefore by (2) we have, assuming

dP

dx
+
dQ

dy
+
dR

dz
= 0,
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similarly

∇2P =
4πµ

σ

dP

dt
;

∇2Q =
4πµ

σ

dQ

dt
,

∇2R =
4πµ

σ

dR

dt
.


(4)

It follows from equation (2) that a, b, c satisfy equations of the same form.
In the dielectric there is only the polarization current, the component

of which parallel to x is
K ′

4π

dP

dt
; hence in the dielectric we have

K ′
dP

dt
=
dγ

dy
− dβ

dz
=

1

µ′

(
dc

dy
− db

dz

)
,

and therefore by (2)

similarly

∇2P = µ′K ′
d2P

dt2
;

∇2Q = µ′K ′
d2Q

dt2
,

∇2R = µ′K ′
d2R

dt2
.


(5)

We shall suppose that the effects are periodic and of frequency p/2π,
so that the components of the electromotive intensity, as well as of the
magnetic induction, will all vary as ειpt and will not explicitly involve the
time in any other way. We shall also suppose that the electric waves are
travelling parallel to the axis of z, so that the variables before enumerated
will contain ειmz as a factor, m being a quantity which it is one of the
objects of our investigation to determine. With these assumptions we see
that d/dt may be replaced by ιp, and d/dz by ιm.

Alternating Electric Currents in Two Dimensions.

257.] The cases relating to alternating currents which are of the greatest
practical importance are those in which the currents flow along metallic
wires. As the analysis, however, in these cases is somewhat complicated, we
shall begin by considering the two dimensional problem, as this, though of
comparatively small practical importance, enables us by the aid of simple
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analysis to illustrate some important properties possessed by alternating
currents.

The case we shall first consider is that of an infinite conducting plate
bounded by the planes x = h, x = −h, immersed in a dielectric. We
shall suppose that plane waves of electromotive intensity are advancing
through the dielectric, and that these waves impinge on the plate. We
shall suppose also that the waves fall on both sides of the plate and are
symmetrical with respect to it. These waves when they strike against the
plate will be reflected from it, so that there will on either side of the plate
be systems of direct and reflected waves.

Let P and R denote the components of the electromotive intensity
parallel to the axes of x and z respectively, the component parallel to the
axis of y vanishing since the case is one in two dimensions. Then in the
dielectric the part of R due to the direct wave will be of the form

Bει(mz+lx+pt),

while the part due to the reflected wave will be of the form

Cει(mz−lx+pt).

Thus in the dielectric on one side of the plate

R = Bει(mz+lx+pt) + Cει(mz−lx+pt). (1)

If V is the velocity with which electromagnetic disturbances are propagated
through the dielectric, we have by equation (5), Art. 256, since µ′K ′ =
1/V 2,

d2R

dx2
+
d2R

dz2
=

1

V 2

d2R

dt2
,

hence l2 +m2 =
p2

V 2
.

If λ is the wave length of the incident wave, θ the angle between the
normal to the wave front and the axis of x, we have, since

p =
2π

λ
V,

l =
2π

λ
cos θ, m =

2π

λ
sin θ.

Since Q vanishes, we have

dP

dx
+
dR

dz
= 0.
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Substituting the value of R from equation (1), we find

P = −m
l
{Bει(mz+lx+pt) − Cει(mz−lx+pt)}. (2)

The resultant electromotive intensity in the incident wave is

B

cos θ
ει(mz+lx+pt),

in the reflected wave
C

cos θ
ει(mz−lx+pt).

Let us now consider the electromotive intensity in the conducting plate;
in this region we have, by (4), Art. 256, if µ is the magnetic permeability
and σ the specific resistance of the plate,

d2R

dx2
+
d2R

dz2
=

4πµ

σ

dR

dt
,

or, since R varies as ει(mz+pt),

d2R

dx2
= n2R,

where n2 = m2 +
4πµιp

σ
.

The solution of this, since the electromotive intensity is symmetrical with
respect to the plane x = 0, is of the form

R = A(εnx + ε−nx)ει(mz+pt), (3)

and since
dP

dx
+
dR

dz
= 0,

P = −ιm
n
A(εnx − ε−nx)ει(mz+pt). (4)

If a, b, c are the components of magnetic induction, then

da

dt
=
dQ

dz
− dR

dy
,

db

dt
=
dR

dx
− dP

dz
,

dc

dt
=
dP

dy
− dQ

dx
;
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hence a = 0, c = 0, and

b =
n2 −m2

ιpn
A(εnx − ε−nx)ει(mz+pt) in the plate, (5)

b =
l2 +m2

lp
(Bειlx − Cε−ιlx)ει(mz+pt) in the dielectric. (6)

We can get the expression for the magnetic force in the dielectric very
simply by the method given in Art. 9. In the incident wave the resultant
electromotive intensity is

B

cos θ
ει(mz+lx+pt),

hence the polarization is

K ′

4π

B

cos θ
ει(mz+lx+pt),

where K ′ is the specific inductive capacity of the dielectric. The Faraday
tubes are moving with the velocity V , hence by equations (4), Art. 9, the
magnetic force due to their motion is

V K ′
B

cos θ
ει(mz+lx+pt).

The magnetic induction corresponding to this magnetic force is equal, since
µ′K ′ equals 1/V 2, to

B

V cos θ
ει(mz+lx+pt),

which is the first term on the right in equation (6). We may show in
a similar way that the magnetic force due to the motion of the Faraday
tubes in the reflected wave is equal to the second term on the right in
equation (6).

We must now consider the conditions which hold at the junction of
the plate and the dielectric. These may be expressed in many different
ways: they are, however, when the conductors are at rest, equivalent to the
conditions that the tangential electromotive intensity, and the tangential
magnetic force, are continuous. Thus when x = h we must have both
R and b/µ continuous. The first of these conditions gives

A(εnh + ε−nh) = Bειlh + Cε−ιlh, (7)
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the second

n2 −m2

µn
A(εnh − ε−nh) =

ι(l2 +m2)

µ′l
(Bειlh − Cε−ιlh). (8)

Since n2 −m2 =
4πµιp

σ
,

and
l2 +m2

l
=

2π

λ cos θ
,

and for all known dielectrics µ′ may without sensible error be put equal to
unity, equation (8) may be written

2p

σn
A(εnh − ε−nh) =

1

λ cos θ
(Bειlh − Cε−ιlh). (9)

From (7) and (9) we get

A{εnh + ε−nh +
2pλ cos θ

σn
(εnh − ε−nh)} = 2Bειlh, (10)

A{εnh + ε−nh − 2pλ cos θ

σn
(εnh − ε−nh)} = 2Cε−ιlh. (11)

It will be convenient to express A, B, C in terms of the total current
through the plate. If w is the intensity of the current parallel to z in the
plate, w = R/σ, hence by (3)

w =
A

σ
(εnx + ε−nx)ει(mz+pt).

If I0ε
ι(mz+pt) is the total current passing through unit width measured par-

allel to y, of the plate,

I0ε
ι(mz+pt) =

∫ +h

−h
w dx;

hence I0 =
2A

σn
(εnh − ε−nh), (12)

so that w = 1
2
nI0

(εnx + ε−nx)

(εnh − ε−nh)
ει(mz+pt). (13)

Let us now suppose that the frequency of the vibrations is so small that
nh is a small quantity, this will be the case if h

√
4πµp/σ is small. When

nh and therefore nx is small, equation (13) becomes approximately

w =
I0

2h
ει(mz+pt);
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thus the current in the plate is distributed uniformly across it. When nh
is small, equations (12), (10) and (11) become approximately

I0 =
4Ah

σ
,

A(1 + 4πV hσ−1 cos θ) = Bειlh,

A(1− 4πV hσ−1 cos θ) = Cε−ιlh.

Thus corresponding to the current I0 cos(pt+mz) in the plate, we find

R =
σI0

2h
cos(pt+mz),

P =
σI0mx

2h
sin(pt+mz),

b = 4πµI0
x

2h
cos(pt+mz)


in the plate.

Thus, since mx is exceedingly small, we see that the maximum electro-
motive intensity parallel to the boundary of the plate is exceedingly large
compared with the maximum at right angles to it.

In the dielectric we have

R =
σI0

2h
cos(pt+mz) cos l(x− h)

− 2πI0V cos θ sin(pt+mz) sin l(x− h),

P =
1

2h
σI0 tan θ sin(pt+mz) sin l(x− h)

− 2πI0V sin θ cos(pt+mz) cos l(x− h),

b = − σI0

2V h cos θ
sin(pt+mz) sin l(x− h)

+ 2πI0 cos(pt+mz) cos l(x− h).

Thus at the surface of the plate where x = h

R =
σI0

2h
cos(pt+mz),

P = −2πI0V sin θ cos(pt+mz),

b = 2πI0 cos(pt+mz).

Thus at the surface of the plate P/R = −4πV hσ−1 sin θ. If the plate
is metallic this quantity is exceedingly large unless the plate is excessively
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thin or θ very small, so that in the dielectric the resultant electromotive
intensity at the surface of the plate is along the normal, this is in striking
contrast to the effect inside the plate where P/R is very small. The Faraday
tubes in the dielectric close to the plate are thus at right angles to the plate,
while in the plate they are parallel to it; hence by Art. 10 the electric
momentum in the dielectric close to the plate is parallel to the axis of z,
or parallel to the plate, while in the plate itself it is parallel to the axis
of x, or in the direction of motion from the outside of the plate to the
inside. If 4πV h cos θ = σ, then C = 0; in this case there is no reflected
wave; the wave reflected from one side of the plate is annulled by the direct
wave coming through the plate from the other side. It is worthy of remark
that the only one of the quantities we have considered whose value either
in the interior of the plate or near to the plate in the dielectric depends
sensibly upon θ, the direction of motion of the incident wave, is the normal
electromotive intensity in the dielectric and in the plate.

258.] We shall now proceed to discuss the case when nh is large. We
shall begin by considering the distribution of current in the plate. We have
by (13)

w = 1
2
I0n

(εnx + ε−nx)

(εnh + ε−nh)
ει(mz+pt),

and since nh is large this equation may be written as

w = 1
2
I0n ε

−n(h−x) ει(mz+pt). (14)

Now n2 = m2 +
4πµιp

σ

=
p2

V 2
sin2 θ +

4πµιp

σ
.

Now p2/V 2 is very small compared with 4πµp/σ if the plate conducts
as well as a metal, unless the vibrations are quicker than those of light.
When the current makes a million vibrations per second (p2/V 2)/(4πµp/σ)
is approximately 5 × 10−16(σ/µ), and is thus excessively small unless the
resistance is enormously greater than that of acidulated water; we may
therefore without appreciable error write

n2 =
4πµιp

σ
,

and n =
√

2πµp/σ(1 + ι) = n1(1 + ι) say, where

n1 =
√

2πµp/σ.
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Substituting this value for n, and taking the real part of (14), we have

w =
√
πµp/σI0ε

−n1(h−x) cos
{
mz − n1(h− x) + pt+

π

4

}
.

The presence of the factor ε−n1(h−x) in this expression shows that the cur-
rent diminishes in geometrical progression as h−x increases in arithmetical
progression, and that it will practically vanish as soon as n1(h − x) is a
small multiple of unity. We thus get the very interesting result that an al-
ternating current does not distribute itself uniformly over the cross-section
of the conductor through which it is flowing, but concentrates itself to-
wards the outside of the conductor. When the vibrations are very rapid
the currents are practically confined to a thin skin on the outside of the
conductor. The thickness of this skin will diminish as n1 increases; we shall
take 1/n1 as the measure of its thickness.

This inequality in the distribution of alternating currents is explicitly
stated in Art. 690 of Maxwell’s Electricity and Magnetism, but its im-
portance was not recognised until it was brought into prominence and its
consequences developed by the investigations of Mr. Heaviside and Lord
Rayleigh, and the experiments of Professor Hughes.

The amount of this concentration is very remarkable in the magnetic
metals, even for comparatively slow rates of alternation of the current.
Let us for example take the case of a current making 100 vibrations per
second, and suppose that the plate is made of soft iron for which we may
put µ = 103, σ = 104. In this case p = 2π × 102, and n1 or {2πµp/σ} 1

2

is approximately equal to 20; thus at a depth of half a millimetre from
the surface of such a plate, the maximum intensity of the current will only
be 1/ε or .368 of its value at the surface. At the depth of 1 millimetre
it will only be .135, at 2 millimetres .018, and at 3 millimetres .0025, or
the 1/400 part of its value at the exterior. Thus in such a plate, with
the assigned rate of alternations, the currents will practically cease at the
depth of about 2 mm. and will be reduced to about 1/7 of their value at
the depth of one millimetre. Thus in this case the currents, and therefore
the magnetic force, are confined to a layer not more than 3 millimetres
thick.

The thickness of the ‘skin’ for copper is about 13 times that for soft
iron.

The preceding results apply to currents making 100 vibrations per sec-
ond; when we are dealing with such alternating currents as are produced
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by the discharge of a Leyden Jar, where there may be millions of alterna-
tions per second, the thickness of the ‘skin’ in soft iron is often less than
the hundredth part of a millimetre.

Returning to the determination of P , R, and b for this case, we find
from equations (3), (4), and (12) in the plate

R = {πµpσ}
1
2 I0ε

−n1(h−x) cos
{
mz + n1(x− h) + pt+

π

4

}
,

P = 1
2
mσI0ε

−n1(h−x) cos
{
mz + n1(x− h) + pt− π

2

}
,

b = 2πµI0ε
−n1(h−x) cos {mz + n1(x− h) + pt} .

Thus we see that in this case, as well as when nh was small, P/R is in
general very small, so that the resultant electromotive intensity is nearly
parallel to the surface of the plate.

In the dielectric we have by equations (10), (11), and (12) when nh is
large;

R = {πµpσ}
1
2 I0 cos

{
mz + pt+

π

4

}
cos l(x− h)

− 2πV cos θI0 sin(mz + pt) sin l(x− h),

P = {πµpσ}
1
2 tan θI0 sin

{
mz + pt+

π

4

}
sin l(x− h)

− 2πV sin θI0 cos(mz + pt) cos l(x− h),

b = 2πI0 cos(mz + pt) cos l(x− h)

− 1

V
{πµpσ}

1
2 sec θI0 sin

(
mz + pt+

π

4

)
sin l(x− h).

At the surface of the plate these become

R = {πµpσ}
1
2 I0 cos

(
mz + pt+

π

4

)
,

P = −2πV sin θI0 cos(mz + pt),

b = 2πI0 cos(mz + pt),

and we see, as before, that in general P/R is very large, so that the electro-
motive intensity near the plate in the dielectric is approximately at right
angles to it.

Thus, as in the case of the slower vibrations, the momentum is tangen-
tial in the dielectric and normal in the plate.
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If we compare the expressions for the components of the electromotive
intensity in the dielectric given above with those given in the preceding
article, we see that, except close to the plate, they are very approximately
the same.

Periodic Currents in Cylindrical Conductors, and the Rate of Propagation
of Electric Disturbances along them.

259.] We shall now proceed to consider the case which is most easily
realized in practice, that in which electrical disturbances are propagated
along long straight cylindrical wires, such for example as telegraph wires
or sub-marine cables.

A peculiar feature of electrical problems in which infinitely long straight
cylinders play a part, is the effect produced by the presence of other con-
ductors, even though these are such a long way off that it might have
appeared at first sight that their influence could have been neglected. This
is exemplified by the well-known formula for the capacity of two coaxial
cylinders. If a and b are the radii of the two cylinders the capacity per
unit length is proportional to 1/ log(b/a). Thus, even though the cylin-
ders were so far apart that the radius of the outer cylinder was 100 times
that of the inner, yet if the distance were further increased until the outer
radius was 10, 000 times the inner, the capacity of the condenser would be
halved, though similar changes in the distances between concentric spheres
would hardly have affected their capacity to an appreciable extent. For this
reason we shall, though it involves rather more complex analysis, suppose
that our cylinder is surrounded by conductors, and the results we shall
obtain will enable us to determine when the effects due to the conductors
can legitimately be neglected.

260.] The case we shall investigate is that of a cylindrical metallic wire
surrounded by a dielectric, while beyond the dielectric we have another
conductor; the dielectric is bounded by concentric cylinders whose inner
and outer radii are a and b respectively. If b/a is a very large quantity, we
have a case approximating to an aerial telegraph wire, while when b/a is
not large the case becomes that of a sub-marine cable.

In the dielectric between the conductors there are convergent and di-
vergent waves of Faraday tubes, the incidence of which on the conductors
produces the currents through them.
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261.] We shall take the axis of the cylinders as the axis of z, and suppose
that the electric field is symmetrical round this axis; then if the compo-
nents of the electric intensity and magnetic induction vary as ει(mz+pt), the
differential equations by which these quantities are determined are of the
form

d2f

dr2
+

1

r

df

dr
− n2f = 0,

where r denotes the distance of a point from the axis of z. The complete
solution of this equation is expressed by

f = AJ0(ιnr) +BK0(ιnr)∗. (1)

Here J0(x) represents Bessel’s function of zero order, and

K0(x) = (C + log 2− log x)J0(x) + 2{J2(x)− 1
2
J4(x) + 1

3
J6(x) . . .}; (2)

where C is Gauss’ constant, and is equal to .5772157 . . . . . ..
When the real part of ιn is finite, J0(ιnr) is infinite when r is infinite

(Heine, Kugelfunctionen, vol. i. p. 248), so that in any region where r may
become infinite we must have A = 0 in equation (1). Again, K0(ιnr)
becomes infinite when r vanishes, so that in any region in which r can
vanish B = 0.

We shall find the following approximate equations very useful in our
subsequent work.

When x is small

J0(ιx) = 1, J ′0(ιx) = −1
2
ιx.

K0(ιx) = log
2γ

ιx
, K ′0(ιx) = − 1

ιx
;

where log γ = .5772157 . . . ,

and J ′0(ιx) is written for
dJ0(ιx)

d(ιx)
.

When x is very large

J0(ιx) =
εx√
2πx

; J ′0(ιx) = − ιεx√
2πx

.

K0(ιx) = ε−x
√

π

2x
; K ′0(ιx) = ιε−x

√
π

2x
.

(See Heine, Kugelfunctionen, vol. i. p. 248).

∗Heine, Kugelfunctionen, vol. i. p. 189.



262.] ELECTRICAL WAVES AND OSCILLATIONS. 259

262.] We shall now proceed to apply these results to the investigation
of the propagation of electric disturbances along the wire. The axis of the
wire is taken as the axis of z; P , Q, R are the components of the elec-
tromotive intensity parallel to the axes of x, y, z respectively; a, b, c are
the components of the magnetic induction parallel to these axes: µ, σ are
respectively the magnetic permeability and specific resistance of the wire,
µ′, σ′ the values of the same quantities for the external conductor, K is the
specific inductive capacity of the dielectric between the wire and the outer
conductor. We shall suppose that the magnetic permeability of the dielec-
tric is unity, and that V is the velocity of propagation of electromagnetic
action through this dielectric. We shall begin by considering the equations
which hold in the dielectric: it is from this region that the Faraday tubes
come which produce the currents in the conductor. We shall assume, as
before, that the components of the electromotive intensity vary as ει(mz+pt).

The differential equation satisfied by R, the z component of the elec-
tromotive intensity in the dielectric, is (Art. 256)

d2R

dx2
+
d2R

dy2
+
d2R

dz2
=

1

V 2

d2R

dt2
,

or, since R varies as ει(mz+pt),

d2R

dx2
+
d2R

dy2
− k2R = 0, (3)

where k2 = m2 − p2

V 2
.

If we introduce cylindrical coordinates r, θ, z, this equation may be
written

d2R

dr2
+

1

r

dR

dr
+

1

r2

d2R

dθ2
− k2R = 0;

but since the electric field is symmetrical about the axis of z, R is inde-
pendent of θ, hence this equation becomes

d2R

dr2
+

1

r

dR

dr
− k2R = 0,

the solution of which by Art. 261 is, C and D being constants,

R = {CJ0(ιkr) +DK0(ιkr)}ει(mz+pt). (4)

Both the J and K functions have to be included, as r can neither vanish
nor become infinite in the dielectric. This equation indicates the presence
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of converging and diverging waves of Faraday tubes in the dielectric. If
the currents in the wire are in planes through the axis of z, and if S is the
component of the electromotive intensity along r, then

P = S
x

r
, Q = S

y

r
;

hence, since S is a function of r, z, and t, and not of θ, we may write

P =
dχ

dx
, Q =

dχ

dy
; (5)

where χ is a function we proceed to determine. Since P and Q satisfy
equations of the form

we have

But

d2P

dx2
+
d2P

dy2
− k2P = 0,

d2χ

dx2
+
d2χ

dy2
− k2χ = 0.

dP

dx
+
dQ

dy
+
dR

dz
= 0,


(6)

so that by equations (5) and (6)

k2χ+
dR

dz
= 0.

We thus have the following expressions for P , Q, R,

P = −ιm
k2

d

dx
{CJ0(ιkr) +DK0(ιkr)}ει(mz+pt),

Q = −ιm
k2

d

dy
{CJ0(ιkr) +DK0(ιkr)}ει(mz+pt),

R = {CJ0(ιkr) +DK0(ιkr)}ει(mz+pt).


(7)

To find a, b, c, the components of the magnetic induction, we have

da

dt
=
dQ

dz
− dR

dy
,

db

dt
=
dR

dx
− dP

dz
,

dc

dt
=
dP

dy
− dQ

dx
.
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From these equations we find

a =
(m2 − k2)

ιpk2

d

dy
{CJ0(ιkr) +DK0(ιkr)}ει(mz+pt),

b = −(m2 − k2)

ιpk2

d

dx
{CJ0(ιkr) +DK0(ιkr)}ει(mz+pt),

c = 0;


(8)

thus the resultant magnetic induction is equal to

m2 − k2

ιpk2

d

dr
{CJ0(ιkr) +DK0(ιkr)}ει(mz+pt),

and the lines of magnetic force are circles with their centres along the axis
of z and their planes at right angles to it.

We now proceed to consider the wire. The differential equation satisfied
by R in the wire is

d2R

dx2
+
d2R

dy2
+
d2R

dz2
=

4πµ

σ

dR

dt
.

Transforming this equation to cylindrical coordinates it becomes, since
R is independent of θ,

d2R

dr2
+

1

r

dR

dr
− n2R = 0,

where, as usual, n2 = m2 +
4πµιp

σ
.

Since r can vanish in the wire, the solution of this equation is

R = AJ0(ιnr)ει(mz+pt),

where A is a constant.
We can deduce the expressions for P and Q from R in the same way as

for the dielectric, and we find

P = −ιm
n2

A
d

dx
J0(ιnr)ει(mz+pt),

Q = −ιm
n2

A
d

dy
J0(ιnr)ει(mz+pt),

R = AJ0(ιnr)ει(mz+pt);


(9)
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and also

a =
m2 − n2

ιpn2
A
d

dy
J0(ιnr)ει(mz+pt),

b = −m
2 − n2

ιpn2
A

d

dx
J0(ιnr)ει(mz+pt),

c = 0.


(10)

The resultant magnetic induction is at right angles to r and z and equal
to

m2 − n2

ιpn2
A
d

dr
J0(ιnr)ει(mz+pt).

In the outer conductor the differential equations are of the same form,
but their solution will be expressed by the K functions and not by the J ’s,
since r can be infinite in the outer conductor. We find if

n′2 = m2 +
4πµ′ιp

σ′
,

that in the outer conductor, E being a constant,

P = −ιm
n′2

E
d

dx
K0(ιn′r)ει(mz+pt),

Q = −ιm
n′2

E
d

dy
K0(ιn′r)ει(mz+pt),

R = EK0(ιn′r)ει(mz+pt);

 (11)

a =
m2 − n′2

ιpn′2
E

d

dy
K0(ιn′r)ει(mz+pt),

b = −m
2 − n′2

ιpn′2
E

d

dx
K0(ιn′r)ει(mz+pt),

c = 0.


(12)

The resultant magnetic induction is equal to

m2 − n′2

ιpn′2
E

d

dr
K0(ιn′r)ει(mz+pt).

The boundary conditions at the surfaces of separation of the dielectric
and the metals are (1) that the electromotive intensity parallel to the sur-
face of separation is continuous, (2) that the magnetic force parallel to the
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surface is also continuous. Hence if a, b are respectively the inner and
outer radii of the layer of dielectric, condition (1) gives

AJ0(ιna) = CJ0(ιka) +DK0(ιka),

EK0(ιn′b) = CJ0(ιkb) +DK0(ιkb).

}
(13)

Condition (2) gives, writing J ′0(x) for dJ0(x)/dx, and K ′0(x)
for dK0(x)/dx, and substituting for m2 − n2, m2 − k2, m2 − n′2 the values
−4πµιp/σ, p2/V 2, −4πµ′ιp/σ′ respectively,

4πι

σn
AJ ′0(ιna) = − p

V 2k
{CJ ′0(ιka) +DK ′0(ιka)},

4πι

σ′n′
EK ′0(ιn′b) = − p

V 2k
{CJ ′0(ιkb) +DK ′0(ιkb)}.

 (14)

Eliminating A and E from equations (13) and (14), we get

C

(
4πι

σn
J ′0(ιna) J0(ιka) +

p

V 2k
J0(ιna) J ′0(ιka)

)
+D

(
4πι

σn
J ′0(ιna)K0(ιka) +

p

V 2k
J0(ιna)K ′0(ιka)

)
= 0,

C

(
4πι

σ′n′
K ′0(ιn′b) J0(ιkb) +

p

V 2k
K0(ιn′b) J ′0(ιkb)

)
+D

(
4πι

σ′n′
K ′0(ιn′b)K0(ιkb) +

p

V 2k
K0(ιn′b)K ′0(ιkb)

)
= 0.

Eliminating C and D from these equations, we get(
4πι

σn
J ′0(ιna) J0(ιka) +

p

V 2k
J0(ιna) J ′0(ιka)

)
×(

4πι

σ′n′
K ′0(ιn′b)K0(ιkb) +

p

V 2k
K0(ιn′b)K ′0(ιkb)

)

=

(
4πι

σn
J ′0(ιna)K0(ιka) +

p

V 2k
J0(ιna)K ′0(ιka)

)
×(

4πι

σ′n′
K ′0(ιn′b) J0(ιkb) +

p

V 2k
K0(ιn′b) J ′0(ιkb)

)
. (15)

This equation gives the relation between the wave length 2π/m along
the wire and the frequency p/2π of the vibration. To simplify this equation,
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we notice that ka, kb are both very small quantities, for, as we shall
subsequently find, k, when the electrical waves are very long, is inversely
proportional to the wave length, while when the waves are short k is small
compared with the reciprocal of the wave length; we may therefore assume
that when the waves transmitted along the cable are long compared with
its radii, ka and kb are very small. But in this case we have approximately,

J0(ιka) = 1, J0(ιkb) = 1,

J ′0(ιka) = −1
2
ιka, J ′0(ιkb) = −1

2
ιkb;

K0(ιka) = log
2γ

ιka
, K0(ιkb) = log

2γ

ιkb
,

K ′0(ιka) = − 1

ιka
, K ′0(ιkb) = − 1

ιkb
.

Making these substitutions, equation (15) reduces to

k2 = − p

4πV 2

[
σn
(1

a
+ 1

2
k2a log

2γ

ιkb

)J0(ιna)

J ′0(ιna)

− σ′n′
( 1

b
+ 1

2
k2b log

2γ

ιka

)K0(ιn′b)

K ′0(ιn′b)

− p

8πV 2

σn

a

σ′n′

b
(b2 − a2)

J0(ιna)K0(ιn′b)

J ′0(ιna)K ′0(ιn′b)

]
1

log(b/a)
.

Now since both ka and kb are very small,

k2a2 log
2γ

ιkb
, k2b2 log

2γ

ιka

will be exceedingly small quantities unless a is so much smaller than b
that log(2γ/ιka) is comparable with 1/k2b2. This would require such a
disproportion between b and a as to be scarcely realizable in practice on
a planet of the size of the earth; we may therefore write the preceding
equation in the form

k2 = −ιp
2

V 2

[
µ

na

J0(ιna)

J ′0(ιna)
− µ′

n′b

K0(ιn′b)

K ′0(ιn′b)

− 1
2
ι
p2

V 2
(b2 − a2)

µ

na

µ′

n′b

J0(ιna)

J ′0(ιna)

K0(ιn′b)

K ′0(ιn′b)

]
1

log(b/a)
· · · , (16)

where we have put n2 = 4πµιp/σ, n′2 = 4πµ′ιp/σ′. We showed in Art. 258
that we were justified in doing this when the electrical vibrations are not
so rapid as to be comparable in frequency with those of light.
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We see from (16) that k2 is given by an equation of the form

k2 = −ιp
2

V 2

(
ξ − η − 1

2

ιp2

V 2
(b2 − a2)ξη

)
. (16*)

We remark that for all electrical oscillations whose wave lengths are
large compared with the radii of the cable, p2(b2−a2)/V 2 is an exceedingly
small quantity, since it is of the order (b2 − a2)/λ2, where λ is the length
of the electrical wave.

In equation (16*) we see that we can neglect the third term inside the
bracket as long as both ξ and η are small compared with 2V 2/p2(b2− a2).

Now ξ =
µ

na

J0(ιna)

J ′0(ιna)
,

so that the large values of ξ occur when na is small; and in this case,
substituting the approximate values for J0 and J ′0, we see that

ξ = − 2µ

ιn2a2
=

σ

2πpa2
=

V 2

4πp2(b2 − a2)

2σp

V 2

b2 − a2

a2
.

Now for cables of practicable dimensions and materials conveying oscil-
lations slower than those of light 2σp(b2−a2)/V 2a2 is an exceedingly small
quantity, so that for such cases ξ is very small compared with 2V 2/p2(b2−
a2).

Again, η =
µ′

n′b

K0(ιn′b)

K ′0(ιn′b)
;

the large values of η occur when n′b is small. Substituting the approximate
values for K0, K ′0 we find

η = −ιµ′ log

(
2γ

ιn′b

)
.

This is very small compared with µ′/n′b, and may, as in the preceding
case, be shown for all practicable cases to be very small compared with
2V 2/p2(b2 − a2). Hence, as both ξ and η are small compared with this
quantity, we may neglect the third term inside the bracket in equation (16),
which thus reduces to

k2 = −ιp
2

V 2

{
µ

na

J0(ιna)

J ′0(ιna)
− µ′

n′b

K0(ιn′b)

K ′0(ιn′b)

}
1

log (b/a)
. (17)

We shall now proceed to deduce from this equation the velocity of
propagation of electrical oscillations of different frequencies.
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Slowly Alternating Currents.

263.] The first case we shall consider is the one where the frequency is so
small that na is a small quantity. In this case, since we have approximately

J0(ιna)/J ′0(ιna) = −2/ιna,

equation (17) becomes

k2 = −ιp
2

V 2

{
2ιµ

n2a2
− µ′

n′b

K0(ιn′b)

K ′0(ιn′b)

}
1

log (b/a)
. (18)

The first term inside the bracket is very large, for it is equal to 2ιµ/n2a2

and na is small; the second term in the bracket vanishes if b is infinite, and
even if b is so small that n′b is a small quantity, we see, by substituting
the values for K0 and K ′0 when the variable is small, that the ratio of
the magnitude of the second term inside the bracket to that of the first is
approximately equal to

µ′

2µ
n2a2 log

2γ

ιn′b
,

and thus unless n′b is exceedingly small compared with na the second term
may be neglected.

Hence, since n2 = 4πµιp/σ, we may write (18) in the form

k2 = − p

V 2

ισ

2πa2

1

log(b/a)
,

but k2 = m2 − p2

V 2
, so that

m2 =
p2

V 2

{
1− ισ

2πpa2

1

log (b/a)

}
;

we have seen however that the second term in the bracket is large compared
with unity, so that we have approximately

m2 = − p

V 2

ισ

2πa2

1

log(b/a)
.

If R is the resistance and Γ the capacity in electromagnetic measure
per unit length of the wire, then since

R =
σ

πa2
, Γ =

1

2V 2 log(b/a)
,

we have m2 = −ιpRΓ,
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or m = −{pRΓ}
1
2

{
1√
2
− ι√

2

}
,

where the sign has been taken so as to make the real part of ιm negative.
The reason for this is as follows: if m = −α + ιβ, R, the electromotive
intensity parallel to the axis of the wire, will be expressed by terms of the
form

cos(−αz + pt) ε−βz.

This represents a vibration whose phases propagated with the velocity p/α
in the positive direction of z, and which dies away to 1/ε of its original
value after passing over a distance 1/β; if β were negative the disturbance
would increase indefinitely as it travelled along the wire. Substituting the
value of α, we see that the velocity of propagation of the phases is{

2p

RΓ

} 1
2

;

thus the velocity of propagation is directly proportional to the square root
of the frequency and inversely proportional to the square root of the prod-
uct of the resistance and capacity of the wire per unit length.

The distance to which a disturbance travels before falling to 1/ε of its
original value is, on substituting the value of β, seen to be{

2

RΓp

} 1
2

;

thus the distance to which a disturbance travels is inversely proportional
to the square root of the product of the frequency, the resistance, and
capacity per unit length.

If we take the case of a cable transmitting telephone messages of such a
kind that 2π/p, the period of the electrical vibrations, is 1/100 of a second,
then if the copper core is 4 millimetres in diameter and the external radius
of the guttapercha covering about 2.5 times that of the core, R is about
1.3× 10−5 Ohms, or in absolute measure 1.3× 104. Γ is about 15× 10−22.
Substituting these values for R and Γ, we find that the vibrations will
travel over about 128 kilometres before falling to 1/ε of their initial value.
The velocity of propagation of the phases is about 80, 000 kilometres per
second. If we take an iron telegraph wire 4 mm. in diameter, R is about
9.4 × 104; the capacity of such a wire placed 4 metres above the ground
is stated by Hagenbach (Wied. Ann. 29. p. 377, 1886) to be about 10−22
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per centimetre, hence the distance to which electrical vibrations making
100 vibrations per second would travel before falling to 1/ε of their original

value would be {1.3×15/9.4} 1
2 , or 1.43 times the distance in the preceding

case: thus the messages along the aerial wire would travel about half as far
again as those along the cable, the increased resistance of the iron telegraph
wire being more than counterbalanced by the smaller electrostatic capac-
ity. Since vibrations of different frequencies die away at different rates, a
message such as a telephone message which is made up of vibrations whose
frequencies extend over a somewhat wide range will lose its character as
soon as there is any appreciable decay in the vibrations. We see from this
investigation that the lower the pitch the further will the vibrations travel,
so that when a piece of music is transmitted along a telephone wire the
high notes suffer the most.

264.] We shall now proceed to consider the expressions when na is
small for the electromotive intensity and magnetic induction in the wire
and dielectric in terms of the total current flowing through any cross section
of the wire.

We have seen that

m = −{pRΓ}
1
2

{
1√
2
− ι√

2

}
,

hence if α =
{

1
2
pRΓ

} 1
2 ,

we may suppose that the current through the wire at z is equal to

I0ε
−αz cos (−αz + pt).

This is equal to

∫ a

0

R

σ
2πr dr,

so that in this case we find by equation (9), since J0(ιnr) can be replaced
by unity as nr is small,

A =
σI0

πa2
,

so that by (9) we have approximately

R =
σI0

πa2
ε−αz cos (−αz + pt).
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Thus the electromotive intensity, and therefore the current parallel to z,
is uniformly distributed over the cross-section. The electromotive intensity
along the radius, {P 2 +Q2} 1

2 , is easily found by equation (9) to be

−ιm
2

σI0

πa2
rε−αzει(−αz+pt).

Substituting the value of m and taking the real part, we see that it is
equal to {

pσΓ

πa2

}
σI0

2πa2
rε−αz cos

(
−αz + pt+

π

4

)
,

it is thus very small compared with the intensity along the axis of the wire,
so that in the wire the Faraday tubes are approximately parallel to the
axis of the wire.

The magnetic induction in this case reduces approximately to

2µI0

a2
rε−αz cos (−αz + pt).

In the dielectric, we have by equations (7), (13), and (14), assuming that
kr is small,

R =
σ

πa2
I0

{
1− 2V 2Γ log

r

α

}
ε−αz cos (−αz + pt),

since from (13) and (14) D = 2ΓV 2A.

The electromotive intensity along the radius, {P 2 +Q2} 1
2 , is equal to

2V 2{πa2Γ/pσ}
1
2
σ

πa2

1

r
I0ε
−αz cos

(
−αz + pt− π

4

)
.

In this case the radial electromotive intensity is very large compared with
the tangential intensity, so that in the dielectric the Faraday tubes are
approximately at right angles to the wire.

The resultant magnetic induction is equal to

2I0

r
ε−αz cos (−αz + pt).

265.] The interpretation of (17) is easy when na is very small, since
in this case the first term inside the bracket is very large compared with
the second; as na increases the discussion of the equation becomes more
difficult, since the second term in the bracket is becoming comparable with
the first. It will facilitate the discussion of the equation if we consider the
march of the function ιnaJ0(ιna)/J ′0(ιna). Perhaps the simplest way to do
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this is to expand the function xJ0(x)/J ′0(x) in powers of x. Since J0(x) is
a Bessel’s function of zero order, we have

J ′′0 (x) +
1

x
J ′0(x) + J0(x) = 0,

so that
xJ0(x)

J ′0(x)
= −1− xJ ′′0 (x)

J ′0(x)

= −1− x d
dx

log J1(x),

since J ′0(x) = −J1(x), J1(x) being Bessel’s function of the first order.
Let 0, x1, x2, x3 . . . be the positive roots of the equation

J1(x) = 0,

then J1(x) = x

(
1− x2

x2
1

)(
1− x2

x2
2

)(
1− x2

x2
3

)
. . .

so that

d

dx
log J1(x) =

1

x
− 2x

x2
1

(
1− x2

x2
1

) − 2x

x2
2

(
1− x2

x2
2

) − . . . ,
and therefore

x
d

dx
log J1(x) = 1− 2x2

x2
1

(
1 +

x2

x2
1

+
x4

x4
1

+ . . .

)
− 2x2

x2
2

(
1 +

x2

x2
2

+
x4

x4
2

+ . . .

)
+ . . .

= 1− 2x2

(
1

x2
1

+
1

x2
2

+
1

x2
3

+ . . .

)
− 2x4

(
1

x4
1

+
1

x4
2

+
1

x4
3

+ . . .

)
− . . . .

Thus if Sn denotes the sum of the reciprocals of the nth powers of the
roots of the equation

J1(x)/x = 0,

we have
xJ0(x)

J ′0(x)
= −2 + 2S2x

2 + 2S4x
4 + 2S6x

6 + . . . .
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Now the equation J1(x)/x = 0, when expanded in powers of x is,

1− x2

2 . 4
+

x4

2 . 4 . 4 . 6
− x6

2 . 4 . 4 . 6 . 6 . 8
+ . . . = 0.

Hence, if we calculate S2, S4, S6 &c. by Newton’s Rule, we find

S2 =
1

8
, S4 =

1

12× 16
, S6 =

1

12× 162
,

S8 =
1

12× 15× 162
, S10 =

13

9× 15× 164
;

hence

xJ0(x)

J ′0(x)
= −2 +

x2

4
+
x4

96
+

x6

1536
+

x8

23040
+

13x10

4423680
− . . . ,

so that

ιna
J0(ιna)

J ′0(ιna)
= −2− n2a2

4
+
n4a4

96
− n6a6

1536
+

n8a8

23040
− 13n10a10

4423680
,

and since n2 = 4πµιp/σ approximately, we have

ιna
J0(ιna)

J ′0(ιna)
= −2− 1

96
(4πµpa2/σ)2 +

1

23040
(4πµpa2/σ)4 . . .

− ι
{

1

4
(4πµpa2/σ)− 1

1536
(4πµpa2/σ)3

+
13

4423680
(4πµpa2/σ)5 . . .

}
. (19)

The values of ιna J0(ιna)/J ′0(ιna) for a few values of 4πµpa2/σ are
given in the following table:—

4πµpa2/σ ιnaJ0(ιna)/J ′0(ιna)

.5 −2{1.001 + .062ι}
1 −2{1.005 + .125ι}
1.5 −2{1.012 + .186ι}
2 −2{1.021 + .25ι}
2.5 −2{1.032 + .31ι}
3 −2{1.045 + .37ι}

From this table we see that even when 4πµpa2/σ is as large as unity, we
may still as an approximation put

ιna J0(ιna)/J ′0(ιna)
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equal to −2, and k2 will continue to be given by (18).
266.] We must consider now the relative values of the terms inside the

bracket in (18) when na is comparable with unity. In the case of aerial
telegraph wires it is conceivable that there may be cases in which though
na is not large n′b may be so; but when this is the case we have by Art. 261

K0(ιn′b) = −ιK ′0(ιn′b),

so that since n′b is very large the second term inside the bracket in equa-
tion (18) will be small compared with the first, hence we have

k2 = − p

V 2

ισ

2πa2

1

log(b/a)
,

which is the same value as in Art. 263.
In all telegraph cables where the external conductor is water, and in

all but very elevated telegraph wires where the external conductor is wet
earth, the value of σ′ will so greatly exceed that of σ that unless b is more
than a thousand times as great as a, n′b will be very small if the value
of na is comparable with unity. In this case however by Art. 261,

K0(ιn′b)

K ′0(ιn′b)
= −ιn′b log

2γ

ιn′b
,

so that equation (18) becomes

k2 =
p2

V 2

{
2µ

n2a2
+ µ′ log

2γ

ιn′b

}
1

log(b/a)
.

Since n′b is very small while na is comparable with unity, the second term
inside the brackets will be very large compared with the first, hence this
equation may be written

k2 =
p2

V 2
log

2γ

ιn′b

µ′

log(b/a)
; (20)

or m2 =
p2

V 2

{
1 + log

2γ

ιn′b

µ′

log(b/a)

}
.

Thus approximately

m2 =
p2

V 2
log

2γ

ιn′b

µ′

log(b/a)
,

and since n′2 = 4πµ′ιp/σ′,

m2 = 1
2

p2

V 2

{
log

σ′γ2

µ′πb2p
+
ιπ

2

}
µ′

log(b/a)
,
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hence we have approximately

m =
1√
2

p

V


µ′ log

σ′γ2

µ′πb2p

log(b/a)


1
2 {

1 + ι
π

4

1

log(σ′γ2/µ′πb2p)

}
, (21)

where the plus sign has been taken so as to make the real part of ιm nega-
tive. This equation corresponds to a vibration whose phases are propagated
with the velocity

V

{
log(b2/a2)

µ′ log(σ′γ2/µ′πb2p)

} 1
2

,

and which fades away to 1/ε of its original value after passing over a dis-
tance

4

π

V

pµ′
1
2

{log(b2/a2)× log(σ′γ2/µ′πb2p)}
1
2 .

This case presents many striking peculiarities. In the first place we
see that to our order of approximation both the velocity of propagation of
the phases and the rate of decay of the vibrations are independent of the
resistance of the wire. These quantities depend somewhat on the resistance
of the external conductor, but only to a comparatively small extent even
on that, as σ′ only enters their expressions as a logarithm. The velocity of
propagation of the phases only varies slowly with the frequency, as p only
occurs in its expression as a logarithm. The rate of decay, i.e. the real part
of ιm, is proportional to the frequency and thus varies more rapidly with
this quantity than when na is small, as in that case the rate of decay is
proportional to the square root of the frequency (Art. 263). We see from
the preceding investigation that for sending periodic disturbances along
a cable, the frequency being such as to make n′b a very small quantity,
we do not gain any appreciable advantage by making the core of a good
conductor like copper rather than of an inferior one like iron unless the
conditions are such as to make na small compared with unity. We see too
that the distance to which the disturbance travels before it falls to 1/ε of
its original value increases with the resistance of the external conductor.
We shall show in a subsequent article that the heat produced per second in
the external conductor is very large compared with that produced in the
same time in the wire, thus the dissipation of energy is controlled by the
external conductor and not by the wire.
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The preceding results will continue true as long as n′b is small, even
though the frequency of the electrical vibrations gets so large that na/µ is
a very large quantity; for when na is large we have by Art. 261,

J ′0(ιna) = −ιJ0(ιna),

so that equation (16) becomes

k2 =
p2

V 2

{
µ

na
+ µ′ log

2γ

ιn′b

}
1

log(b/a)
.

Since na/µ is large and n′b small the second term inside the bracket is
large compared with the first, so that we get the same value of k2 as that
given by equation (20).

267.] The next case we have to consider is that in which both na and
n′b are very large; when this is the case we know by Art. 261 that

J ′0(ιna) = −ιJ0(ιna), K ′0(ιn′b) = ιK0(ιn′b).

Making these substitutions, equation (17) becomes

k2 =
p2

V 2

{
µ

na
+

µ′

n′b

}
1

log(b/a)
, (22)

or m2 =
p2

V 2

{
1 +

(
µ

na
+

µ′

n′b

)
1

log(b/a)

}
=

p2

V 2

{
1− ι√

8πp

(√
µσ

a2
+

√
µ′σ′

b2

)
1

log(b/a)

}
approximately. Since the second term inside the bracket is small compared
with unity, extracting the square root we have,

m = − p
V

{
1− ι√

32πp

(√
µσ

a2
+

√
µ′σ′

b2

)
1

log(b/a)

}
. (23)

This represents a vibration travelling approximately with the velocity V
and dying away to 1/ε of its initial value after traversing a distance

4V

√
2π

p

{√
µσ

a2
+

√
µ′σ′

b2

}−1

log(b/a).

Since the imaginary part of m is small compared with the real part,
the vibration will travel over many wave lengths before its amplitude is
appreciably reduced. From the expression for the rate of decay in this case
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we see that when the wire is surrounded by a very much worse conductor
than itself, as is practically always the case with cables, the distance to
which these very rapid oscillations will travel will be governed mainly by
the outside conductor, and will be almost independent of the resistance
and permeability of the wire; no appreciable advantage therefore would
in this case be derived by using a well-conducting but expensive material
like copper for the wire. In aerial wires the decay will be governed by the
conductivity of the earth rather than by that of the wire, unless the height
of the wire above the ground, which we may take to be comparable with
b, is so great that µ′σ′/b2 is not large compared with µσ/a2.

Experiments which confirm the very important conclusion that these
rapid oscillations travel with the velocity V , that is with the velocity of
light through the dielectric, will be described in the next chapter.

268.] As rapidly alternating currents are now very extensively em-
ployed, it will be useful to determine the components of the electromotive
intensity both in the wire and in the dielectric in terms of the total current
passing through the wire. Let this current at the point z and time t be
represented by the real part of I0ε

ι(mz+pt). The line integral of the magnetic
force taken round any circuit is equal to 4π times the current through that
circuit. Now by equation (10) the magnetic force at the surface of the wire
is

4πι

σn
AJ ′0(ιna)ει(mz+pt).

Since the line integral of this round the surface of the wire is equal to
4πI0ε

ι(mz+pt), we have

A = − ισn
2πa

I0

J ′0(ιna)
.

Substituting this value for A in equation (9), we find that in the wire

R = − ισn
2πa

I0

J ′0(ιna)
J0(ιnr)ε

ι(mz+pt)

; (24)

where the real part of the expression on the right-hand side is to be taken.
When na and nr are very large, we have by Art. 261

J ′0(ιna) = −ι εna√
2πna

, J0(ιnr) =
εnr√
2πnr

;
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substituting these values in (24), we find

R =
{µpσ
πar

} 1
2
I0ε
−{2πµp/σ}

1
2 (a−r) cos(ψ), (25)

where ψ = mz + pt− (2πµp/σ)
1
2 (a− r) +

π

4
.

Similarly, we find by equation (9) that the radial electromotive intensity

(P 2 +Q2)
1
2 is given by the equation

{P 2 +Q2}
1
2 = − p

V

σI0

2π
√

ar
ε−{2πµp/σ}

1
2 (a−r) sin

(
ψ − π

4

)
. (26)

The resultant magnetic force is by equation (10) equal to

2√
ar
I0ε
−{2πµp/σ}

1
2 (a−r) cos

(
ψ − π

4

)
.

Since all these expressions contain the factor ε−(2πµp/σ)
1
2 (a−r), we see

that the magnitudes of the electromotive intensity and of the magnetic
force must, since na—and therefore (2πµp/σ)

1
2 a—is by hypothesis very

large, diminish very rapidly as the distance from the surface of the wire in-
creases. The maximum values of these quantities at the distance (σ/2πµp)

1
2

from the surface are only 1/ε of their values at the boundary, and they di-
minish in geometrical progression as the distance from the surface increases
in arithmetical progression. Thus the currents and magnetic forces are, as
in Art. 258, practically confined to a skin on the outside of the wire. We
have taken (σ/2πµp)

1
2 as the measure of the thickness of this ‘skin.’ For

currents making 100 vibrations per second, the skin for soft iron having a
magnetic permeability of 1000 is about half a millimetre thick, for copper it
is about thirteen times as great. For currents making a million vibrations
per second, such as can be produced by discharging Leyden jars, the thick-
ness of the skin for soft iron—since we know that this substance retains its
magnetic properties even in these very rapidly alternating magnetic fields
(J. J. Thomson, Phil. Mag. Nov. 1891, p. 460)—is about 1/200 of a mil-
limetre, for copper it is about 1/15 of a millimetre. In these cases there
is enormous concentration of the current, and since the currents produced
by the discharge of a Leyden jar, though they only last for a short time,
are very intense whilst they last, the condition of the outer layers of the
wires whilst the discharge is passing through them is very interesting, as
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they are conveying currents of enormously greater density than would be
sufficient to melt them if the currents were permanent instead of transient.

This concentration of the current, or ‘throttling’ as it is sometimes
called, produces a great increase in the apparent resistance of the wire,
since it reduces so largely the area which is available for the passage of
the current. If in equation (25) we put r = a, we get maximum value of

R = (µpσ/πa2)
1
2 × (maximum value of the current through the wire), thus

we may look upon (µpσ/πa2)
1
2 as the apparent resistance per unit length of

the wire to these alternating currents. This resistance increases indefinitely
with the rate of alternation of the current; we see too that it is inversely
proportional to the circumference of the wire instead of to the area as for
steady currents. This is what we should expect, since the currents are
concentrated in the region of the circumference. The resistance of the solid
wire to these alternating currents is the same as that to steady currents of
a tube of the same material, the outside of the tube coinciding with the
outside of the wire, and the thickness of the tube being 1/

√
2 times the

thickness of the skin.
We see by comparing equations (25) and (26) that the electromotive

intensity parallel to the axis of the wire is very large compared with the
radial electromotive intensity in the wire, so that in the wire the Faraday
tubes are approximately parallel to its axis.

269.] Let us now consider the expressions for the electromotive intensi-
ties and magnetic force in the dielectric; we find by equations (8) and (24),
assuming ka and kb small, na, n′b large,

D = 2ιV 2k2I0/p.

Hence, using (22), we have in the dielectric when kr is small,

R =

{(µpσ
πa2

) 1
2 −

[(µpσ
πa2

) 1
2

+
(µ′pσ′
πb2

) 1
2

]
log r/a

log b/a

}
I0 cosφ,

where φ = mz + pt+
π

4
,

while the radial electromotive intensity is

2V I0

r
cos (mz + pt),

and the resultant magnetic force

2I0

r
cos (mz + pt).
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We see that the maximum value of the radial electromotive intensity is
very great compared with that of the tangential, so that in the dielectric
the Faraday tubes are approximately radial. The momentum due to these
tubes is, by Art. 12, at right angles both to the tubes and the magnetic
force, so that in the dielectric it is parallel to the axis of the wire, while
in the wire itself it is radial. Thus for these rapidly alternating currents
the momentum in the dielectric follows the wire. The radial polarization
in the dielectric is K/4π times the radial electromotive intensity, and since

K = 1/V 2,

it is equal to
I0

2πV r
cos (mz + pt).

If the Faraday tubes in the dielectric are moving with velocity V at right
angles to their length, i.e. parallel to the wire, the magnetic force due to
these moving tubes is, by Art. 9, at right angles both to the direction of
motion, i.e. to the axis of the wire, and to the direction of the tubes, i.e. to
the radius, and the magnitude of the magnetic force being, by (4), Art. 9,
4πV times the polarization, is

2I0

r
cos (mz + pt),

which is the expression we have already found. Hence we may regard the
magnetic force in the field as due to the motion through it of the radial
Faraday tubes, these moving parallel to the wire with the velocity with
which electromagnetic disturbances are propagated through the dielectric.

In the outer conductor when n′r is large

R = −I0

{
µ′pσ′

πbr

} 1
2

ε−(2πµ′p/σ′)
1
2 (r−b) cosφ′,

where φ′ = mz + pt− (2πµ′p/σ′)
1
2 +

π

4
.

The radial electromotive intensity is

1

2π

p

V

σ′I0√
br
ε−(2πµ′p/σ′)

1
2 (r−b) cos

(
φ′ +

π

4

)
.

The resultant magnetic force is perpendicular to r and equal to

2I0√
br

ε−(2πµ′p/σ′)
1
2 (r−b) cos

(
φ′ − π

4

)
.
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We see from these equations that unless pσ′ is comparable with V 2 the
tangential electromotive intensity will be large compared with the radial.

Transmission of Arbitrary Disturbances along Wires.

270.] Since vibrations with different periods travel at different rates,
we cannot without further investigation determine the rate at which an
arbitrary disturbance communicated to a limited portion of the wire will
travel along it. In order to deduce an expression which would represent
completely the way in which an arbitrary disturbance is propagated, we
should have to make use of the general relation between m and p given
by equation (18). This relation is however too complicated to allow of
the necessary integrations being effected. The complication arises from
the vibrations whose frequencies are so great that 2πµpa2/σ is no longer
a small quantity; such vibrations however die away more rapidly than the
slower ones, so that when the distance from the origin of disturbance is
considerable the latter are the only vibrations whose effects are felt. For
such vibrations, we have by Art. 263

ιp = −m
2

RΓ
.

Hence a term in the expression for R of the form

F (α) ε−
m2

RΓ
t cosm(z − α),

where α is any constant and F (α) denotes an arbitrary function of α, will
satisfy the electrical conditions. By Fourier’s theorem, however,

1

2π

∫ +∞

−∞

∫ +∞

−∞
F (α) ε−

m2

RΓ
t cosm(z − α) dmdα, (27)

is equal to F (z) when t = 0. Hence this integral, since it satisfies the
equations of the electric field, will be the expression for the disturbance on
the wire at z at the time t of the disturbance, which is equal to F (z) when
t = 0. When the disturbance is originally confined to a space close to the
origin, F (α) vanishes unless α is very small; the expression (27) becomes
in this case

F

∫ +∞

−∞
ε−

m2

RΓ
t cosmz dm, (28)
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where F =

∫
F (α) dα.

Since

∫ +∞

−∞
ε−α

2x2

cos 2 bx dx =

√
π

α
ε−

b2

α2 ,

we see by (28) that the disturbance at time t and place z will be equal to

F{πRΓ/t}
1
2 ε−z

2RΓ/4t2 . (29)

Thus at a given point on the wire the disturbance will vary as

1√
t
ε−

c
t ,

where c is a constant. The rise and fall of the disturbance with the time
is represented in Fig. 108, where the ordinates represent the intensity of
the disturbance and the abscissae the time. It will be noticed that the
disturbance remains very small until t approaches c/4, when it begins to
increase with great rapidity, reaching its maximum value when t = 2c;
when t is greater than this the disturbance diminishes, but fades away
from its maximum value much more slowly than it approached it.

Fig. 108.

Since the disturbance rises suddenly to its maximum value we may with
propriety call T , the time which elapses before this value is attained at a
given point, the time taken by the disturbance to travel to that point. We
see from (29) that

T = 1
2
z2RΓ. (30)
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Thus the time taken by the disturbance to travel a distance z is propor-
tional to z2, it is also proportional to the product of the resistance and
capacity per unit length.

By dividing z by T we get the so-called ‘velocity of the current along
the wire;’ this by (30) is equal to

2

zRΓ
. (31)

The velocity thus varies inversely as the length of the cable, and for
short lengths it may be very great. The preceding formula would in fact,
unless z were greater than 2/VRΓ, indicate a velocity of propagation
greater than V . This however is impossible, and the error arises from our
using the equation ιp = −m2/RΓ instead of the accurate equation (18).
By our approximate equation vibrations of infinite frequency travel with
infinite velocity, in reality we have seen (Art. 267) that they travel with
the velocity V . These very rapid vibrations however die away very quickly,
and when we get to a distance equal to a small multiple of 2/VRΓ they
will practically have disappeared, and at such distances we may trust the
expressions (31).

A considerable number of experiments have been made on the time
required to transmit messages on both aerial and submarine cables; the
results of some of these, made on aerial telegraph iron wires 4 mm. in
diameter, are given in the accompanying table taken from a paper by Ha-
genbach (Wied. Ann. 29. p. 377):—

Observer. Length of line
in kilometers.

Time taken for message
to travel (T .)

1020T/(square of
length of line in

centimetres).

Fizeau and Gounelle 314 .003085 313
Walker . . . . . . 885 .02943 376
Mitchel . . . . . 977 .02128 223
Gould and Walker . 1681 .07255 257
Guillemin . . . . 1004 .028 278
Plantamour and Hirsch 132.6 .00895 5090
Löwy and Stephan . 863 .024 322
Albrecht . . . . . 1230 .059 390
Hagenbach . . . . 284.8 .00176 217

Hagenbach proved by making experiments with lines of different lengths
that the time taken by a message to travel along a line was proportional
to the square of the length of the line.
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If we apply the formula

T = 1
2
z2RΓ

to Hagenbach’s experiment in the above table, where

z = 284.8× 105,

R = 9.4× 104,

and (by estimation) Γ = 10−22,

we find T = .0038, whereas Hagenbach found .0017. The agreement is not
good, but we must remember that with delicate receiving instruments it
will be possible to detect the disturbance before it reaches its maximum
value, so that we should expect the observed time to be less than that
at which the effect is a maximum. In Hagenbach’s experiment the line
was about 4 times the length which, according to the formula, would have
made the disturbance travel with the velocity of light, so that it would
seem to have been long enough to warrant the application of a formula
which assumes that the shorter waves would have become so reduced in
amplitude that their effects might be neglected.

When the wire is of length l, we know by Fourier’s Theorem that any
initial disturbance R may be represented by the equation

R =
(
A1 sin

πz

l
+B1 cos

πz

l

)
+
(
A2 sin

2πz

l
+B2 cos

2πz

l

)
+
(
A3 sin

3πz

l
+B3 cos

3πz

l

)
+ . . . .

Since ιp = −m2/RΓ,

the value of R after a time t has elapsed will be represented by the equation

R =
(
A1 sin

πz

l
+B1 cos

πz

l

)
ε−

π2

l2
t

RΓ

+
(
A2 sin

2πz

l
+B2 cos

2πz

l

)
ε−

4π2

l2
t

RΓ + . . .

. . .
(
As sin

sπz

l
+Bs cos

sπz

l

)
ε−

s2π2

l2
t

RΓ + . . . .

For a full discussion of the transmission of signals along cables the
reader is referred to a series of papers by Lord Kelvin at the beginning of
Vol. II of his Collected Papers.
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Relation between the External Electromotive Intensity and the Current.

271.] We have hitherto only considered the total electromotive intensity
and have not regarded it as made up of two parts, one due to external
causes and the other due to the induction of the alternating currents in
the conductors and dielectric. For some purposes, however, it is convenient
to separate the electromotive intensity into these two parts, and to find
the relation between the currents and the external electromotive intensity
acting on the system.

We may conveniently regard the external electromotive intensity as
arising from an electrostatic potential φ satisfying the equation ∇2φ =
0. We suppose that, as in the preceding investigation, all the variables
contain the factor ει(mz+pt). Since φ varies as ειmz, the equation ∇2φ = 0
is equivalent to

d2φ

dr2
+

1

r

dφ

dr
−m2φ = 0.

The solution of this is, in the wire

φ = LJ0(ιmr) ει(mz+pt),

in the dielectric

φ = {MJ0(ιmr) +NK0(ιmr)} ει(mz+pt),

in the outer conductor

φ = SK0(ιmr) ει(mz+pt).

If, as before, a and b are the radii of the internal and external boundaries
of the dielectric, we have, since φ is continuous,

LJ0(ιma) = MJ0(ιma) +NK0(ιma),

SK0(ιmb) = MJ0(ιmb) +NK0(ιmb).

The excess of the normal electromotive intensity due to the electrostatic
potential in the dielectric over that in the wire is equal to

ιm{LJ ′0(ιma)− (MJ ′0(ιma) +NK ′0(ιma))} ει(mz+pt);

substituting the value for L−M in terms of N from the preceding equation,
this becomes

ιm
N

J0(ιma)
{J ′0(ιma)K0(ιma)− J0(ιma)K ′0(ιma)}.
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Now J ′0(ιma)K0(ιma)− J0(ιma)K ′0(ιma) =
1

ιma
,

for let u = J ′0(x)K0(x)− J0(x)K ′0(x),

then
du

dx
= J ′′0 (x)K0(x)− J0(x)K ′′0 (x),

but J ′′0 (x) +
1

x
J ′0(x)− J0(x) = 0,

K ′′0 (x) +
1

x
K ′0(x)−K0(x) = 0;

substituting the values of J ′′0 (x), K ′′0 (x) from these equations, we find

du

dx
= −1

x
{J ′0(x)K0(x)− J0(x)K ′0(x)}

= −u
x
,

hence u =
C

x
,

where C is a constant. Substituting from Art. 261 the values for J0(x),
J ′0(x), K0(x), K ′0(x) when x is very small, we find that C is equal to unity.

Thus when r = a, the normal electromotive intensity due to the elec-
trostatic potential in the dielectric exceeds that in the wire by

N

aJ0(ιma)
ει(mz+pt).

Similarly we may show that when r = b the normal electromotive
intensity in the dielectric exceeds that in the outer conductor by

− M

bK0(ιmb)
ει(mz+pt).

Now the electromotive intensities arising from the induction of the cur-
rents are continuous, so that the discontinuity in the total normal intensity
must be equal to the discontinuity in the components arising from the elec-
trostatic potential. By equations (7), (9), (14) the total normal intensity
in the dielectric at the surface of separation exceeds that in the wire by

A
m

n
J ′0(ιna)

{
n2 −m2

µ(k2 −m2)
− 1

}
ει(mz+pt);

hence we have

A
m

n
J ′0(ιna)

{
n2 −m2

µ(k2 −m2)
− 1

}
=

N

aJ0(ιma)
. (32)
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Similarly

E
m

n′
K ′0(ιn′b)

{
(n′2 −m2)

µ′(k2 −m2)
− 1

}
= − M

bK0(ιmb)
. (33)

By equations (10) and (12)

2πa
n2 −m2

µpn
AJ ′0(ιna) ει(mz+pt),

2πb
n′2 −m2

µ′pn′
EK ′0(ιn′b) ει(mz+pt)

are respectively the line integrals of the magnetic force round the circumfer-
ence of the wire and the inner circumference of the outer conductor, hence
they are respectively 4π times the current through the wire, and 4π times
the current through the wire plus that through the dielectric. Unless how-
ever the radius of the outer conductor is enormously greater than that of
the wire, the current through the wire is infinite in comparison with that
through the dielectric: for the electromotive intensity R is of the same or-
der in the wire and in the dielectric; the current density in the wire is R/σ,
that in the dielectric (K/4π)dR/dt, or KιpR/4π, or ιpR/4πV 2. Now for
metals σ is of the order 104; and since V 2 is 9 × 1020, we see that even if
there are a million alternations per second the intensity of the current in
the wire to that in the dielectric is roughly as 2 × 1011 is to unity; thus,
unless the area through which the polarization currents flow exceeds that
through which the conduction currents flow in a ratio which is impracti-
cable in actual experiments, we may neglect the polarization currents in
comparison with the conduction ones, so that

a(n2 −m2)

µn
AJ ′0(ιna) =

b(n′2 −m2)

µ′n′
EK ′0(ιn′b). (34)

Returning to equations (32) and (33), we notice that

(m2 − n2)/µ(k2 −m2),

which is equal to 4πιV 2/σp,

is very large when σp is small compared with V 2. Now σ for metals is
of the order 104, and V 2 is equal to 9 × 1020; so that unless p is of the
order 1016 at least, that is unless the vibrations are as rapid as those of light,
(m2 − n2)/µ(m2 − k2) is exceedingly large. Even when the conductivity
is no better than that of sea-water, where σ may be taken to be of the



271.] ELECTRICAL WAVES AND OSCILLATIONS. 286

order 1010, this quantity will be very large unless there are more than a
thousand million vibrations per second. Hence in equations (32) and (33)
we may neglect the second terms inside the brackets on the left-hand sides,
and write

A
m

n

(n2 −m2)

µ(k2 −m2)
J ′0(ιna) =

N

aJ0(ιma)
,

E
m

n′
(n′2 −m2)

µ′(k2 −m2)
K ′0(ιn′b) = − M

bK0(ιmb)
;

 (35)

hence by (34), we have

N

J0(ιma)
= − M

K0(ιmb)
. (36)

Let E be the external electromotive intensity parallel to the axis of the
wire at its surface, then

E = −ιm{MJ0(ιma) +NK0(ιma)}ει(mz+pt),

or by equation (36)

= −ιmN{K0(ιma)−K0(ιmb)}ει(mz+pt).

Since both ma and mb are very small, we have approximately by
Art. 261,

K0(ιma) = log
2γ

ιma
, K0(ιmb) = log

2γ

ιmb
,

hence we have
E = −ιmN log(b/a)ει(mz+pt),

or by equation (35), since J0(ιma) = 1,

E = −ιm
2a

n

n2 −m2

µ(k2 −m2)
J ′0(ιna) log(b/a)Aει(mz+pt).

But by Art. 263 we have, if I0ε
ι(mz+pt) is the total current through the

wire,

I0 =
2πaι

σn
AJ ′0(ιna),

hence, since n2 −m2 = 4πµιp/σ,

m2 − k2 = p2/V 2,



272.] ELECTRICAL WAVES AND OSCILLATIONS. 287

E = 2ιp
m2

p2

V 2

log(b/a) . I0ε
ι(mz+pt).

But by equation (18)

m2 =
p2

V 2

{
1− 1

4πp

(
nσ

a

J0(ιna)

J ′0(ιna)
− n′σ′

b

K0(ιn′b)

K ′0(ιn′b)

)
1

log b/a

}
,

hence

E = 2ιp

{
log

b

a
− 1

4πp

(
nσ

a

J0(ιna)

J ′0(ιna)

−n
′σ′

b

K0(ιn′b)

K ′0(ιn′b)

)}
I0ε

ι(mz+pt). (37)

272.] Now, as in Art. 263, when both na and n′b are small, the last
term inside the bracket will be small compared with the others; so that we
may write equation (37) in the form

E = 2ιp

{
log

b

a
− 1

4πp

nσ

a

J0(ιna)

J ′0(ιna)

}
I,

where I is the total current through the wire and is equal to

I0ε
ι(mz+pt).

From the expressions for ιnaJ0(ιna)/J ′0(ιna) given in Art. 265, we see
that we may write this equation

E = 2ιp

{
log

b

a
+

σ

2πιpa2

[
1 +

1

12× 16
(4πµpa2/σ)2

− 1

12× 15× 162
(4πµpa2/σ)4 + . . .+ ι

(
1

8
(4πµpa2/σ)

− 1

12× 162
(4πµpa2/σ)3 +

13

9× 15× 164
(4πµpa2/σ)5 + . . .

)]}
I,

or E = ιp

{
2 log

b

a
+

1

2
µ− 1

48

π2µ3p2a4

σ2
+

13

8640

π4µ5p4a8

σ4
. . .

}
I

+
σ

πa2

{
1 +

1

12

π2p2µ2a4

σ2
− 1

180

π4p4µ4a8

σ4
. . .

}
I. (38)
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We may write this as

E = PιpI + QI, (39)

or since ιpI =
dI

dt
,

as E = P
dI

dt
+ QI.

If L is the coefficient of self-induction and R the resistance of a circuit
through which a current I is flowing, we have

external electromotive force = L
dI

dt
+RI.

By the analogy of this equation with (39) we may call P the self-
induction and Q the resistance of the cable per unit length for these al-
ternating currents. Q has been called the ‘impedance’ of unit length of
the circuit by Mr. Heaviside, and this term is preferable to resistance as it
enables the latter to be used exclusively for steady currents.

By comparing (39) with (38), we see that

P = 2 log
b

a
+

1

2
µ− 1

48
(µ3p2π2a4/σ2) +

13

8640
(µ5p4π4a8/σ4)− . . . ,

Q =
σ

πa2

{
1 +

1

12
(µ2p2π2a4/σ2)− 1

180
(µ4p4π4a8/σ4) + . . .

}
.

 (40)

These results are the same as those given in equation (18), Art. 690,
of Maxwell’s Electricity and Magnetism, with the exception that µ is put
equal to unity in that equation and in it A is written instead of 2 log(b/a).

We see from these equations that as the rate of alternation increases, the
impedance increases while the self-induction diminishes; both these effects
are due to the influence of the rate of alternation on the distribution of
the current. As the rate of alternation increases the current gets more and
more concentrated towards the surface of the wire; the effective area of the
wire is thus diminished and the resistance therefore increased. On the other
hand, the concentration of the current on the surface of the wire increases
the average distance between the portions of the currents in the wire, and
diminishes that between the currents in the wire and those flowing in the
opposite direction in the outer conductor; both these effects diminish the
self-induction of the system of currents.
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The expression for Q does not to our degree of approximation involve b
at all, while b only enters into the first term of the expression for P, which
is independent of the frequency; thus, as long as na is very small, the
presence of the outer conductor does not affect the impedance, nor the
way in which the self-induction varies with the frequency. When p = 0 the
self-induction per unit length is 2 log(b/a) + 1

2
µ. Since µ for soft iron may

be as great as 2000, the self-induction per unit length of straight iron wires
will be enormously greater than that of wires made of the non-magnetic
metals.

273.] We shall now pass on to the case when na is large
and n′b small, so that nσJ0(ιna)/paJ ′0(ιna) is small compared with
n′σ′K0(ιn′b)/pbK ′0(ιn′b). These conditions are compatible if the specific
resistance of the outer conductor is very much greater than that of the
wire. In this case equation (37) becomes

E = 2ιp

{
log

b

a
+

1

4πp

n′σ′

b

K0(ιn′b)

K ′0(ιn′b)

}
I.

Since n′b is small, we have approximately

K0(ιn′b) = log(2γ/ιn′b), K ′0(ιn′b) = −1/ιn′b;

hence E = 2ιp
{

log b/a + µ′ log(γ/
√
πµ′b2p/σ′)− ι3µ′π

4

}
.

Thus the coefficient of self-induction in this case is

2 log(b/a) + 2µ′ log(γ/
√
πµ′pb2/σ′),

and the impedance 3
2
πpµ′.

It is worthy of remark that to our order of approximation neither the
impedance nor the self-induction depends upon the resistance of the wire.
This is only what we should expect for the self-induction, for since na is
large the currents will all be on the surface of the wire; the configuration of
the currents has thus reached a limit beyond which it is not affected by the
resistance of the wire. It should be noticed that the conditions na large and
n′b small make the impedance 3

2
πpµ′ large compared with the resistance

σ/πa2 for steady currents.
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Very Rapid Currents.

274.] We must now consider the case where the frequency is so great
that na and n′b are very large; in this case, by Art. 261,

J ′0(ιna) = −ιJ0(ιna), K ′0(ιn′b) = ιK0(ιn′b),

so that equation (37) becomes

E = 2ιp

{
log

b

a
+

[( σµ

4πpa2

) 1
2

+
( σ′µ′

4πpb2

) 1
2

]( 1√
2
− ι√

2

)}
I; (41)

we see from this equation that the self-induction P is given by the equation

P = 2 log(b/a) + (σµ/2πpa2)
1
2 + (σ′µ′/2πpb2)

1
2 , (42)

and the impedance Q by

Q = (σµp/2πa2)
1
2 + (σ′µ′p/2πb2)

1
2 . (43)

In a cable the conductivity of the outer conductor is very much less than
that of the core, so that σ′/b2 will be large compared with σ/a2; thus the
self-induction and impedance of a cable are both practically independent
of the resistance of the wire and depend mainly upon that of the outer
conductor. The limiting value of the self-induction when the frequency is
indefinitely increased is 2 log(b/a); as this does not involve µ it is the same
for iron as for copper wires. The difference between the self-induction per
unit length of the cable for infinitely slow and infinitely rapid vibrations
is by equations (40) and (42) equal to µ/2. The impedance of the circuit
increases indefinitely with the frequency of the alternations.

If we trace the changes in the values of the self-induction and impedance
as the frequency p increases, we see from Arts. 272, 273, 274 that when
this is so small that na is a small quantity the self-induction decreases
and the impedance increases by an amount proportional to the square of
the frequency. When the frequency increases so that na is considerable
while n′b is small, the self-induction varies very slowly with the frequency
while the impedance is directly proportional to it. When the frequency is
so great that both na and n′b are large the self-induction approaches the
limit 2 log(b/a), while the impedance is proportional to the square root of
the frequency.
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Flat Conductors.

275.] In many experiments flat strips of metal in parallel planes are
used instead of wires, with the view of diminishing the self-induction; these
are generally arranged so that the direct and return currents flow along
adjacent and parallel strips. When the frequency of the vibrations is very
large, the positive and negative currents endeavour to get as near together
as possible, they will thus flow on the surfaces of the strips which are
nearest each other. If the distance between the planes of the strips is small
in comparison with their breadth we may consider them as a limiting case
of the cable, when the specific resistance of the wire is the same as that
of the outer conductor, and when the values of a and b are indefinitely
great, their difference however remaining finite and equal to the distance
between the strips. If I ′ is the current flowing across unit width of the
strip, then, since with our previous notation I is the current flowing over
the circumference of the cable,

I ′ = I/2πa.

Since b = a + d, where d is very small compared with a,

log
b

a
=
d

a
approximately.

Making these substitutions, equation (41) becomes

E = 2ιp

{
d+

√
µσ

2πp
(1− ι)

}
2πI ′.

Thus, in this case the self-induction per unit length is

4π

{
d+

√
µσ

2πp

}
,

and the impedance

4π

√
µσp

2π
.

276.] Though, as we have just seen, it is possible to regard the case of
two parallel metal slabs as a particular case of the cable, yet inasmuch as
the geometry of the particular case is much simpler than that of the cable,
the case is one where points of theory are most conveniently discussed; it
is therefore advisable to treat it independently. We shall suppose that we
have two slabs of the same metal, the adjacent faces of the slabs being



276.] ELECTRICAL WAVES AND OSCILLATIONS. 292

parallel and separated by the distance 2h; we shall take the plane parallel
to these faces and midway between them as the plane of yz, the axis of x
being normal to the faces. We shall suppose that all the variable quantities
vary as ει(mz+pt) and are independent of y. The slabs are supposed also to
extend to infinity in directions parallel to y and z and to be infinitely thick.

Let σ be the specific resistance of the slabs, V the velocity of propaga-
tion of electrodynamic action through the dielectric which separates them.
Then, using the same notation as before, since all the quantities are inde-
pendent of y, the differential equations satisfied by the components of the
electromotive intensity are by Art. 262

d2R

dx2
= k2R in the dielectric,

and
d2R

dx2
= n2R

in either of the slabs.
Thus, in the dielectric we may put

R = (Aεkx +Bε−kx)ει(mz+pt),

P = −ιm
k

(Aεkx −Bε−kx)ει(mz+pt),

in the slab for which x is positive

R = Cε−nxει(mz+pt),

P =
ιm

n
Cε−nxει(mz+pt),

and in that for which x is negative

R = Dεnxει(mz+pt),

P = −ιm
n
Dεnxει(mz+pt),

the real part of n being taken positive in both cases.
Since R is continuous when x = ±h, we have

Aεkh +Bε−kh = Cε−nh,

Aε−kh +Bεkh = Dε−nh.

}
(44)
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Since the magnetic force parallel to the surface is continuous, we have,
if µ is the magnetic permeability of the slab,

k2 −m2

k
(Aεkh −Bε−kh) =

m2 − n2

µn
Cε−nh,

k2 −m2

k
(Aε−kh −Bεkh) = −m

2 − n2

µn
Dε−nh.

Eliminating C and D by the aid of equations (44), we have

A

(
k2 −m2

k
− m2 − n2

µn

)
εkh = B

(
k2 −m2

k
+
m2 − n2

µn

)
ε−kh,

A

(
k2 −m2

k
+
m2 − n2

µn

)
ε−kh = B

(
k2 −m2

k
− m2 − n2

µn

)
εkh.

 (45)

From these equations we get

A2 = B2.

The solution A = B corresponds to the current flowing in the same
direction in the two slabs, the other solution corresponds to the case when
the current flows in one direction in one slab and in the opposite direction in
the other; it is this case we shall proceed to investigate. Putting A = −B,
equation (45) becomes

k2 −m2

k
(εkh + ε−kh) +

n2 −m2

µn
(εkh − ε−kh) = 0; (46)

but k2 −m2 = −p2/V 2,

n2 −m2 = 4πµιp/σ,

and kh is very small, thus (46) becomes approximately

p2

V 2k
=

4πιp

σn
kh,

or k2 = − p
2

V 2

ιnσ

4πhp
,

so that m2 =
p2

V 2

{
1− ιnσ

4πhp

}
. (47)

As we have remarked before, 4πµp/σ is in the case of metals very large
compared with m2, so that we have approximately

n2 = 4πµιp/σ,
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and therefore approximately by equation (47)

m2 =
p2

V 2

{
1 +

(
σµ

8πh2p

) 1
2

(1− ι)

}
. (48)

Thus, if m = ξ + ιη, we have

ξ2 − η2 =
p2

V 2

{
1 +

(
σµ

8πh2p

) 1
2

}
,

2ξη = − p
2

V 2

(
σµ

8πh2p

) 1
2

.

But if ω is the velocity with which the phases are propagated along the
slab, ω2 = p2/ξ2, so that we have

1

ω2
=
η2

p2
+

1

V 2

{
1 +

(
σµ

8πh2p

) 1
2

}
,

thus 1/ω2 is never less than 1/V 2, or ω is never greater than V , so that
the velocity of propagation of the phases along the slab can never exceed
the rate at which electrodynamic action travels through the dielectric.

If the frequency is so high that σµ/8πh2p is small, then we have by
equation (48)

m = − p
V

{
1− ι

2

(
σµ

8πh2p

) 1
2

}
approximately.

This equation represents a disturbance propagated with the velocity V ,
whose amplitude fades away to 1/ε of its original value after traversing a
distance

2V h

{
8πp

σµ

} 1
2

.

If the frequency is so low that σµ/8πh2p is large, then we have approx-
imately by equation (48)

m = − p
V

{
σµ

4πh2p

} 1
4 (

cos
π

8
− ι sin

π

8

)
,

or m = − p
V

{
σµ

4πh2p

} 1
4

(.92− ι.38) .
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This corresponds to a vibration propagated with the velocity

1.08V {4πh2p/σµ}
1
4 ,

and fading away to 1/ε of its original amplitude after traversing a distance

2.6V {4πh2/µσp3}
1
4 .

If the total current through a slab per unit width is represented by the
real part of I0ε

ι(mz+pt), then, when the frequency is so great that σµ/8πh2p
is a small quantity and therefore the real part of m large compared with
the imaginary part, we have since

I0ε
ι(mz+pt) =

∫ ∞
h

R

σ
dx =

C

σn
ε−nhει(mz+pt),

C = σnεnhI0;

hence by (44) A = −B =
σnI0

2kh
.

We have therefore in the dielectric

R = σI0

√
2n′(x/h) cos

(
mz + pt+

π

4

)
,

P = 4πmI0(V 2/p) cos(mz + pt),

b = −4πI0 cos(mz + pt),

where n′ = {2πµp/σ}
1
2 .

In the metal slab we have on the side where x is positive,

R = σI0

√
2n′ε−n

′(x−h) cos
(
mz + pt− n′(x− h) +

π

4

)
,

P = −σI0mε
−n′(x−h) sin(mz + pt− n′(x− h)),

b = −4πµI0ε
−n′(x−h) cos(mz + pt− n′(x− h)).

We see from these equations that P/R is very large in the dielectric and
very small in the metal slab, thus the Faraday tubes are at right angles to
the conductor in the dielectric and parallel to it in the metal slab.
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Mechanical Force between the Slabs.

277.] This may be regarded as consisting of two parts, (1) an attractive
force, due to the attraction of the positive electricity of one slab on the
negative of the other, (2) a repulsive force, due to the repulsion between
the positive currents in one slab and the negative in the other. To calculate
the first force we notice that since V 2/pσ is very large, the value of P in the
conductor is very small compared with the value in the dielectric, and may
without appreciable error be neglected; hence if e is the surface density
of the electricity on the slab and K the specific inductive capacity of the
dielectric,

4πe = −K4πm(V 2/p)I0 cos(mz + pt).

The force on the slab per unit area is equal to Pe/2; substituting the values
of P and e this becomes

2πKm2(V 4/p2)I2
0 cos2(mz + pt).

The force due to the repulsion between the currents in the slabs per
unit volume is equal to the product of the magnetic induction b into w, the
intensity of the current parallel to z. Since

4πµw = − db
dx
,

the force per unit volume is equal to

− 1

8πµ

db2

dx
,

hence the repulsive force per unit area of the surface of the slab

= −
∫ ∞
h

1

8πµ

db2

dx
dx

=
1

8πµ

(
b2
)
x=h

= 2πµI2
0 cos2(mz + pt).

When the alternations are so rapid that the vibrations travel with the
velocity of light

V 2m2 = p2,

and since K = 1/V 2, the attraction between the slabs is equal to

2πI2
0 cos2(mz + pt),
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while the repulsion is
2πµI2

0 cos2(mz + pt),

hence the resultant repulsion is equal to

2π(µ− 1)I2
0 cos2(mz + pt).

If the slabs are non-magnetic µ = 1, so that for these very rapid vibra-
tions the electrostatic attraction just counterbalances the electromagnetic
repulsion. Mr. Boys (Phil. Mag. [5], 31, p. 44, 1891) found that the me-
chanical forces between two conductors carrying very rapidly alternating
currents was too small to be detected, even by the marvellously sensitive
methods for measuring small forces which he has perfected, and which
would have enabled him to detect forces comparable in magnitude with
those due to the electrostatic charges or to the repulsion between the cur-
rents.

Propagation of Longitudinal Waves of Magnetic Induction along Wires.

278.] In the preceding investigations the current has been along the
wire and the lines of magnetic force have formed a series of co-axial circles,
the axis of these circles being that of the wire. Another case, however, of
considerable practical importance is when these relations of the magnetic
force and current are interchanged, the current flowing in circles round
the axis of the wire while the magnetic force is mainly along it. This
condition might be realized by surrounding a portion of the wire by a
short co-axial solenoid, then if alternating currents are sent through this
solenoid periodic magnetic forces parallel to the wire will be started. We
shall in this article investigate the laws which govern the transmission of
such forces along the wire. The problem has important applications to the
construction of transformers; in some of these the primary coil is wound
round one part of a closed magnetic circuit, the secondary round another.
This arrangement will not be efficient if there is any considerable leakage
of the lines of magnetic force between the primary and the secondary. We
should infer from general considerations that the magnetic leakage would
increase with the rate of alternation of the current through the primary.
For let us suppose that an alternating current passes through an insulated
ring imbedded in a cylinder of soft iron surrounded by air, the straight
axis of the ring coinciding with the axis of the cylinder. The variations in
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the intensity of the current through this ring will induce other currents in
the iron in its neighbourhood; the magnetic action of these currents will,
on the whole, cause the component of the magnetic force along the axis
of the cylinder to be less and the radial component greater than if the
current through the ring were steady; in which case there are no currents
in the iron. Thus the effect of the changes in the intensity of the current
through the primary will be to squeeze as it were the lines of magnetic
force out of the iron and make them complete their circuit through the
air. Thus when the field is changing quickly, the lines of magnetic force,
instead of taking a long path through the medium of high permeability,
will take a short path, even though the greater part of it is through a
medium of low permeability such as air. The case is quite analogous to
the difference between the path of a steady current and that of a rapidly
alternating one. A steady current flows along the path of least resistance,
a rapidly alternating one along the path with least self-induction. Thus,
for example, if we have two wires in parallel, one very long but made of
such highly conducting material that the total resistance is small, the other
wire short but of such a nature that the resistance is large, then when the
current is steady by far the greater part of it will travel along the long wire;
if however the current is a rapidly alternating one, the greater part of it
will travel along the short wire because the self-induction is smaller than
for the long wire, and for these rapidly alternating currents the resistance
is a secondary consideration.

In the magnetic problem the iron corresponds to the good conductor,
the air to the bad one. When the field is steady the lines of force prefer to
take a long path through the iron rather than a short one through the air;
they will thus tend to keep within the iron; when however the magnetic
field is a very rapidly alternating one, the paths of the lines of force will
tend to be as short as possible, whatever the material through which they
pass. The lines of force will thus in this case leave the iron and complete
their circuit through the air.

We shall consider the case of a right circular soft iron cylinder where
the lines of magnetic force are in planes through the axis taken as that of
z, the corresponding system of currents flowing round circles whose axis
is that of the cylinder. The cylinder is surrounded by a dielectric which
extends to infinity. Let a, b, c be the components of the magnetic induction
parallel to the axes of x, y, z respectively; then, since the component of
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the magnetic induction in the xy plane is at right angles to the axis of the
cylinder, we may put

a =
dχ

dx
, b =

dχ

dy
.

Let us suppose that a, b, c all vary as ει(mz+pt).
Now in the iron cylinder a, b, c all satisfy differential equations of the

form
d2c

dx2
+
d2c

dy2
= n2c,

where n2 = m2 + 4πµιp/σ,

µ being the magnetic permeability and σ the specific resistance of the
cylinder.

In the dielectric outside the cylinder the differential equation satisfied
by the components of the magnetic induction is of the form

d2c

dx2
+
d2c

dy2
= k2c,

where k2 = m2 − p2

V 2
,

and V is the velocity with which electromagnetic disturbances are propa-
gated through the dielectric.

We have also
da

dx
+
db

dy
+
dc

dz
= 0.

The solution of these equations is easily seen to be, in the iron cylinder,

c = AJ0(ιnr)ει(mz+pt),

a = −ιm
n2
A
d

dx
J0(ιnr)ει(mz+pt),

b = −ιm
n2
A
d

dy
J0(ιnr)ει(mz+pt),

while in the dielectric, since r can become infinite,

c = CK0(ιkr)ει(mz+pt),

a = −ιm
k2
C
d

dx
K0(ιkr)ει(mz+pt),

b = −ιm
k2
C
d

dy
K0(ιkr)ει(mz+pt).



278.] ELECTRICAL WAVES AND OSCILLATIONS. 300

Let a be the radius of the cylinder, then when r = a the tangential
magnetic force in the cylinder is equal to that in the dielectric, hence

A

µ
J0(ιna) = CK0(ιka);

since the radial magnetic induction is continuous, we have
m

n
AJ ′0(ιna) =

m

k
CK ′0(ιka).

Eliminating A and C from these equations, we get

ιna

µ

J0(ιna)

J ′0(ιna)
= ιka

K0(ιka)

K ′0(ιka)
, (49)

an equation which will enable us to find m when p is known.
Let us begin with the case when the frequency of the alternations is

small enough to allow of the currents being nearly uniformly distributed
over the cross-section of the cylinder. In this case we have approximately

J0(ιna) = 1, J ′0(ιna) = −1
2
ιna,

so that equation (49) becomes

− 2

µ
= ιka

K0(ιka)

K ′0(ιka)
. (50)

Since for soft iron 2/µ is a small quantity, the right-hand side of this
equation and therefore ka must be small; but in this case we have approx-
imately

K0(ιka) = log(2γ/ιka),

K ′0(ιka) = − 1

ιka
,

so that (50) becomes

− 2

µ
= k2a2 log(2γ/ιka). (51)

To solve this equation consider the solution of

x log x = −y,

when y is small. If x = −y/ log y, then

x log x = −y
{

1 +
log log(1/y)

log(1/y)

}
,
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but when y is small log log(1/y) is small compared with log(1/y), so that
an approximate solution of the equation is

x = −y/ log y.

If we apply this result to equation (51), we find that the approximate
solution of that equation is

k2 = − 4

a2µ

1

log(µγ2)
.

Now k2 = m2 − p2

V 2
,

and since the value we have just found for k is in any practicable case very
large compared with p2/V 2, we see that k2 = m2 approximately, so that

m =
ι2

a

{
1

µ

1

log(µγ2)

} 1
2

.

Thus since in the expression for c there is the factor

ειmz or ε
− 2

a
z
n

1
µ log(µγ2)

o 1
2

,

we see that the magnetic force will die away to 1/ε of its value at a distance

1
2
a{µ log(µγ2)}

1
2

from its origin.
279.] In the last case the current was uniformly distributed over the

cross-section. We can investigate the effect of the concentration of the
current at the boundary of the cylinder by supposing that na is large
compared with unity though small compared with µ. In this case, since
approximately

J ′0(ιna) = −ιJ0(ιna),

equation (49) becomes

−na

µ
= ιka

K0(ιka)

K ′0(ιka)
.

Since the left-hand side of this equation is small, ιka is also small, so that
by Art. 261 we may write this equation as

−na

µ
= k2a2 log(2γ/ιka). (52)
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This equation gives a value for k2 which is very large compared with p2/V 2,
so that approximately m = k. We also see that k or m is small compared
with n, we may therefore put

n = {4πµιp/σ}
1
2 .

Thus equation (52) becomes

k2a2 log
ιka

2γ
=

{
4πpa2

µσ

}1
2

ε
ιπ
4 ,

or putting ιka/2γ = q,

q2 log q2 = − 1

2γ2

{
4πpa2

µσ

} 1
2

ε
ιπ
4 .

To solve this equation put q2 = wειψ; equating real and imaginary
parts, we get

w logw cosψ − wψ sinψ = − 1

γ2

{
πpa2

2µσ

} 1
2

,

w logw sinψ + wψ cosψ = − 1

γ2

{
πpa2

2µσ

} 1
2

.

Since w is very small, the terms in logw are much the most important; an
approximate solution of these equations is, therefore, since the solution of
x log x = −y, is x = −y/ log y,

w = −

1

γ2

{
πpa2

µσ

} 1
2

log
1

γ2

{
πpa2

µσ

} 1
2

,

ψ =
π

4
.

Hence, since k = m and k2a2 = −4γ2wε

ιπ

4 , we find

ma = 2γ
√
−w

{
cos

π

8
+ ι sin

π

8

}
= 2γw

1
2

(
cos

5π

8
+ ι sin

5π

8

)
.
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Thus, since in the expression for c there is the factor ειmz, we see that
c will fade away to 1/ε of its initial value at a distance from the origin
equal to

a

2γw
1
2

cosec
5π

8
,

or substituting the value of w just found,

a

2
cosec

5π

8

{
µσ

πpa2

}{
log γ2

( µσ

πpa2

)1
2

}1
2

.

This distance is much shorter than the corresponding one when the
current was uniformly distributed over the cross-section of the wire, and
the important factor varies as µ

1
4 instead of µ

1
2 . Thus the leakage of the

lines of magnetic force out of the iron cylinder is much greater when the
alternations are rapid than when they are slow. This is in accordance
with the conclusion we came to from general reasoning at the beginning of
Art. 278.

The result of this investigation points strongly to the advisability of
very fine lamination of the core of a transformer, so as to get a uniform
distribution of magnetic force over the iron and thus avoid magnetic leak-
age. There are many other advantages gained by fine lamination, of which
one, more important than the effect we are considering, is the diminution
in the quantity of heat dissipated by eddy currents. We shall proceed to
consider in the next article the dissipation of energy by the currents in the
wire.

Dissipation of Energy by the Heat produced by Alternating Currents.

280.] A great deal of light is thrown on the laws which govern the
decay of currents in conductors by the consideration of the circumstances
which affect the amount of heat produced in unit time by these currents.
As we have obtained the expressions for these currents we could determine
their heating effect by direct integration; we shall however proceed by a
different method for the sake of introducing a very important theorem due
to Professor Poynting, and given by him in his paper ‘On the Transfer of
Energy in the Electromagnetic Field,’ Phil. Trans. 1884, Part II, p. 343.
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The theorem is that

K

4π

∫∫∫ (
P
dP

dt
+Q

dQ

dt
+R

dR

dt

)
dx dy dz

+
µ

4π

∫∫∫ (
α
dα

dt
+ β

dβ

dt
+ γ

dγ

dt

)
dx dy dz

+

∫∫∫
(Xẋ+ Y ẏ + Zż) dx dy dz +

∫∫∫
(Pp+Qq +Rr) dx dy dz

=
1

4π

∫∫
{l(R′β −Q′γ) +m(P ′γ −R′α) + n(Q′α− P ′β)} dS,

where the volume integrals on the left-hand side are taken throughout the
volume contained by the closed surface S, of which dS is an element and
l, m, n the direction cosines of the normal drawn outwards.

P , Q, R are the components of the electromotive intensity.
α, β, γ those of the magnetic force.
X, Y , Z those of the mechanical force acting on the body in consequence

of the passage of currents through it.
ẋ, ẏ, ż the components of the velocity of a point in the body.
p, q, r the components of the conduction currents.
P ′, Q′, R′ the parts of the components of the electromotive intensity

which do not depend upon the motion of the body.
K the specific inductive capacity and µ the magnetic permeability.
The following proof of this theorem is taken almost verbatim from Pro-

fessor Poynting’s paper. Let u, v, w be the components of the total current,
which is the sum of the polarization and conduction currents; we have, since
the components of the former are respectively

K

4π

dP

dt
,

K

4π

dQ

dt
,

K

4π

dR

dt
,

K

4π

dP

dt
= u− p,

K

4π

dQ

dt
= v − q,

K

4π

dR

dt
= w − r.
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Hence

K

4π

∫∫∫ (
P
dP

dt
+Q

dQ

dt
+R

dR

dt

)
dx dy dz

=

∫∫∫
{P (u− p) +Q(v − q) +R(w − r)} dx dy dz

=

∫∫∫
(Pu+Qv +Rw) dx dy dz −

∫∫∫
(Pp+Qq +Rr) dx dy dz. (53)

Now (Maxwell’s Electricity and Magnetism, Vol. II, Art. 598),

P = cẏ − bż − dF

dt
− dψ

dx
= cẏ − bż + P ′,

Q = aż − cẋ− dG

dt
− dψ

dy
= aż − cẋ+Q′,

R = bẋ− aẏ − dH

dt
− dψ

dz
= bẋ− aẏ +R′,

where P ′,Q′,R′ are the parts of P ,Q,R which do not contain the velocities.
Thus

Pu+Qv +Rw

= (cẏ − bż)u+ (aż − cẋ)v + (bẋ− aẏ)w + P ′u+Q′v +R′w,

= −{(vc− wb)ẋ+ (wa− uc)ẏ + (ub− va)ż}+ P ′u+Q′v +R′w,

= −{Xẋ+ Y ẏ + Zż}+ P ′u+Q′v +R′w;

where X, Y , Z are the components of the mechanical force per unit volume
(Maxwell, Vol. II, Art. 603).

Substituting this value for Pu+Qv +Rw in (53) and transposing, we
obtain

K

4π

∫∫∫ (
P
dP

dt
+Q

dQ

dt
+R

dR

dt

)
dx dy dz

+

∫∫∫
(Xẋ+ Y ẏ + Zż) dx dy dz +

∫∫∫
(Pp+Qq +Rr) dx dy dz

=

∫∫∫
(P ′u+Q′v +R′w) dx dy dz. (54)



280.] ELECTRICAL WAVES AND OSCILLATIONS. 306

Now 4πu =
dγ

dy
− dβ

dz
,

4πv =
dα

dz
− dγ

dx
,

4πw =
dβ

dx
− dα

dy
.

Substituting these values for u, v, w in the right-hand side of equation (54),
that side of the equation becomes

1

4π

∫∫∫ {
P ′
(
dγ

dy
− dβ

dz

)
+Q′

(
dα

dz
− dγ

dx

)
+R′

(
dβ

dx
− dα

dy

)}
dx dy dz

=
1

4π

∫∫∫ [{
R′
dβ

dx
−Q′dγ

dx

}
+

{
P ′
dγ

dy
−R′dα

dy

}
+

{
Q′
dα

dz
− P ′dβ

dz

}]
dx dy dz.

Integrating by parts, we find that the expression is equal to

1

4π

∫∫
(R′β −Q′γ) dy dz +

1

4π

∫∫
(P ′γ −R′α) dx dz

+
1

4π

∫∫
(Q′α− P ′β) dx dy

− 1

4π

∫∫∫ (
β
dR′

dx
− γ dQ

′

dx
+ γ

dP ′

dy
− αdR

′

dy
+ α

dQ′

dz
− βdP

′

dz

)
dx dy dz,

the double integrals being taken over the closed surface. This expression
may be written as

1

4π

∫∫
{l(R′β −Q′γ) +m(P ′γ −R′α) + n(Q′α− P ′β)} dS

− 1

4π

∫∫∫ {
α

(
dQ′

dz
− dR′

dy

)
+ β

(
dR′

dx
− dP ′

dz

)
+ γ

(
dP ′

dy
− dQ′

dx

)}
dx dy dz,

where dS is an element of the surface and l, m, n are the direction cosines
of the normal to the surface drawn outwards.
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But
dQ′

dz
− dR′

dy
=

d

dt

(
dH

dy
− dG

dz

)
=
da

dt
= µ

dα

dt
.

Similarly
dR′

dx
− dP ′

dz
=
db

dt
= µ

dβ

dt
,

dP ′

dy
− dQ′

dx
=
dc

dt
= µ

dγ

dt
.

Hence we see that the right-hand side of (54) is equal to

1

4π

∫∫
{l(R′β −Q′γ) +m(P ′γ −R′α) + n(Q′α− P ′β)} dS

− µ

4π

∫∫∫ (
α
dα

dt
+ β

dβ

dt
+ γ

dγ

dt

)
dx dy dz.

Transposing the last term to the other side of the equation, we get

K

4π

∫∫∫ (
P
dP

dt
+Q

dQ

dt
+R

dR

dt

)
dx dy dz

+
µ

4π

∫∫∫ (
α
dα

dt
+ β

dβ

dt
+ γ

dγ

dt

)
dx dy dz

+

∫∫∫
(Xẋ+ Y ẏ + Zż) dx dy dz +

∫∫∫
(Pp+Qq +Rr) dx dy dz

=
1

4π

∫∫∫
{l(R′β −Q′γ) +m(P ′γ −R′α) + n(Q′α− P ′β)} dS, (55)

which is the theorem we set out to prove.
Now the electrostatic energy inside the closed surface is (Maxwell,

Art. 631)

1

2

∫∫∫
(Pf +Qg +Rh) dx dy dz,

or since f =
K

4π
P, g =

K

4π
Q, h =

K

4π
R,

K

8π

∫∫∫
(P 2 +Q2 +R2) dx dy dz.
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The electromagnetic energy inside the same surface is (Maxwell, Art. 635)

1

8π

∫∫∫
(aα + bβ + cγ) dx dy dz,

or
µ

8π

∫∫∫
(α2 + β2 + γ2) dx dy dz.

Thus the first two integrals on the left-hand side of equation (55) ex-
press the gain per second in electric and magnetic energy. The third in-
tegral expresses the work done per second by the mechanical forces. The
fourth integral expresses the energy transformed per second in the conduc-
tor into heat, chemical energy, and so on. Thus the left-hand side expresses
the total gain in energy per second within the closed surface, and equa-
tion (55) expresses that this gain in energy may be regarded as coming
across the bounding surface, the amount crossing that surface per second
being expressed by the right-hand side of that equation.

Thus we may regard the change in the energy inside the closed surface
as due to the transference of energy across that surface; the energy moving
at right angles both to H, the resultant magnetic force, and to E, the
resultant of P ′, Q′, R′. The amount of energy which in unit time crosses
unit area at right angles to the direction of the energy flow is HE sin θ/4π,
where θ is the angle between H and E. The direction of the energy flow is
related to those of H and E in such a way that the rotation of a positive
screw from E to H would be accompanied by a translation in the direction
of the flow of energy.

Equation (55) justifies us in asserting that we shall arrive at correct
results as to the changes in the distribution of energy in the field if we
regard the energy as flowing in accordance with the laws just enunciated:
it does not however justify us in asserting that the flow of energy at any
point must be that given by these laws, for we can find an indefinite number
of quantities us, vs, ws of the dimensions of flow of energy which satisfy
the condition ∫∫

(lus +mvs + nws) dS = 0,

where the integration is extended over any closed surface. Hence, we see



281.] ELECTRICAL WAVES AND OSCILLATIONS. 309

that if the components of the flow of energy were

R′β −Q′γ +
∑
us instead of R′β −Q′γ,

P ′γ −R′α +
∑
vs instead of P ′γ −R′α,

Q′α− P ′β +
∑
ws instead of Q′α− P ′β,

the changes in the distribution of energy would still be those which actually
take place.

Though Professor Poynting’s investigation does not give a unique so-
lution of the problem of finding the flow of energy at any point in the
electromagnetic field, it is yet of great value, as the solution which it does
give is simple and one that readily enables us to form a consistent and
vivid representation of the changes in the distribution of energy which are
going on in any actual case that we may have under consideration. Several
applications of this theorem are given by Professor Poynting in the paper
already quoted, to which we refer the reader. We shall now proceed to
apply it to the determination of the rate of heat production in wires at rest
traversed by alternating currents.

281.] Since the currents are periodic, P 2, Q2, R2, α2, β2, γ2 will be of
the form

A+B cos(2pt+ θ),

where A and B do not involve the time; hence the first two integrals on the
left-hand side of equation (55) will be multiplied by factors which, as far
as they involve t, will be of the form sin(2pt+ θ); hence, if we consider the
mean value of these terms over a time involving a great many oscillations of
the currents, they may be neglected: the gain or loss of energy represented
by these terms is periodic, and at the end of a period the energy is the
same as at the beginning. The third term on the left-hand side vanishes in
our case because the wires are at rest, and since ẋ, ẏ, ż vanish P ′, Q′, R′

become identical with P , Q, R.
Thus when the effects are periodic we see that equation (55) leads to

the result that the mean value with respect to the time of∫∫∫
(Pp+Qq +Rr) dx dy dz

is equal to that of

1

4π

∫∫
{l(Rβ −Qγ) +m(Pγ −Rα) + n(Qα− Pβ)} dS.
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The first of these expressions is, however, the mean rate of heat production,
and in the case of a wire whose electrical state is symmetrical with respect
to its axis, the value of the quantity under the sign of integration is the
same at each point of the circumference of a circle whose plane is at right
angles to the axis of the wire; hence in this case we have the result:

The mean rate of heat production per unit length of the wire is equal
to the mean value of

1
2
a (tangential electromotive intensity)× (tangential magnetic force), (56)

a, as before, being the radius of the wire.
282.] Let us apply this result to find the rate of heat production in the

wire and in the outer conductor of a cable when the current is parallel to
the axis of the wire. By the methods of Art. 268, we see that if the total
current through the wire at the point z is equal to the real part of

I0ε
ι(mz+pt),

or if m = −α + ιβ, to
I0ε
−βz cos(−αz + pt),

then, Art. 268, equation (24), the electromotive intensity R in the wire
parallel to the axis of z is equal to the real part of

− ισn
2πa

J0(ιnr)

J ′0(ιna)
I0ε
−βzει(−αz+pt). (57)

If we neglect the polarization currents in the dielectric in comparison with
the conduction currents through the wire, then the line integral of the
magnetic force round the inner surface of the outer conductor must equal
4πI0ε

ι(mz+pt); using this principle we see that E in equation (11), Art. 262,
equals −ιn′σ′I0/2πbK ′0(ιn′b), and hence the electromotive intensity par-
allel to z in the outer conductor is equal to the real part of

−ισ
′n′

2πb

K0(ιn′r)

K ′0(ιn′b)
I0ε
−βzει(−αz+pt), (58)

the notation being the same as in Art. 262.
The tangential magnetic force at the surface of the wire is (Art. 262)

2I0

a
ε−βz cos(−αz + pt), (59)
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while that at the surface of the outer conductor is, if we neglect the polariza-
tion currents in the dielectric in comparison with the conduction currents
through the wire,

2I0

b
ε−βz cos(−αz + pt). (60)

Let us now consider the case when the rate of alternation of the current
is so slow that both na and n′b are small quantities. When na is small
J ′0(ιna) = −ιna/2, while J0(ιna) = 1 approximately; hence, putting r = a
in (57), we find that the tangential electromotive intensity is

σ

πa2
I0ε
−βz cos(−αz + pt).

Hence by (56) and (59) the rate of heat production in the wire is equal to
the mean value of

σ

πa2
I2

0 ε
−2βz cos2(−αz + pt).

that is to
σ

2πa2
I2

0 ε
−2βz.

Let us now consider the rate of heat production in the outer conductor;
since n′b is very small, we have approximately

K0(ιn′b) = log(2γ/ιn′b), K ′0(ιn′b) = −1/ιn′b.

Making these substitutions in (58), we see that the tangential electromotive
intensity at the surface of the outer conductor is equal to the real part of

−σ
′n′2

2π
log(2γ/ιn′b) I0ε

−βzει(−αz+pt),

and since n′2 = 4πµ′ιp/σ′, the real part of this expression is

2µ′p log(γ
√
σ′/πµ′pb2)I0ε

−βz sin(−αz + pt)

− 3
2
πµ′pI0ε

−βz cos(−αz + pt).

Hence by (56) and (60) the rate of heat production in the outer con-
ductor is equal to

3
4
πµ′pI2

0 ε
−2βz,

since the mean value with respect to the time of

sin(−αz + pt) cos(−αz + pt)
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is zero. Thus, when n′b is small, the rate of heat production in the outer
conductor is independent both of the radius and specific resistance of that
conductor. The ratio of the heat produced in unit time in the wire to that
produced in the outer conductor is thus 2σ/3π2a2µ′p, which is very large
since we have assumed that n2a2, i.e. 4πµpa2/σ, is a small quantity; in
this case, therefore, by far the larger proportion of the heat is produced
in the wire. This explains the result found in Art. 263 that the rate of
decay of the vibrations is nearly independent of the resistance of the outer
conductor and depends almost wholly upon that of the wire.

283.] When the frequency is so great that na is large though n′b is still
small, then J0(ιna) = ιJ ′0(ιna), so that by (57) the tangential electromotive
intensity at the surface of the wire is equal to the real part of

σ

2πa
{4πµιp/σ}

1
2 I0ε

−βzει(−αz+pt),

which is equal to
σ

2πa
{2πµp/σ}

1
2 I0ε

−βz{cos(−αz + pt)− sin(−αz + pt)}.

Hence by (56) and (59) the mean rate of heat production in the wire is
equal to

σ

4πa
(2πµp/σ)

1
2 I2

0 ε
−2βz.

Since n′b is supposed to be small the rate of heat production in the outer
conductor is as before

3π

4
µ′pI2

0 ε
−2βz,

hence the ratio of the amount of heat produced in unit time in the wire to
that produced in the outer conductor is

µ

µ′

{
2σ

9π3pµa2

} 1
2

.

Thus, since n2a2 and so 4πpµa2/σ is very large by hypothesis, we see that
unless µ/µ′ is very large this ratio will be very small; in other words the
greater part of the heat is produced in the outer conductor; this is in
accordance with the result obtained in Art. 266, which showed that the
rate of decay of the vibrations was independent of the resistance of the
wire.

284.] When the frequency is so high that both na and n′b are large,
then the expression for the heat produced in the wire is that just found.
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To find the heat produced in the outer conductor we have, when n′b is
very large,

K0(ιn′b) = −ιK ′0(ιn′b);

hence by (58) the tangential electromotive intensity in the outer conductor
is equal to the real part of

− σ′

2πb
(4πµ′ιp/σ′)

1
2 I0ε

−βzει(−αz+pt),

which is equal to

− σ′

2πb
(2πµ′p/σ′)

1
2 I0ε

−βz{cos(−αz + pt)− sin(−αz + pt)}.

Hence by (56) and (60) the mean rate of heat production in the outer
conductor is

σ′

4πb
{2πµ′p/σ′}

1
2 I2

0 ε
−2βz.

Thus the ratio of the heat produced in unit time in the wire to that
produced in the same time in the outer conductor is{µσ

a2

} 1
2

/{µ′σ′
b2

} 1
2
,

so that if, as is generally the case in cables, σ′ is very much greater than σ,
by far the larger part of the heat will be produced in the outer conductor.

Heat produced by Foucault Currents in a Transformer.

285.] We shall now proceed to consider the case discussed in Art. 278,
where the lines of magnetic force are in planes through the axis of the
wire, the currents flowing in circles in planes at right angles to this axis.
This case is one which is of great practical importance, as the conditions
approximate to those which obtain in the soft iron cylindrical core of an
induction coil or a transformer; in this case the windings of the primary coil
are in planes at right angles to the axis of the iron cylinder, while the lines
of magnetic force due to the primary coil are in planes passing through this
axis. When a variable current is passing through the primary coil, currents
are induced which heat the core and the heat thus produced is wasted as
far as the production of useful work is concerned; it is thus a matter of
importance to investigate the laws which govern its development, so that
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the apparatus may be designed in such a way as to reduce this waste to a
minimum. We shall suppose that the magnetic force parallel to the axis at
the surface of the wire is represented by the real part of

Hει(mz+pt),

or if m = α + ιβ, by
Hε−βz cos(αz + pt).

The magnetic force at the surface of the cylinder is the most convenient
quantity in which to express the rate of heat production, for it is due
entirely to the external field and is not, when the field is uniform, affected
by the currents in the wire itself.

Using the notation of Art. 278 we see by the results of that article that
in the wire

c = AJ0(ιnr)ει(mz+pt).

The tangential electromotive intensity Θ is given by the equation

dc

dt
= −1

r

d

dr
(rΘ);

hence Θ =
p

n
AJ ′0(ιnr)ει(mz+pt);

but since at the surface of the wire, c is equal to the real part of

µHε−βzει(αz+pt),

we see that at the surface Θ = real part of

p

n

J ′0(ιna)

J0(ιna)
µHε−βzει(αz+pt). (61)

Let us first take the case when the radius of the wire is so small that
na is small; in this case we have, since approximately

J0(x) = 1− x2

22
+

x4

2242
,

J ′0(x) = −1
2
x

{
1− x2

8

}
,

and n2 = 4πµιp/σ,
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Θ = real part of

− 1
2
ιap

{
1− πµιpa2

2σ

}
µHε−βzει(αz+pt)

= 1
2
µapHε−βz sin(αz + pt)− 1

4σ
πµ2p2a3Hε−βz cos(αz + pt).

But by equation (56) the rate of heat production in the wire per unit
length is equal to the mean value

−1
2
aΘHε−βz cos(αz + pt);

where the minus sign has been taken because (Art. 280) ΘH is proportional
to the rate of flow of energy in the direction of translation of a right-handed
screw twisting from Θ to H; in this case this direction is radially outwards.

Thus the rate of heat production in the wire is

1

16σ
πµ2p2a4H2ε−2βz,

and is thus proportional to the conductivity, so that good conductors will
in this case absorb more energy than bad ones.

Let us now apply this result to find the energy absorbed in the core of
a transformer or induction coil. We shall suppose that the core consists
of iron wire of circular section, the wires being insulated from each other
by the coating of rust with which they are covered. We shall consider
the case when the magnetic force due to the primary coil is uniform both
along the axis of the coil and over its cross-section. When the external
magnetic force is uniform along z, the axis of a wire, the currents induced
in the wire by the variation of the magnetic force flow in circles whose
planes are at right angles to z, and the intensities of the currents are
independent of the value of z. Under these circumstances the currents in
the wire do not give rise to any magnetic force outside it. The magnetic
force outside the wires will thus be due entirely to the primary coil, and
as this magnetic force is uniform over the cross-section it will be the same
for each of the wires, so that we can apply the preceding investigation to
the wires separately. In order to use the whole of the iron, the magnetic
force must be approximately uniformly distributed over the cross-section
of the wires; for this to be the case na must be small, as we have seen that
when na is large the magnetic force is confined to a thin skin round each
wire. For soft iron, for which we may put µ = 103, σ = 104, the condition
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that na is small implies that when the primary current makes one hundred
alternations per second, the radius of the wire should not be more than
half a millimetre. If now the total cross-section of the iron is kept constant
so as to keep the magnetic induction through the core constant, we have,
if N is the number of wires, A the total cross-section of the iron,

Nπa2 = A.

The heat produced in all the wires per unit length of core in one second
is, if H is the maximum magnetic force due to the coil,

N

16σ
πµ2p2a4H2,

or
A2

16πσN
µ2p2H2,

and is thus inversely proportional to the number of wires. We may therefore
diminish the waste of energy due to the heat produced by the induced
currents in the wires by increasing the number of wires in the core. We
thus arrive at the practical rule that to diminish the waste of work by eddy
currents the core should be made up of as fine wire as possible. In many
transformers the iron core is built up of thin plates instead of wires; when
this is the case the advantage of a fine sub-division of the core is even
more striking than for wires, for we can easily prove that the work wasted
by eddy currents is inversely proportional to the square of the number of
plates (see J. J. Thomson, Electrician, 28, p. 599, 1892).

If γ is the current flowing through the primary coil and N the number
of turns of this coil per centimetre, then

H cos pt = 4πNγ,

and 1
2
H2 = 16π2N2 (mean value of γ2),

thus in the case of a cylindrical core of radius a the heat produced in one
second in a length l of the core will be

2π3µ2p2a4N2l (mean value of γ2)/σ.

If Q is the impedance of a circuit (Art. 272) the heat produced in unit
time is equal to

Q (mean value of γ2);

thus the core will increase the impedance of the primary coil by

2π3µ2p2a4N2l/σ.
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286.] Let us now consider the case when na is large; here we have

J ′0(ιna) = −ιJ0(ιna),

and since n2 = 4πµιp/σ,

we see by (61), putting α and β equal to zero, that

Θ = real part of

−
√
pµσ

4π
ε
ιπ
4 Hειpt

= −
√
pµσ

8π
H{cos pt− sin pt}.

But by equation (56) the rate of heat production per unit length is
equal to the mean value of

−1
2
aΘH cos pt,

and is thus equal to
1

8

√
pµσ

π2
aH2.

We can show, as before, that this corresponds to an increase in the
impedance of the primary circuit equal to

4π2lN2{pµσ/2π}
1
2 a.

In this case the heat produced is proportional to the square root of the
specific resistance of the core, so the worse the conductivity of the core the
greater the amount of heat produced by eddy currents, whereas in the case
when na was small, the greater the conductivity of the core the greater
was the loss due to heating.

When na is large, the heat produced varies as the circumference of the
core instead of, as in the previous case, as the square of the area; it also
varies much more slowly with the frequency and magnetic permeability.
This is due to the fact that when na is large the currents are not uniformly
distributed over the core but confined to a thin layer on the outside, the
thickness of this layer diminishing as the magnetic permeability or the
frequency increases; thus, though an increase in µ or p may be accompanied
by an increase in the intensity of the currents, it will also be attended by
a diminution in the area over which the currents are spread, and thus the
effect on the heat produced of the increase in p or µ will not be so great
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as in the previous case when na was small, and when no limitation in the
area over which the current was spread accompanied an increase in the
frequency or magnetic permeability.

If we compare the absorption of energy when na is large by cores of
iron and copper of the same size subject to alternating currents of the
same frequency, we find—since for iron µ may be taken as 103 and σ
as 104, while for copper µ = 1, σ = 1600,—that the absorption of energy
by the iron core is between 70 and 80 times that by the copper. The
greater absorption by the iron can be very easily shown by an experiment
of the kind figured in Art. 85, in which two coils are placed in the circuit
connecting the outer coatings of two Leyden Jars; in one of these coils an
exhausted bulb is placed, while the core in which the heat produced is to
be measured is placed in the other. When the oscillating current produced
by the discharge of the jars passes through the coils a brilliant discharge
passes through the exhausted bulb in A, if the coil B is empty or if it
contains a copper cylinder; if however an iron cylinder of the same size
replaces the copper one, the discharge in the bulb is at once extinguished,
showing that the iron cylinder has absorbed a great deal more energy than
the copper one. This experiment also shows that iron retains its magnetic
properties even when the forces to which it is exposed are reversed, as in
this experiment, millions of times in a second.

287.] Another remarkable result is that though a cylinder or tube of
a non-magnetic metal does not stop the discharge in the bulb in A, yet
if a piece of glass tubing of the same size is coated with thin tinfoil or
Dutch metal, or if it has a film of silver deposited upon it, it will check
the discharge very decidedly. We are thus led to the somewhat unexpected
result that a thin layer of metal when exposed to very rapidly alternating
currents may absorb more energy than a thick layer. The following inves-
tigation affords the explanation of this, and shows that there is a certain
thickness for which the heat produced is a maximum. This result can eas-
ily be verified by the arrangement just described, for if an excessively thin
film of silver is deposited on a beaker very little effect is produced on the
discharge in the bulb placed in A, but if successive layers of very thin tin-
foil are wrapped round the beaker over the silver film the brightness of the
discharge in A at first rapidly diminishes, it however soon increases again,
and when a few layers of tinfoil have been wrapped round the beaker the
discharge becomes almost as bright as if the beaker were away.
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To investigate the theory of this effect we shall calculate the energy
absorbed by a metal tube of circular cross-section, when placed inside a
primary coil whose windings are in planes at right angles to the axis of
the tube; this coil is supposed to be long, and uniformly wound, so that
the distribution of magnetic force and current is the same in all planes
at right angles to its axis. We shall use the same notation as before; the
only symbols which it is necessary to define again are a and b, which are
respectively the internal and external radius of the tube, and V the velocity
with which electromagnetic action is propagated through the dielectric
inside the tube. The magnetic force outside the tube is represented by
the real part of Hειpt, and this force is due entirely to the currents in the
primary coil.

Then γ, the magnetic force parallel to the axis of the tube, may be
(Art. 262) expressed by the following equations,

γ = AJ0(ιkr)ειpt in the dielectric inside the tube,

γ = {BJ0(ιnr) + CK0(ιnr)}ειpt in the tube itself.

Here k2 = −p2/V 2, n2 = 4πµιp/σ, thus they represent the quantities
represented by the same symbols in previous investigations, if in these we
put m = 0.

Let I denote the tangential current at right angle to r and the axis of
the cylinder, then

4πI = −dγ
dr
,

if Θ is the tangential electromotive intensity in the same direction, then in
the dielectric

I =
K

4π

dΘ

dt

=
K

4π
ιpΘ,

so that Θ = −V
2

ιp

dγ

dr
,

since 1/K = V 2.

In the tube Θ = σI

= − σ

4π

dγ

dr
.
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Since γ is continuous, we have

AJ0(ιka) = BJ0(ιna) + CK0(ιna),

and since Θ is continuous, we have

V 2k

p
AJ ′0(ιka) =

σιn

4π
{BJ ′0(ιna) + CK ′0(ιna)}.

Since ιk = p/V , ιka will be very small, hence we may put

J0(ιka) = 1, J ′0(ιka) = −1
2
ιka.

Making these substitutions and remembering that

J0(ιna)K ′0(ιna)− J ′0(ιna)K0(ιna) = − 1

ιna
,

we find

B = −A{K ′0(ιna) +
ιna

2µ
K0(ιna)}ιna,

C = A{J ′0(ιna) +
ιna

2µ
J0(ιna)}ιna.

To determine A we have the condition that when

r = b, γ = Hειpt,

hence Hειpt = {BJ0(ιnb) + CK0(ιnb)}ειpt.

In order to find the heat produced in the tube we require the value of Θ
when r = b; but here

Θ = −σιn
4π
{BJ ′0(ιnb) + CK ′0(ιnb)}ειpt.

Eliminating B and C from these equations, we find

−Θ = real part of Hειpt
σιn

4π
×{

J ′0(ιna)K ′0(ιnb)− J ′0(ιnb)K ′0(ιna) + ιna
2µ [J0(ιna)K ′0(ιnb)− J ′0(ιnb)K0(ιna)]

}
J ′0(ιna)K0(ιnb)− J0(ιnb)K ′0(ιna) + ιna

2µ [J0(ιna)K0(ιnb)− J0(ιnb)K0(ιna)]
.
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The effect we are considering is one which is observed when the rate of
alternation of the current is very high, so that both na and nb are very
large; but when this is the case

J0(ιna) =
εna√
2πna

, J ′0(ιna) = − ιεna√
2πna

,

K0(ιna) = ε−na
√

π

2na
, K ′0(ιna) = ιε−na

√
π

2na
,

J0(ιnb) =
εnb√
2πnb

, J ′0(ιnb) = − ιεnb√
2πnb

,

K0(ιnb) = ε−nb
√

π

2nb
, K ′0(ιnb) = ιε−nb

√
π

2nb
;

making these substitutions and writing h for b− a, we find

−Θ = real part of
σn

4π

εnh − ε−nh +
na

2µ

(
εnh + ε−nh

)
εnh + ε−nh +

na

2µ
(εnh − ε−nh)

Hειpt. (62)

Now since na is very large, na/µ is also very large for the non-magnetic
metals, and even for the magnetic metals if the frequency of the currents
in the primary is exceedingly large; but when this is the case, then, unless
h is so small that n2ah/µ is no longer large, we may write equation (62) as

−Θ = real part of
σn

4π

εnh + ε−nh

εnh − ε−nh
Hειpt. (63)

Since n = {4πµιp/σ} 1
2 , we may write n = n1(1 + ι), where n1 =

{2πµp/σ} 1
2 , and equation (63) becomes

Θ = −σn1

4π

ε2n1h − ε−2n1h + 2 sin 2n1h

ε2n1h + ε−2n1h − 2 cos 2n1h
H cos pt

+
σn1

4π

ε2n1h − ε−2n1h − 2 sin 2n1h

ε2n1h + ε−2n1h − 2 cos 2n1h
H sin pt. (64)

In calculating the part of the energy flowing into the tube which is
converted into heat, we need only consider the part which flows across
the outer surface of the tube, because the energy flowing across the inner
surface is equal to that which flows into the dielectric inside the tube, and
since there is no dissipation of energy in this region the average of the
flow of energy across the inner surface of the tube must vanish. Hence the
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amount of heat produced in unit time in the tube is by equation (36) equal
to the mean value of

−1
2
bΘH cos pt,

where the − sign has been taken because the translatory motion of a right-
handed screw twisting from Θ to H is radially outwards; this by (64) is
equal to

σn1b

16π

(ε2n1h − ε−2n1h + 2 sin 2n1h)

ε2n1h + ε−2n1h − 2 cos 2n1h
H2;

when n1h is very large this is equal to

σn1b

16π
H2,

which is (Art. 286), as it ought to be, the same as for a solid cylinder of
radius b.

When h is small and n2ah/µ not large we must take into account terms
which we have neglected in arriving at the preceding expression.

In this case, we find from (62) that

Θ = −(πp2a2h/σ)H cos pt

1 + 4π2p2a2h2/σ2
+ 1

2

paH sin pt

1 + 4π2p2a2h2/σ2
, (65)

so that the rate of heat production is

1
4

(πp2a2bh/σ)H2

1 + 4π2p2a2h2/σ2
.

Thus it vanishes when h = 0, and is a maximum when

h =
σ

2πap
;

the rate of heat production is then

1
16
pbaH2,

and bears to the rate when the tube is solid the ratio
πpa

n1σ
: 1,

which is equal to n1a/2µ.
Since n1a/µ is very large the heat produced in a tube of this thickness

is very much greater than that produced in a solid cylinder.
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Let us take the case of a tin tube whose internal radius is 3 cm. sur-
rounded by a primary coil conveying a current making a hundred thousand
vibrations per second, then since in this case

σ = 1.3× 104, a = 3, p = 2π × 105, µ = 1,

the thickness which gives the maximum heat production is about 1/90 of
a millimetre, and the heat produced is about 26 times as much as would
be produced in a solid tin cylinder of the same radius as the tube.

We see from equation (65) that the amplitude of Θ diminishes as the
thickness of the plate increases, but that when the plate is indefinitely thin
the phases of the tangential electromotive intensity and of the tangential
magnetic force differ by a quarter-period; the product of these quantities
will thus be proportional to sin 2pt, and as the mean value of this vanishes
there is no energy converted into heat in the tube. As the thickness of the
tube increases the amplitude of Θ diminishes, but the phase of Θ gets more
nearly into unison with that of H. We may regard Θ as made up of two
oscillations, one being in the same phase as H while the phase of the other
differs from that of H by a quarter-period. The amplitude of the second
component diminishes as the thickness of the tube increases, while that of
the first reaches a maximum when h = σ/2πap.

In the investigation of the heat produced when h is small, na/µ has
been assumed large. We can however easily show that unless this is the
case the heat produced in a thin tube will not exceed that produced in a
solid cylinder.

Vibrations of Electrical Systems.

288.] If the distribution of electricity on a system in electrical equilib-
rium is suddenly disturbed, the electricity will redistribute itself so as to
tend to go back to the distribution it had when in electrical equilibrium;
to effect this redistribution electric currents will be started. The currents
possess kinetic energy which is obtained at the expense of the potential
energy of the original distribution of electricity; this kinetic energy will go
on increasing until the distribution of electricity is the same as it was in
the state from which it was displaced. As this state is one of equilibrium
its potential energy is a minimum. The kinetic energy which the system
has acquired will carry it through this state, and the system will go on
losing kinetic and reacquiring potential energy until the kinetic energy has
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all disappeared. The system will then retrace its steps, and if there is no
dissipation of energy will again regain the distribution of electricity from
which it started. The distribution of electricity on the system will thus
oscillate backwards and forwards; we shall in the following articles endeav-
our to calculate the time taken by such oscillations for some of the simpler
electrical systems.

Electrical Oscillations when Two Equal Spheres are connected by a Wire∗.

289.] The first case we shall consider is that of two equal spheres, or
any two bodies possessing equal electric capacities, connected by a straight
wire. This case can be solved at once by means of the analysis given at
the beginning of this chapter.

Let us take the point on the wire midway between the spheres as the
origin of coordinates, and the axis of the wire as the axis of z. We shall
suppose that the electrostatic potential has equal and opposite values at
points on the wire equidistant from the origin and on opposite sides of it.
Then using the same notation as in Art. 271, we may put

φ = L(ειmz − ε−ιmz) J0(ιmr)ειpt, in the wire,

= L(ειmz − ε−ιmz)ειpt

approximately, since mr will be very small. Thus E, the external electro-
motive intensity parallel to the wire, is equal to

−ιmL(ειmz + ε−ιmz)ειpt.

If 2l is the length of the wire, then the potential of the sphere at the
end z = l, will be

2ιL sinmlειpt.

If C is the capacity of the sphere at one end of the wire, the quantity
of electricity on the sphere is

2ιCL sinmlειpt,

and this increases at the rate

−2CpL sinmlειpt.

∗See J. J. Thomson, Proc. Lond. Math. Soc. 19, p. 542, 1888.
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Now the increase in the charge of the sphere must equal the current flowing
through the wire at the point z = l, hence if I denotes this current, we
have

I = −2CpL sinmlειpt,

but by equation (39) of Art. 272 we have

E = (ιpP + Q)I,

whence substituting the values for E and I when z = l, we get

−2ιmL cosmlειpt = −(ιpP + Q)2CpL sinmlειpt,

or m cotml = −ιp(ιpP + Q)C. (66)

290.] Let us first consider the case when the wave length of electrical
vibrations is very much longer than the wire; here ml is very small, so that
equation (66) becomes

1

l
= −ιp(ιpP + Q)C. (67)

The values of P and Q, the self-induction and impedance of the wire,
are given in equation (40) of Art. 272; they depend upon the frequency of
the electrical vibrations. When this is so slow that na is a small quantity,
a being the radius of the wire, then approximately

P =
L

2l
,

Q =
R

2l
,

where L is the coefficient of self-induction and R the resistance of the whole
wire for steady currents.

Substituting these values in (67), we get

(ιp)2L+ ιpR +
2

C
= 0,

or ιp = − R

2L
± ι
√

2

CL
− R2

4L2
. (68)

Since the various quantities which fix the state of the electric field
contain ειpt as a factor, we see that when 8L > CR2 these quantities will
be proportional to

ε−
R
2L
t cos

{(
2

CL
− R2

4L2

) 1
2

t+ α

}
,
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where α is a constant.
This represents an oscillation whose period is

2π

/{
2

CL
− R2

4L2

} 1
2

,

and whose amplitude dies away to 1/ε of its original value after the time
2L/R.

Thus, if 2/CL is greater than R2/4L2, that is if R2 is less than 8L/C,
the charges on the spheres will undergo oscillations like those performed
by a pendulum in a resisting medium.

Suppose, for example, that the electrical connection between the
spheres is broken, and let one sphere A be charged with positive, the other
sphere B with an equal quantity of negative electricity; if now the electrical
connection between the spheres is restored, the positive charge on A and
the negative on B will diminish until after a time both spheres are free
from electrification. They will not however remain in this state, for nega-
tive electricity will begin to appear on A, positive on B, and these charges
will increase in amount until (neglecting the resistance of the circuit con-
necting the spheres) the charges on A and B appear to be interchanged,
there being now on A the same quantity of negative electricity as there
was initially on B, while the charge on B is the same as that originally
on A. When the negative charge on A has reached this value it begins to
decrease, and after a time both spheres are again free from electrification.
After this positive electricity begins to reappear on A, and increases until
the charge on A is the same as it was to begin with; this positive charge
then decreases, vanishes, and is replaced by a negative one as before. The
system thus behaves as if the charges vibrated backwards and forwards be-
tween the spheres. The changes which take place in the electrical charges
on the spheres are of course accompanied by currents in the wire, these
currents flowing sometimes in one direction, sometimes in the opposite.

When the circuit has a finite resistance the amplitude of the oscillations
gradually diminishes, while if the resistance is greater than (8L/C)

1
2 there

will not be any vibrations at all, but the charges will subside to zero without
ever changing sign; in this case the current in the connecting wire is always
in one direction.

291.] If we assume that the wave length of the electrical vibrations is so
great that the current may be regarded as uniform all along the wire, and
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that the vibrations are so slow that the current is uniformly distributed
across the wire, the discharge of a condenser can easily be investigated
by the following method, which is due to Lord Kelvin (Phil. Mag. [4], 5,
p. 393, 1853). Let Q be the quantity of electricity on one of the plates of a
condenser whose capacity is C ′ and whose plates, like those of a Leyden Jar,
are supposed to be close together; also let R be the resistance and L the
coefficient of self-induction for steady currents of the wire connecting the
plates. The electromotive force tending to increase Q is −Q/C ′; of this
RdQ/dt is required to overcome the resistance and Ld2Q/dt2 to overcome
the inertia of the circuit; hence we have

L
d2Q

dt2
+R

dQ

dt
+
Q

C ′
= 0. (69)

The solution of this equation is, if

1

C ′L
>

R2

4L2
,

Q = Aε−
R
2L
t cos

{(
1

C ′L
− R2

4L2

) 1
2

t+ β

}
,

where A and β are arbitrary constants.
In this case we have an oscillatory discharge whose frequency is equal

to (
1

C ′L
− R2

4L2

) 1
2

.

When
1

C ′L
<

R2

4L2
,

the solution of equation (69) is

Q = ε−
R
2L
t

{
Aε

“
R2

4L2−
1
C′L

” 1
2
t
+Bε

−
“
R2

4L2−
1
C′L

” 1
2
t

}
,

where A and B are arbitrary constants. In this case the discharge is not
oscillatory.

To compare the results of this investigation with those of the previous
one, we must remember that the capacities which occur in the two inves-
tigations are measured in somewhat different ways. The capacity C in
the first investigation is the ratio of the charge on the condenser to φ its
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potential; in the second investigation C ′ is the ratio of the charge to 2φ,
the difference between the potentials of the plates, so that to compare the
results we must put C ′ = C/2; if we do this the results given by the two
investigations are identical.

292.] The existence of electrical vibrations seems to have been first
suspected by Dr. Joseph Henry in 1842 from some experiments he made
on the magnetization of needles placed in a coil in circuit with a wire
which connected the inside to the outside coating of a Leyden Jar. He says
(Scientific Writings of Joseph Henry, Vol. I, p. 201, Washington, 1886):
‘This anomaly which has remained so long unexplained, and which at first
sight appears at variance with all our theoretical ideas of the connection
of electricity and magnetism, was after considerable study satisfactorily
referred by the author to an action of the discharge of the Leyden jar
which had never before been recognised. The discharge, whatever may
be its nature, is not correctly represented (employing for simplicity the
theory of Franklin) by the simple transfer of an imponderable fluid from
one side of the jar to the other, the phenomenon requires us to admit the
existence of a principal discharge in one direction, and then several reflex
actions backward and forward, each more feeble than the preceding, until
the equilibrium is obtained. All the facts are shown to be in accordance
with this hypothesis, and a ready explanation is afforded by it of a number
of phenomena which are to be found in the older works on electricity but
which have until this time remained unexplained.’

In 1853, Lord Kelvin published (Phil. Mag. [4], 5, p. 393, 1853) the
results we have just given in Art. 291, thus proving by the laws of electrical
action that electrical vibrations must be produced when a Leyden Jar is
short circuited by a wire of not too great resistance.

From 1857 to 1862, Feddersen (Pogg. Ann. 103, p. 69, 1858; 108, p. 497,
1859; 112, p. 452, 1861; 113, p. 437, 1861; 116, p. 132, 1862) published
accounts of some beautiful experiments by which he demonstrated the
oscillatory character of the jar discharge. His method consisted in putting
an air break in the wire circuit joining the two coatings of the jar. When
the current through this wire is near its maximum intensity a spark passes
across the circuit, but when the current is near its minimum value the
electromotive force is not sufficient to spark across the air break, which at
these periods therefore is not luminous. Thus the image of the air space
formed by reflection from a rotating mirror will be drawn out into a series
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of bright and dark spaces, the interval between two dark spaces depending
of course on the speed of the mirror and the frequency of the electrical
vibrations. Feddersen observed this appearance of the image of the air
space, and he proved that the oscillatory character of the discharge was
destroyed by putting a large resistance in circuit with the air space, by
showing that in this case the image of the air space was a broad band of
light gradually fading away in intensity instead of a series of bright and dark
spaces. This experiment, which is a very beautiful one, can be repeated
without difficulty. To excite the vibrations the coatings of the jar should be
connected to the terminals of an induction coil or an electric machine. It is
advisable to use a large jar with its coatings connected by as long a wire as
possible. By connecting the coatings of the jar by a circuit with very large
self-induction, Dr. Oliver Lodge (Modern Views of Electricity, p. 377) has
produced such slow electrical vibrations that the sounds generated by the
successive discharges form a musical note.

293.] In the course of the investigation in Art. 290 we have made two
assumptions, (1) that ml is small, (2) that na is also small, which im-
plies that the currents are uniformly distributed across the section of the
discharging circuit. This condition is however very rarely fulfilled, as the
electrical oscillations which are produced by the discharge of a condenser
are in general so rapid that the currents in the discharging circuit fly to
the outside of the wire instead of distributing themselves uniformly across
it; when the currents do this, however, the resistance of the circuit de-
pends on the frequency of the electrical vibrations, and the investigation
of Art. 290 has to be modified. Before proceeding to the discussion of
this case we shall write down the conditions which must hold when the
preceding investigation is applicable.

In the first place, ml is to be small; now by Art. 263 we have when
na is small,

m2 = −ιp (resistance of unit length of the wire)×
(capacity of unit length of wire),

hence m2l2 = −1
2
ιpRlΓ,

where, as before, R is the resistance of the whole of the discharging circuit,
while Γ is the capacity of unit length of the wire.
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But by equation (68) when the discharge is oscillatory, we have

ιp = − R

2L
± ι
{

2

LC
− R2

4L2

} 1
2

;

thus the modulus of ιp is equal to{
2

LC

} 1
2

,

hence, when ml is small,
RΓl√
CL

must be small.
The other condition is that na is small, which since

n2 = m2 +
4πµιp

σ
,

and ml is also small, is equivalent to the condition that

4πµιpa2/σ

should be small. Since the modulus of ιp is equal to {2/LC} 1
2 , we see that

if n2a2 is small,
4πµa2{2/LC}

1
2/σ

must be small. The capacity C which occurs in this expression is measured
in electromagnetic units, its value in such measure is only 1/V 2 (where
‘V ’ is the ratio of the units and V 2 = 9× 1020) of its value in electrostatic
measure. Thus the expression which has to be small to ensure the condi-
tion we are considering, contains the large factor 3× 1010, so that to fulfil
this condition the capacity and self-induction of the circuit must be very
large when the discharging circuit consists of metal wire of customary di-
mensions. Thus, to take an example, suppose two spheres each one metre
in radius are connected by a copper wire 1 millimetre in diameter. In this
case

C = 1/9× 1018, σ = 1600, a = .05, µ = 1,

substituting these values we find that to ensure na being small, the self-
induction of the circuit must be comparable with the enormously large
value 1011, which is comparable with the self-induction of a coil with 10, 000
turns of wire, the coil being about half a metre in diameter.
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The result of this example is sufficient to show that it is only when the
self-induction of the circuit or the capacity of the condenser is exceptionally
large that a theory based on the assumption that na is a small quantity is
applicable, it is therefore important to consider the case where na is large
and the currents in the discharging circuit are on the surface of the wire.

294.] The theory of this case is given in Art. 274, and we see from
equations (42) and (43) of that Article that when the frequency of the
vibrations is so great that na and n′b (using the notation of Art. 274, and
supposing that the wire connecting the spheres is a cable whose external
radius is b) are large quantities, equation (66) of Art. 289 becomes

m cotml = −2ιp
{
ιp log b/a + (ιp)

1
2 (µσ/4πa2)

1
2 +(ιp)

1
2 (µ′σ′/4πb2)

1
2

}
C.

Retaining the condition that ml is small, which will be the case when
the wave length of the electrical vibrations is very much greater than the
length of the discharging circuit, this equation becomes

1

Cl
= −ιp

[
ιp2 log(b/a) + (ιp)

1
2 2
{

(µσ/4πa2)
1
2 + (µ′σ′/4πb2)

1
2

}]
,

which we shall write as
2

C
= −ιp

{
ιpL′ + 2(ιp)

1
2S
}
, (70)

where L′ is the coefficient of self-induction of the discharging circuit for
infinitely rapid alternating currents, and S is written for{

(σµ/4πa2)
1
2 + (σ′µ′/4πb2)

1
2

}
2l.

By Art. 274, L′ = L− µl,

where L is the self-induction of the circuit for steady currents.
If we write x for ιp, equation (70) becomes

x2L′ + 2x
3
2S +

2

C
= 0,

hence

(
x2L′ +

2

C

)2

= 4x3S2,

or L′2x4 − 4S2x3 + 4
L′

C
x2 +

4

C2
= 0, (71)

a biquadratic equation to determine x.
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If electrical oscillations take place the roots of this equation must be
imaginary.

From the theory of the biquadratic equation (Burnside and Panton,
Theory of Equations, § 68)

ax4 + 4bx3 + 6cx2 + 4dx+ e = 0,

we know that if

H = ac− b2, I = ae− 4bd+ 3c2, G = a2d− 3abc+ 2b3,

J = ace+ 2bcd− ad2 − eb2 − c3, ∆ = I3 − 27J2;

the condition that the roots of the biquadratic are all imaginary is that
∆ should be positive as well as one of the two following quantities H and
a2I − 12H2.

Dividing equation (71) by L′2, we see that for equation (71)

H =
2

3

1

L′C
− S

L′4
, I =

16

3

1

L′2C2
,

G = 2
S2

L′3C

{
1− CS4

L′3

}
, J =

64

27

1

L′3C3

{
1− 27

16

CS4

L′3

}
.

Hence we see that a2I − 12H2 and ∆ are both positive, if

S4 < 32L′3/27C,

that is if

16l4
{

(σµ/4πa2)
1
2 + (σ′µ′/4πb2)

1
2

}4

< 32L′3/27C,

which is the condition that the system should execute electrical vibrations.
When the spheres are connected by a free wire and not by a cable σ′/b2

vanishes, and the condition that the system should oscillate reduces to

l2(σµ/πa2)2 < 32L′3/27l2C.

The results given by Ferrari’s method for solving biquadratic equations
are too complicated to be of much practical value in determining the roots
of equation (71), neither, since the roots are imaginary, can we apply the
very convenient method known as Horner’s method to determine the nu-
merical value of these roots to any required accuracy.

295.] For the purpose of analysing the nature of the electrical oscilla-
tions it is convenient to consider separately the real and imaginary parts
of ιp, the x of equation (71). The real part, supposed negative, determines
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the rate at which the electrical vibrations die away, while the imaginary
part gives the period of these vibrations. We shall now proceed to show
how equation (71) can be treated so as to admit of the real and imaginary
parts of x being separately determined by Horner’s method.

If we put

ξ = x− S2

L′2
,

equation (71) becomes

ξ4 + 6Hξ2 + 4Gξ + I − 3H2 = 0, (72)

where H, G, I are the quantities whose values we have just written down.
Since the coefficient of ξ3 in this equation vanishes and since its roots are
by hypothesis complex, we see that the real part of one pair of roots will be
positive, that of the other pair negative: the pair of roots whose real parts
are negative are those which correspond to the solution of the electrical
problem. For if the real part of ξ were positive the real part of ιp would
also be positive, so that such a root would correspond to an electrical
vibration whose amplitude increased indefinitely with the time.

The roots of equation (72) will be of the form

x1 + ιy1, x1 − ιy1, −x1 + ιy2, −x1 − ιy2.

We shall now proceed to show how x1 may be uniquely determined. Since
6H, −4G, I − 3H2 are respectively the sums of the products of the roots
of equation (72) two and two, three and three, and all together, we have

y2
1 + y2

2 − 2x2
1 = 6H, (73)

x1(y2
1 − y2

2) = 2G, (74)

(x2
1 + y2

1)(x2
1 + y2

2) = I − 3H2,

or x4
1 + x2

1(y2
1 + y2

2) + 1
4
{(y2

1 + y2
2)2 − (y2

1 − y2
2)2} = I − 3H2.

Eliminating y2
1 + y2

2 and y2
1 − y2

2 by equations (73) and (74), we get

4x4
1 + 12Hx2

1 + (12H2 − I)− G2

x2
1

= 0,

or putting x2
1 = η,

4η3 + 12Hη2 + (12H2 − I)η −G2 = 0. (75)
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Since the last term of this expression is negative there is at least one
positive real root of this equation, and since the values given for H and I
show that when ∆ is positive 12H2 − I is essentially negative, we see by
Fourier’s rule that there is only one such root. But since x1 is real the value
of η will be positive, so that the root we are seeking will be the unique
positive real root of equation (75), which can easily be determined by
Horner’s method. The value of x1 is equal to minus the square root of this
root, and knowing x1 we can find y2

1/4π
2, the square of the corresponding

frequency uniquely from equations (73) and (74). We can in this way in
any special case determine with ease the logarithmic decrement and the
frequency of the vibrations.

296.] If in equation (75) we substitute the values of G, H, and I, and
write

L′Cη = ζ, CS4/L′3 = q,

that equation becomes

ζ3 + 2ζ2(1− 3
2
q)− ζ(3q2 − 4q)− q(1− q)2 = 0.

We can by successive approximations expand ζ in terms of q, and thus
when CS4/L′3 is small approximate to the value of ζ. The first term in
this expansion is

ζ = (q/2)
1
2 ,

or since L′Cx2
1 = ζ,

x1 = − S

2
1
4C

1
4L′

5
4

.

The corresponding value of y2
1 determined by equations (73) and (74)

is, retaining only the lowest power of q, approximately,

y2
1 =

2

L′C

{
1− 2

1
4SC

1
4

L′
3
4

}
.

Now S =
{

(µσ/4πa2)
1
2 + (µ′σ′/4πb2)

1
2

}
2l,

and, approximately, y2
1 =

2

L′C
,

and x1 = −Sy
1
2

2
1
2L
,
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hence we see,

x1 = − l

L′

{
(µσy1/2πa2)

1
2 + (µ′σ′y1/2πb2)

1
2

}
.

But by Art. 274, the quantity enclosed in brackets is equal to Q, the
impedance of unit length of the circuit when the frequency of vibration
is y1/2π; thus we have

x1 = − Q

2L′
,

where Q is the impedance of the whole circuit.

Since ιp = x1 + ιy1 +
S2

L′2

= x1

{
1− (2q)

1
4

}
+ ιy1,

the real part of ιp differs from x1 by a quantity involving q. Neglecting this
term, we see that the expression for the amplitude of the vibrations con-

tains the factor ε−
Q

2L′ t. Comparing this with the factor ε−
R
2L
t, which occurs

when the oscillations are so slow that the current is uniformly distributed
over the cross-section of the discharging wire, we find that to our order of
approximation we may for quick vibrations use a similar formula for the
decay of the amplitude to that which holds for slow vibrations, provided
we use the impedance instead of the resistance, and the coefficient of self-
induction for infinitely rapid vibrations instead of that for infinitely slow
ones. This result is, however, only true when CS4/L′3 is a small quantity.
Now if the external conductor is so far away that µ′σ′/b2 is small compared
with µσ/a2, then

S4 =
{

2l(µσ/4πa2)
1
2

}4

= 1
4
l2µ2R2,

where R is the resistance of the whole circuit to steady currents. Substi-
tuting this value for S4 we see that the condition that CS4/L′3 is a small
quantity is that Cl2µ2R2/4L′3 should be small. When this is the case we
see that, neglecting the effect of the external conductor,

x1 = − l

L′
(µσy1/2πa2)

1
2 .

Since x1 is proportional to µ
1
2 , the rate of decay of the vibrations will

be greater when the discharging wire is made of iron than when it is made
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of a non-magnetic metal of the same resistance. This has been observed
by Trowbridge (Phil. Mag. [5], 32, p. 504, 1891).

297.] We have assumed in the preceding work that the length of the
electrical wave is great compared with that of the wire; we have by equa-
tion (66)

m cotml = −ιp{ιpP + Q}C.

When the frequency is very high, ιpP will be very large compared with Q,
hence this equation may be written as

m cotml = p2PC.

Now if V is the velocity of light in the dielectric, p = V m, hence we have

cotml

ml
=
V 22PlC

2l2
.

Now 2Pl is equal to L′, the self-induction of the discharging circuit for
infinitely rapid vibrations, and V 2C is equal to the electrostatic measure
of the capacity of the sphere which we shall denote by [C], hence the
preceding equation may be written as

cotml

ml
=
L′[C]

2l2
.

Thus, if L′[C]/2l2 is very large, ml will be very small; if, on the other

hand, L′[C]/2l2 is very small, cotml will be very small, or ml = (2j + 1)
π

2
approximately, where j is an integer. Since 2π/m is the length of the
electrical wave the latter will equal 4l, 4l/3, 4l/5 . . ., or the half-wave length
will be an odd submultiple of the length of the discharging wire. We
are limited by our investigation to the odd submultiple because we have
assumed that the current in the discharging wire is symmetrical about the
middle point of that wire. If we abandon this assumption we find that the
half-wave length may be any submultiple of the length of the wire. The
frequencies of the vibrations are thus independent of the capacity at the
end of the wire provided this is small enough to make L[C]/2l2 small. In
this case the vibrations are determined merely by the condition that the
current in the discharging wire should vanish at its extremities.
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Vibrations along Wires in Multiple Arc.

298.] When the capacities of the conductors at the ends of a single wire
are very small, we have seen that the gravest electrical vibration has for
its wave length twice the length of the wire and that the other vibrations
are harmonics of this. We shall now investigate the periods of vibration
of the system when the two conductors of small capacity are connected
by two or more wires in parallel. The first case we shall consider is the
one represented by Fig. 109, where in the connection between the points
A and F we have the loop BCED.

Fig. 109.

We proved in Art. 272 that the relation between the current I and the
external electromotive intensity E is expressed by the equation

E = {ιpP + Q}I.

Where, when as in this case the vibrations are rapid enough to make
na large, the term ιpP is much larger than Q, we may therefore for our
purpose write this equation as

E = ιpPI, (76)

where P is the coefficient of self-induction of unit length of the wire for
infinitely rapid vibrations.

Let the position of a point on AB be fixed by the length s1 measured
along AB from A, that of one on BCE by the length s2 measured from B,
that of one on BDE by s3 measured also from B, and of one on EF by s4

measured from E. Let l1, l2, l3, l4 denote the lengths AB, BCE, BDE,
and EF respectively, and let P1, P2, P3, P4 denote the self-induction per
unit length of these wires. Let φ denote the electrostatic potential, then
the external electromotive intensity along a wire is −dφ/ds, and as this is
proportional to the current it must vanish at the ends A, F of the wire if
the capacity there is, as we suppose, very small.
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Hence along AB we may write, if p/2π is the frequency,

φ = a cosms1 cos pt,

along BCE φ = (a cosms2 cosml1 + b sinms2) cos pt,

along BDE φ = (a cosms3 cosml1 + c sinms3) cos pt,

and along EF φ = d cosm(s4 − l4) cos pt.

Equating the expressions for the potential at E, we have

a cosml2 cosml1 + b sinml2 = d cosml4,

a cosml3 cosml1 + c sinml3 = d cosml4.

}
(77)

The current flowing along AB at B must equal the sum of the currents
flowing along BCE, BDE, hence by (76) we have

a sinml1
P1

= − b

P2

− c

P3

. (78)

Again, the current along EF at E must equal the sum of the currents
flowing along BCE, BDE, hence we have

d sinml4
P4

=
b cosml2

P2

− a sinml2 cosml1
P2

+
c cosml3

P3

− a sinml3 cosml1
P3

. (79)

We get from equations (77) and (78)

a

{
sinml1
P1

− cotml2 cosml1
P2

− cotml3 cosml4
P3

}
= −d cosml4

{
cosecml2

P2

+
cosecml3

P3

}
.

From equations (77) and (79) we get

d

{
sinml4
P4

− cotml2 cosml4
P2

− cotml3 cosml4
P3

}
= −a cosml1

{
cosecml2

P2

+
cosecml3

P3

}
.
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Eliminating a and d from these equations, we get{
tanml1
P1

− cotml2
P2

− cotml3
P3

}{
tanml4
P4

− cotml2
P2

− cotml3
P3

}
=

{
cosecml2

P2

+
cosecml3

P3

}2

. (80)

If AB and EF are equal lengths of the same kind of wire, l1 = l4, and
P1 = P4, and (80) reduces to the simple form

tanml1
P1

− cotml2
P2

− cotml3
P3

= ±
{

cosecml2
P2

+
cosecml3

P3

}
;

taking the upper sign, we have

tanml1
P1

=
cot 1

2
ml2

P2

+
cot 1

2
ml3

P3

, (81)

if we take the lower sign, we have

tanml1
P1

= −
{

tan 1
2
ml2

P2

+
tan 1

2
ml3

P3

}
. (82)

Since m = 2π/λ, where λ is the wave length, these equations determine
the wave lengths of the electrical vibrations.

If all the wires have the same radius, P1 = P2 = P3, and equations
(81) and (82) become respectively

tan 2π
l1
λ

= cot

(
π
l2
λ

)
+ cot

(
π
l3
λ

)
, (81*)

and tan 2π
l1
λ

+ tan π
l2
λ

+ tan π
l3
λ

= 0. (82*)

From these equations we can determine the effect on the period of
an alteration in the length of one of the wires. Suppose that the length
of BDE is increased by δl3, and let δλ be the corresponding increase in λ,
then from (81*)

δλ

λ

{
l1 sec2 2πl1

λ
+ 1

2
l2 cosec2 πl2

λ
+ 1

2
l3 cosec2 πl3

λ

}
= 1

2
δl3 cosec2 πl3

λ
.

We see from this equation that δλ and δl3 are of the same sign, so that an
increase in l3 increases the wave length.
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If we take equation (82*), we have

δλ

λ

{
l1 sec2 2πl1

λ
+ 1

2
l2 sec2 πl2

λ
+ 1

2
l3 sec2 πl3

λ

}
= 1

2
δl3 sec2 πl3

λ
,

hence, in this case also, an increase in l3 increases λ. If l3 is infinite the
wave length is 4l1 + 2l2 and its submultiples, as we diminish l3 the wave
length shortens, hence we see that the effect of introducing an alternative
path is to shorten the wave lengths of all the vibrations. The shortening
of the wave length goes on until l3 vanishes, when the wave length of the
gravest vibration is 4l1.

299.] The currents through the wires BCE and BDE are at B in the
proportion of

cot 1
2
ml2

P2

to
cot 1

2
ml3

P3

,

if we take the vibrations corresponding to equation (81), and in the pro-
portion of

tan 1
2
ml2

P2

to
tan 1

2
ml3

P3

,

for the vibration given by (82).
We can prove by the method of Art. 298 that if we have n wires between

B and F , and if AB = EF ,

tanml1
P1

− cotml2
P2

− cotml3
P3

− . . .

= ±
{

cosecml2
P2

+
cosecml3

P3

+
cosecml4

P4

+ . . .

}
.

It follows from this equation that if any of the wires are shortened the wave
lengths of the vibrations are also shortened.

Electrical Oscillations on Cylinders.

Periods of Vibration of Electricity on the Cylindrical Cavity inside a
Conductor.

300.] If on the surface of a cylindrical cavity inside a conductor an
irregular distribution of electricity is produced, then on the removal of
the cause producing this irregularity, currents of electricity will flow from
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one part of the cylinder to another to restore the electrical equilibrium,
electrical vibrations will thus be started whose periods we now proceed to
investigate.

Take the axis of the cylinder as the axis of z, and suppose that initially
the distribution of electricity is the same on all sections at right angles to
the axis of the cylinder; it will evidently remain so, and the currents which
restore the electrical distribution to equilibrium will be at right angles to
the axis of z.

If c is the magnetic induction parallel to z, then in the cavity filled with
the dielectric c satisfies the differential equation

d2c

dx2
+
d2c

dy2
=

1

V 2

d2c

dt2
,

where V is the velocity of propagation of electrodynamic action through
the dielectric.

In the conductor c satisfies the equation

d2c

dx2
+
d2c

dy2
=

4πµ

σ

dc

dt
,

where σ is the specific resistance and µ the magnetic permeability of the
substance.

Transform these equations to polar coordinates r and θ, and suppose
that c varies as cos sθειpt; making these assumptions, the differential equa-
tion satisfied by c in the dielectric is

d2c

dr2
+

1

r

dc

dr
+ c

(
p2

V 2
− s2

r2

)
= 0,

the solution of which is

c = A cos sθJs

( p
V
r
)
ειpt,

where Js denotes the internal Bessel’s function of the sth order.
The differential equation satisfied by c in the conductor is

d2c

dr2
+

1

r

dc

dr
+

{
−4πµιp

σ
− s2

r2

}
c = 0.

Let n2 = 4πµιp/σ, then the solution of this equation is

c = B cos sθKs(ιnr)ε
ιpt,

where Ks denotes the external Bessel’s function of the sth order.
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Since the magnetic force parallel to the surface of the cylinder is con-
tinuous, we have if a denotes the radius of the cylindrical cavity

AJs

( p
V

a
)

=
B

µ
Ks(ιna). (83)

The electromotive intensity at right angles to r is also continuous. Now
the current at right angles to r and z is

−dc/4πµ dr,
hence in the conductor the electromotive intensity perpendicular to r and z
is −σdc/4πµ dr. In the dielectric the current is equal to the rate of increase
of the electric displacement, i.e. to ιp times the electric displacement or to
ιpK/4π times the electromotive intensity; we see that in the dielectric the

electromotive intensity perpendicular to r is − 1

Kιp

dc

dr
, hence we have

A
4π

Kιp

p

V
J ′s

( p
V

a
)

=
B

µ
ιnσK ′s(ιna). (84)

Eliminating A and B from (83) and (84), we get

4π

KV

J ′s

( p
V

a
)

Js

( p
V

a
) = −σnK

′
s(ιna)

Ks(ιna)
. (85)

Now K =
1

V 2
and σ =

4πµιp

n2
, so that (85) may be written

V

pa

J ′s

( p
V

a
)

Js

( p
V

a
) =

µ

ιna

K ′s(ιna)

Ks(ιna)
. (86)

Now the wave length of the electrical vibrations will be comparable
with the diameter of the cylinder, and the value of p corresponding to this
will be sufficient to make na exceedingly large, but when na is very large
we have (Heine, Kugelfunctionen, vol. i. p. 248)

Ks(ιna) = (−ι)sε−na
√

π

2na
approximately,

hence K ′s(ιna) = ιKs(ιna); thus the right-hand side of (86) will be exceed-
ingly small, and an approximate solution of this equation will be

J ′s

(
V

p
a

)
= 0.
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This signifies that the tangential electromotive intensity vanishes at the
surface of the cylinder, or that the tubes of electrostatic induction cut its
surface at right angles. The roots of the equation

J ′s(x) = 0,

for s = 1, 2, 3, are given in the following table taken from Lord Rayleigh’s
Theory of Sound, Vol. II, p. 266:—

s = 1 s = 2 s = 3

1.841 3.054 4.201
5.332 6.705 8.015
8.536 9.965 11.344

11.706
14.864
18.016

Thus, when s = 1, the gravest period of the electrical vibrations is
given by the equation

p

V
a = 1.841,

or the wave length of the vibration 2πV/p = .543 × 2πa, and is thus
more than half the circumference of the cylinder. In this case, as far as
our approximations go, there is no decay of the vibrations, though if we
took into account the right-hand side of (86) we should find there was
a small imaginary term in the expression for p, which would indicate a
gradual fading away of the vibrations. If it were not for the resistance of
the conductor the oscillations would last for ever, as there is no radiation
of energy away from the cylinder. The magnetic force vanishes in the
conductor except just in the neighbourhood of the cavity, and the magnetic
waves emitted by one portion of the walls of the cavity will be reflected
from another portion, so that no energy escapes.

Metal Cylinder surrounded by a Dielectric.

301.] In this case the waves starting from one portion of the cylinder
travel away through the dielectric and carry energy with them, so that the
vibrations will die away independently of the resistance of the conductor.

Using the same notation as before, we have in the conducting cylinder

c = A cos sθJs(ιnr)ε
ιpt,
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and in the surrounding dielectric

c = B cos sθKs

( p
V
r
)
ειpt.

Since the magnetic force parallel to z is continuous, we have

A

µ
Js(ιna) = BKs

( p
V

a
)
.

Since the electromotive intensity perpendicular to r is continuous, we have

A

µ
ιnσJ ′s(ιna) = B

4π

Kιp

p

V
K ′s

( p
V

a
)
.

Eliminating A and B from these equations, we get

ιnσ
J ′s(ιna)

Js(ιna)
=

4π

KιV

K ′s

( p
V

a
)

Ks

( p
V

a
) ,

or
1

ιna

J ′s(ιna)

Js(ιna)
=

V

µpa

K ′s

( p
V

a
)

Ks

( p
V

a
) . (87)

Now, as before, na will be large, and therefore

Js(ιna) =
ιsεna√
2πna

approximately,

hence J ′s(ιna) = −ιJs(ιna), and the left-hand side of equation (87) is very
small, so that the approximate form of (87) will be

K ′s

( p
V

a
)

= 0, (88)

which again signifies that the electromotive intensity tangential to the
cylinder vanishes at its surface.

In order to calculate the approximate values of the roots of the equation
K ′s(x) = 0, it is most convenient to use the expression for Ks(x) which
proceeds by powers of 1/x. This series is expressed by the equation

Ks(x) = C
ε−ιx

(ιx)
1
2

{
1− (12 − 4s2)

8ιx
+

(12 − 4s2)(32 − 4s2)

1 . 2(8ιx)2

− (12 − 4s2)(32 − 4s2)(52 − 4s2)

1 . 2 . 3(8ιx)3
+ . . .

}
,
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where C is a constant (see Lord Rayleigh, Theory of Sound, Vol. II, p. 271).
When s = 1,

K1(x) = C
ε−ιx

(ιx)
1
2

{
1 +

3

8ιx
− 15

2(8ιx)2
+

105

2(8ιx)3
− . . .

}
.

Thus

K ′1(x) = −ιC ε−ιx

(ιx)
1
2

{
1 +

7

8ιx
+

57

128(ιx)2
− 195

1024(ιx)3
. . .

}
.

To approximate to the roots of the equation K ′1(x) = 0, put ιx = y,
and equate the first four terms inside the bracket to zero; we get

y3 +
7

8
y2 +

57

128
y − 195

1024
= 0,

a cubic equation to determine y. One root of this equation is real and
positive, the other two are imaginary; if α is the positive root, β ± ιγ the
two imaginary roots, then we have

α + 2β = −7

8
,

2βα + β2 + γ2 =
57

128
,

α(β2 + γ2) =
195

1024
.

We find by the rules for the solution of numerical equations that α = .26
approximately, hence

β = −.56, γ = ±.64.

These roots are however not large enough for the approximation to be
close to the accurate values.

Hence from equation (88), we see that when s = 1,

ιp

V
a = −.56± ι.64,

or ιp = (−.56± ι.64)
V

a
.

This represents a vibration whose period is 3.1πa/V , and whose amplitude
fades away to 1/ε of its original value after a time 1.8a/V .
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The radiation of energy away from the cylinder in this case is so rapid
that the vibrations are practically dead beat; thus after one complete vi-
bration the amplitude is only ε−1.74π, or about one two hundred and fiftieth
part of its value at the beginning of the oscillation.

302.] If we consider the state of the field at a considerable distance from
the cylinder and only retain in each expression the lowest power of 1/r, we
find that the magnetic induction c, the tangential and radial components
Θ and R of the electric polarization in the dielectric, may be consistently
represented by the following equations:

c = cos θ
1

r
1
2

ε−.56(V t−ra ) cos .64

(
V t− r

a

)
,

since K
dΘ

dt
= − 1

µ

dc

dr
,

we have

Θ =
cos θ

KµV

1

r
1
2

ε−.56(V t−ra ) cos .64

(
V t− r

a

)
,

and since K
dR

dt
=

1

µr

dc

dθ
,

we have

R =
sin θ

KµV

a

r
3
2

1.34ε−.56(V t−ra ){
.56 cos .64

(
V t− r

a

)
− .64 sin .64

(
V t− r

a

)}
.

Thus R vanishes at all points on a series of cylinders concentric with
the original one whose radii satisfy the equation

cot .64

(
V t− r

a

)
= 1.13,

the distance between the consecutive cylinders in this series is

1.57πa.

The Faraday tubes between two such cylinders form closed curves, all cut-
ting at right angles the cylinder for which

Θ = 0, or cos .64

(
V t− r

a

)
= 0.
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The closed Faraday tubes move away from the cylinder and are the ve-
hicles by which the energy of the cylinder radiates into space. The axes
of the Faraday tubes, i.e. the lines of electromotive intensity between two
cylinders at which R = 0, are represented in Fig. 110.

Fig. 110.

The genesis of these closed endless tubes from the unclosed ones, which
originally stretched from one point to another of the cylinder, which we
may suppose to have been electrified initially so that the surface density
was proportional to sin θ, is shown in Fig. 111.

The lines represent the changes in shape in a Faraday tube which orig-
inally stretched from a positively to a negatively electrified place on the
cylinder. The outer line A represents the original position of the tube; when
the equilibrium is disturbed some of the tubes inside this one will soon run
into the cylinder, and the lateral repulsion they exerted on the tube under
consideration will be removed; the outside lateral pressure on this tube will
now overpower the inside pressure and will produce the indentation shown
in the second position B of the tube; this indentation increases until the
two sides of the tube meet as in the third position C of the tube; when this
takes place the tube breaks up, the outer part D travelling out into space
and forming one of the closed tubes shown in Fig. 111, while the inner
part E runs into the cylinder.
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Fig. 111.

Decay of Magnetic Force in a Metal Cylinder.

303.] In addition to the very rapid oscillations we have just investigated
there are other and slower changes which may occur in the electrical state
of the cylinder. Thus, for example, a uniform magnetic field parallel to
the axis of the cylinder might suddenly be removed; the alteration in the
magnetic force would then induce currents in the cylinder whose magnetic
action would tend to maintain the original state of the magnetic field, so
that the field instead of sinking abruptly to zero would die away gradually.
The rate at which the state of the system changes with the time in cases
like this is exceedingly slow compared with the rate of change we have just
investigated. Using the same notation as in the preceding investigation,
it will be slow enough to make pa/V an exceedingly small quantity; when
however pa/V is very small, K ′s(pa/V ) is exceedingly large compared with
Ks(pa/V ), since (Heine, Kugelfunctionen, vol. i. p. 237) Ks(θ) is equal to

(−2θ)s
dsK0(θ)

(dθ2)s
;

thus since when θ is small K0(θ) is proportional to log θ1, Ks(pa/V ) is
proportional to (V/pa)s, and K ′s(pa/V ) to (V/pa)s+1; hence the right-hand
side of equation (87) is exceedingly large, so that an approximate solution
of that equation will be

Js(ιna) = 0.
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We notice that this condition makes the normal electromotive intensity
at the surface of the cylinder vanish, while it will be remembered that for
the very rapid oscillations the tangential electromotive intensity vanished.
As the normal intensity vanishes there is no electrification on the surface
of the cylinder in this case.

The equation Js(x) = 0 has an infinite number of roots all real, the
smaller values of which from s = 0 to s = 5 are given in the following
table, taken from Lord Rayleigh’s Theory of Sound, Vol. I, p. 274.

s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

2.404 3.832 5.135 6.379 7.586 8.780
5.520 7.016 8.417 9.760 11.064 12.339
8.654 10.173 11.620 13.017 14.373 15.700

11.792 13.323 14.796 16.224 17.616 18.982
14.931 16.470 17.960 19.410 20.827 22.220
18.071 19.616 21.117 22.583 24.018 25.431
21.212 22.760 24.270 25.749 27.200 28.628
24.353 25.903 27.421 28.909 30.371 31.813
37.494 29.047 30.571 32.050 33.512 34.983

This table may be supplemented by the aid of the theorem that the
large roots of the equation got by equating a Bessel’s function to zero form
approximately an arithmetical progression whose common difference is π.

If xq denotes a root of the equation

Js(x) = 0,

then since p is given by the equation

Js(ιna) = 0,

where n2 =
4πµιp

σ
,

we see that pq, the corresponding value of p, is given by the equation

−ιpq =
σ

4πa2µ
x2
q.

Thus, since ιpq is real and negative, the system simply fades away to
its position of equilibrium and does not oscillate about it.

The term in c which was initially expressed by

A cos sθJs

(
xq
r

a

)
,
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will after the lapse of a time t have diminished to

A cos sθJs

(
xq
r

a

)
ε
− σ

4πa2µ
x2
qt.

If we call T the time which must elapse before the term sinks to 1/ε of its
original value, the ‘time modulus’ of the term, then, since

T =
4πa2µ

σx2
q

,

we see that the time modulus is inversely proportional to the resistance
of unit length of the cylinder and directly proportional to the magnetic
permeability. Since µ/σ for iron is larger than it is for copper, the magnetic
force will fade away more slowly in an iron cylinder than in a copper one.

304.] A case of great interest, which can be solved without difficulty by
the preceding equations, is the one where a cylinder is placed in a uniform
magnetic field which is suddenly annihilated, the lines of magnetic force
being originally parallel to the axis of the cylinder. We may imagine, for
example, that the cylinder is placed inside a long straight solenoid, the
current through which is suddenly broken.

Since in this case everything is symmetrical about the axis of the cylin-
der, s = 0, and the values of ιp are therefore

−(2.404)2 σ

4πa2µ
, −(5.520)2 σ

4πa2µ
, &c.

Now we know from the theory of Bessel’s functions that any function
of r can for values of r between 0 and a be expanded in the form

A1J0

(
x1
r

a

)
+ A2J0

(
x2
r

a

)
+ A3J0

(
x3
r

a

)
+ . . . ,

where x1, x2, x3 . . . are the roots of the equation

J0(x) = 0.

Thus, initially

c = A1J0

(
x1
r

a

)
+ A2J0

(
x2
r

a

)
+ A3J0

(
x3
r

a

)
+ . . . ,

hence the value of c after a time t will be given by the equation

c = A1J0

(
x1
r

a

)
ε
− σ

4πa2µ
x2

1t + A2J0

(
x2
r

a

)
ε
− σ

4πa2µ
x2

2t + . . . ,

so that all we have to do is to find the coefficients A1, A2, A3 . . ..
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We shall suppose that initially c was uniform over the section of the
cylinder and equal to c0.

Then, since ∫ a

0

rJ0

(
xp
r

a

)
J0

(
xq
r

a

)
dr = 0

when p and q are different, we see that

c0

∫ a

0

rJ0

(
xq
r

a

)
dr = Aq

∫ a

0

rJ2
0

(
xq
r

a

)
dr.

Now, since

J ′′0 (x) +
1

x
J ′0(x) + J0(x) = 0,

xJ0(x) = − d

dx
(xJ ′0(x)),

hence

∫ a

0

rJ0

(
xq
r

a

)
dr = −a2

xq
J ′0(xq)

=
a2

xq
J1(xq).

Again, since

J ′′0 (x) +
1

x
J ′0(x) + J0(x) = 0,

we have, multiplying by 2x2J ′0(x),

d

dx
{x2J ′20 (x) + x2J2

0 (x)} = 2xJ2
0 (x),

hence x2{J ′20 (x) + J2
0 (x)} = 2

∫ x

0

xJ2
0 (x) dx.

Thus, since J0(xq) = 0,∫ a

0

rJ2
0

(
xq
r

a

)
dr =

1

2
a2J ′20 (xq)

=
1

2
x2J2

1 (xq).

Hence, we see that

Aq =
2c0

xqJ1(xq)
,
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and therefore

c = 2c0

∑ 1

xq

J0

(
xq
r

a

)
J1(xq)

ε
− σ

4πa2µ
x2
qt.

We see from this equation that immediately after the magnetic force
is removed c vanishes at the surface of the cylinder; also, since the terms
in the expression for c corresponding to the large roots of the equation
J0(x) = 0 die away more quickly than those corresponding to the smaller
roots, c will ultimately be very approximately represented by the first term
in the preceding expression; hence we have, since

J1(2.404) = .519,

c = 1.6c0J0

(
2.404

r

a

)
ε
− σ

4πa2µ
5.78t

.

This expression is a maximum when r = 0 and gradually dies away to
zero when r = a, thus the lines of magnetic force fade away most quickly
at the surface of the cylinder and linger longest at the centre.

The time modulus for the first term is 4πa2µ/5.78σ. For a copper rod
1 cm. in radius for which σ = 1600, this is about 1/736 of a second; for an
iron rod of the same radius for which µ = 1000, σ = 104, it is about 2/9 of
a second.

305.] The intensity of the current is − 1

4πµ

dc

dr
, hence at a distance r

from the axis of the cylinder the intensity is

c0

2πµa

∑ J1

(
xq
r

a

)
J1(xq)

ε
− σ

4πa2µ
xq2t

.

Since at the instant the magnetic force is destroyed, c is constant over
the cross-section of the cylinder, the intensity of the current when t = 0 will
vanish except at the surface of the cylinder, where, as the above equation
shows, it is infinite. After some time has elapsed the intensity of the current
will be adequately represented by the first term of the series, i.e. by

c0

2πµa

J1

(
2.404

r

a

)
.52

ε
− σ

4πa2µ
5.78t

.

This vanishes at the axis of the cylinder and, as we see from tables for J1(x)
(Lord Rayleigh, Theory of Sound, vol. I, p. 265), attains a maximum when
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2.404
r

a
= 1.841, or at a distance from the axis about 3/4 the radius of the

cylinder.
The following table, taken from the paper by Prof. Lamb on this subject

(Proc. Lond. Math. Soc. XV, p. 143), gives the value of the total induction
through the cylinder, and the electromotive force round a circuit embracing
the cylinder for a series of values of t/τ , where τ = 4πµa2/σ:—

t/τ Total Induction
Electromotive

force/σc0
.00 1.0000 infinite
.02 .7014 1.7332
.04 .5904 1.1430
.06 .5105 .8789
.08 .4470 .7195
.10 .3941 .6089
.20 .2178 .3168
.30 .1220 .1765
.40 .0684 .0989
.50 .0384 .0555
.60 .0215 .0311
.70 .0121 .0174
.80 .0068 .0098
.90 .0038 .0055

1.00 .0021 .0031

Rate of Decay of Currents and Magnetic Force in infinite Cylinders when
the Currents are Longitudinal and the Magnetic Force Transversal.

306.] We have already considered this problem in the special case when
the currents are symmetrically distributed through the cylinder in Art. 262;
we shall now consider the case when the currents are not the same in all
planes through the axis.

Let w be the intensity of the current parallel to the axis of the cylinder,
then (Art. 256) in the cylinder w satisfies the differential equation

d2w

dx2
+
d2w

dy2
=

4πµ

σ

dw

dt
.

If w′ denotes the rate of increase in the electric displacement parallel to z

in the dielectric surrounding the cylinder, then, since w′ is equal to
K

4π

dZ

dt
,
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where Z is the electromotive intensity parallel to z the axis of the cylinder,
w′ satisfies the equation

d2w′

dx2
+
d2w′

dy2
=

1

V 2

d2w′

dt2
.

Let us suppose that w varies as cos sθειpt, then transforming to cylin-
drical coordinates r, θ, the equation satisfied by w in the cylinder becomes

d2w

dr2
+

1

r

dw

dr
+

{
−4πµιp

σ
− s2

r2

}
w = 0,

the solution of which is

w = A cos sθειptJs(ιnr),

where n2 =
4πµιp

σ
;

while in the dielectric we have

d2w′

dr2
+

1

r

dw′

dr
+

(
p2

V 2
− s2

r2

)
w′ = 0,

the solution of which is

w′ = B cos sθειptKs

( p
V
r
)
.

The electromotive intensity Z, parallel to the axis of the cylinder, is
equal to σw in the cylinder and to 4πw′/Kιp in the dielectric. At the
surface of the cylinder r = a these must be equal, hence we have

σAJs(ιna) =
4π

Kιp
BKs

( p
V

a
)
. (89)

If Θ is the magnetic induction at right angles to r, then

dΘ

dt
=
dZ

dr
,

or, since Θ varies as ειpt,

Θ =
1

ιp

dZ

dr
.

Thus, in the cylinder

Θ =
σ

ιp

dw

dr

=
σ

ιp
ιnAJ ′s(ιna), at the surface.
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In the dielectric

Θ =
1

ιp

4π

Kιp

p

V
BK ′s

( p
V

a
)
, at the surface.

Since the magnetic force parallel to the surface is continuous, we have(
1

µ
Θ

)
in the cylinder = Θ in the dielectric,

hence
σ

µ
ιnAJ ′s(ιna) =

4π

Kιp

p

V
BK ′s

( p
V

a
)
. (90)

Eliminating A and B from (89) and (90), we have

ιnaJ ′s(ιna)

µJs(ιna)
=
pa

V

K ′s

( p
V

a
)

Ks

( p
V

a
) . (91)

In this case pa/V is very small, so that (Art. 303) Ks

( p
V

a
)

is approx-

imately proportional to
( p
V

a
)−s

, and thus

p

V

K ′s

( p
V

a
)

Ks

( p
V

a
) = − s

a
, approximately;

hence equation (91) becomes

ιnaJ ′s(ιna) + sµJs(ιna) = 0. (92)

Bessel’s functions, however, satisfy the relation

J ′s(ιna) +
s

ιna
Js(ιna) = Js−1(ιna),

so that (92) may be written

s(µ− 1)Js(ιna) + ιnaJs−1(ιna) = 0.

For non-magnetic substances µ = 1, so that this equation reduces to

Js−1(ιna) = 0.

The magnetic induction along the radius is equal to

− σ
ιp

1

r

dw

dθ
;
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at right angles to the radius it is equal to

σ

ιp

dw

dr
.

307.] Let us consider the case when s = 1. For a non-magnetic cylinder
n will be given by the equation

J0(ιna) = 0;

thus the values of ιp will be the same as those in Art. 304, and we may put

w = cos θ
{
A1J1

(
x1
r

a

)
ε−

σ
4πa2 x

2
1t +A2J1

(
x2
r

a

)
ε−

σ
4πa2 x

2
2t + . . .

}
, (93)

where x1, x2 are the values 2.404, 5.520 . . ., which are the roots of the
equation

J0(x) = 0.

The magnetic force along the radius is therefore

− 4πa2 sin θ

r

{
1

x2
1

A1J1

(
x1
r

a

)
ε−

σ
4πa2 x

2
1t

+
1

x2
2

A2J1

(
x2
r

a

)
ε−

σ
4πa2 x

2
2t + . . .

}
. (94)

If originally the magnetic force is parallel to y and equal to H, the radial
component of the magnetic force is H sin θ; hence, if we determine A1, A2 so
that when t = 0 the expression (94) is equal to H sin θ, then equation (93)
will give the currents generated by the annihilation of a uniform magnetic
field parallel to y.

Since J1(x) = −J ′0(x),∫ a

0

r2J1

(
xp
r

a

)
dr = −

∫ a

0

r2J ′0

(
xp
r

a

)
dr.

Integrating by parts and remembering that J0(xp) = 0, we see that each
of these integrals equals

2a

xp

∫ a

0

rJ0

(
xp
r

a

)
dr,
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which is equal to

2a3

x2
p

J1(xp), (95)

since
d

dx
{xJ ′0(x)} = −xJ0(x).

Again, since

d2J1(x)

dx2
+

1

x

dJ1(x)

dx
+

(
1− 1

x2

)
J1(x) = 0,

multiplying by

2x2dJ1

dx
,

we get
d

dx

{
x2J ′21 (x) + x2

(
1− 1

x2

)
J2

1 (x)

}
= 2xJ2

1 (x).

Hence ∫ ξ

0

xJ2
1 (x) dx =

1

2
ξ2

{
J ′21 (ξ) +

(
1− 1

ξ2

)
J2

1 (ξ)

}
.

Thus, since ξJ ′1(ξ) + J1(ξ) = ξJ0(ξ),

we have if J0(ξ) = 0,∫ ξ

0

xJ2
1 (x) dx =

1

2
ξ2J2

1 (ξ).

Hence, when xp is a root of

J0(x) = 0,∫ a

0

rJ2
1

(
xp
r

a

)
dr =

1

2
a2J2

1 (xp). (96)

Now by (94)

H = − 4πa2

r

{
A1

x2
1

J1

(
x1
r

a

)
+
A2

x2
2

J1

(
x2
r

a

)
+ . . .

}
,

so that

H

∫ a

0

r2J1

(
xp
r

a

)
dr = −4πa2

x2
p

Ap

∫ a

0

rJ2
1

(
xp
r

a

)
dr.



308.] ELECTRICAL WAVES AND OSCILLATIONS. 358

Hence by (95) and (96)

Ap = − H

πaJ1(xp)
.

Thus by (93), the currents produced by the annihilation of a magnetic
field H parallel to y are given by the equation

w = −H cos θ

πa

∑ J1

(
xp
r

a

)
J1(xp)

ε−
σx2
p

4πa2 t.

Thus the currents vanish at the axis of the cylinder; when t = 0 they are
infinite at the surface and zero elsewhere.

When, as in the case of iron, µ is very large, the equation (92) becomes
approximately

Js(ιna) = 0.

The solution in this case can be worked out on the same lines as the
preceding one; for the results of this investigation we refer the reader to a
paper by Prof. H. Lamb (Proc. Lond. Math. Soc. XV, p. 270).

Electrical Oscillations on a Spherical Conductor.

308.] The equations satisfied in the electromagnetic field by the com-
ponents of the magnetic induction, or of the electromotive intensity, when
these quantities vary as ειpt, are, denoting any one of them by F, of the
form

d2F

dx2
+
d2F

dy2
+
d2F

dz2
= −λ2F, (97)

where in an insulator λ2 = p2/V 2, V being the velocity of propagation of
electrodynamic action through the dielectric, and in a conductor, whose
specific resistance is σ and magnetic permeability µ,

λ2 = −4πµιp/σ.

In treating problems about spheres and spherical waves it is convenient
to express F as the sum of terms of the form

f(r)Yn,
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where f(r) is a function of the distance from the centre, and Yn a surface
spherical harmonic function of the nth order. Transforming (97) to polar
coordinates, we find that f(r) satisfies the differential equation

d2f

dr2
+

2

r

df

dr
+

(
λ2 − n(n+ 1)

r2

)
f = 0.

We can easily verify by substitution that the solution of this equation
is, writing ρ for λr,

f(r) = ρn
{

1

ρ

d

dρ

}n(
Aειρ +Bε−ιρ

ρ

)
,

where A and B are arbitrary constants; particular solutions of this equation
are thus

f(r) = ρn
{

1

ρ

d

dρ

}n
sin ρ

ρ
, (α)

f(r) = ρn
{

1

ρ

d

dρ

}n
cos ρ

ρ
, (β)

f(r) = ρn
{

1

ρ

d

dρ

}n{
ε−ιρ

ρ

}
, (γ)

f(r) = ρn
{

1

ρ

d

dρ

}n{
ειρ

ρ

}
. (δ)

The first of these solutions is the only one which does not become
infinite when ρ vanishes, so that it is the solution we must choose in any
region where ρ can vanish; in the case of the sphere it is the function which
must be used inside the sphere; we shall denote it by Sn(ρ).

Outside the sphere, where ρ cannot vanish, the choice of the function
must be governed by other considerations. If we are considering wave
motions, then, since the solution (γ) will contain the factor ει(pt−ρ), it will
correspond to a wave diverging from the sphere; the solution (δ), which
contains the factor ει(pt+ρ), corresponds to waves converging on the sphere;
the solutions (α) and (β) correspond to a combination of convergent and
divergent waves; thus, where there is no reflection we must take (γ) if the
waves are divergent, (δ) if they are convergent. In other cases we find
that λ is complex and of the form p + ιq; in this case (α) and (β) will be
infinite at an infinite distance from the origin, while of the two solutions (γ)
and (δ) one will be infinite, the other zero, we must take the solution which
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vanishes when ρ is infinite. We shall denote (γ) by E−n (ρ), (δ) by E+
n (ρ),

and when, as we shall sometimes do, we leave the question as to which of
the two we shall take unsettled until we have determined λ, we shall use
the expression En(ρ), which thus denotes one or other of (γ) and (δ).

When there is no reflection, the solution of (97) is thus expressed by

Sn(ρ)Yn ε
ιpt inside the sphere,

En(ρ)Yn ε
ιpt outside the sphere.

In particular when Yn is the zonal harmonic Qn, the solutions are

Sn(ρ)Qnε
ιpt, En(ρ)Qnε

ιpt.

When Yn is the first tesseral harmonic, the solutions are

x

r
Sn(ρ)

dQn

dµ
ειpt,

x

r
En(ρ)

dQn

dµ
ειpt,

y

r
Sn(ρ)

dQn

dµ
ειpt,

y

r
En(ρ)

dQn

dµ
ειpt,

where µ = cos θ, θ being the colatitude of the intersection of the radius
with the surface of the sphere.

309.] We shall now proceed to prove those properties of the functions Sn
and En which we shall require for the subsequent investigations. The reader
who desires further information about these interesting functions can derive
it from the following sources:—

Stokes, ‘On the Communication of Vibration from a Vibrating Body to
the Surrounding Gas,’ Phil. Trans. 1868, p. 447.

Rayleigh, ‘Theory of Sound,’ Vol. II, Chap. XVII.
C. Niven, ‘On the Conduction of Heat in Ellipsoids of Revolution,’ Phil.

Trans. Part I, 1880, p. 117.
C. Niven, ‘On the Induction of Electric Currents in Infinite Plates and

Spherical Shells,’ Phil. Trans. Part II, 1881, p. 307.
H. Lamb, ‘On the Vibrations of an Elastic Sphere,’ and ‘On the Oscil-

lations of a Viscous Spheroid,’ Proc. Lond. Math. Soc., 13, pp. 51, 189.
H. Lamb, ‘On Electrical Motions in a Spherical Conductor,’ Phil. Trans.

Part II, 1883, p. 519.
V. Helmholtz, ‘Wissenschaftliche Abhandlungen,’ Vol. I, p. 320.
Heine, ‘Kugelfunctionen,’ Vol. I, p. 140.
The following propositions are for brevity expressed only for the Sn

functions, since, however, their proof only depends upon the differential
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equations satisfied by these functions they are equally true for the func-
tions β, γ, δ.

Since

Sn(ρ) = ρn
{

1

ρ

d

dρ

}n
sin ρ

ρ
,

1

ρ

d

dρ

{
Sn−1

ρn−1

}
=
Sn
ρn
,

or ρ
dSn−1

dρ
− (n− 1)Sn−1 = ρSn, (98)

and therefore

ρ
dSn
dρ
− nSn = ρSn+1. (99)

Multiply (98) by ρn and differentiate with respect to ρ, and we get

d2

dρ2
Sn−1 +

2

ρ

dSn−1

dρ
− n(n− 1)Sn−1

ρ2
= (n+ 1)

Sn
ρ

+
dSn
dρ

.

But
d2Sn−1

dρ2
+

2

ρ

dSn−1

dρ
+

(
1− n(n− 1)

ρ2

)
Sn−1 = 0,

hence

−ρSn−1 = (n+ 1)Sn + ρ
dSn
dρ

. (100)

From (99) and (100), we get

(2n+ 1)Sn + ρ(Sn−1 + Sn+1) = 0, (101)

and (2n+ 1)
dSn
dρ

= (n+ 1)Sn+1 − nSn−1.

Again, since

d2

dr2
Sn(λr) +

2

r

d

dr
Sn(λr) +

(
λ2 − n(n+ 1)

r2

)
Sn(λr) = 0,

and

d2

dr2
Sn(λ′r) +

2

r

d

dr
Sn(λ′r) +

(
λ′2 − n(n+ 1)

r2

)
Sn(λ′r) = 0,
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we have

r2

{
Sn(λ′r)

d2

dr2
Sn(λr)− Sn(λr)

d2

dr2
Sn(λ′r)

}
+ 2r

{
Sn(λ′r)

d

dr
Sn(λr)− Sn(λr)

d

dr
Sn(λ′r)

}
= (λ′2 − λ2)r2Sn(λr)Sn(λ′r),

and hence∫ b

a

r2Sn(λr)Sn(λ′r) dr

=
1

λ′2 − λ2

{
r2Sn(λ′r)

d

dr
Sn(λr)− r2Sn(λr)

d

dr
Sn(λ′r)

}b
a

, (102)

so that if λ, λ′ satisfy the equations

a2

{
Sn(λ′a)

d

da
Sn(λa)− Sn(λa)

d

da
Sn(λ′a)

}
= 0,

b2

{
Sn(λ′b)

d

db
Sn(λb)− Sn(λb)

d

db
Sn(λ′b)

}
= 0,

then

∫ b

a

r2Sn(λr)Sn(λ′r) dr = 0.

Proceeding to the limit λ′ = λ, we get from (102)∫ b

a

r2S2
n(λr) dr = − 1

2λ2

[
r2Sn(λr)

d

dr

{
r
dSn(λr)

dr

}
− r3

{
dSn(λr)

dr

}2
]b
a

.

The following table of the values of the first four of the S and E func-
tions will be found useful for the subsequent work:—

S0(x) =
sinx

x
,

S1(x) =
cosx

x
− sinx

x2
,

S2(x) =− sinx

x
− 3 cosx

x2
+

3 sinx

x3
,

S3(x) =− cosx

x
+

6 sinx

x2
+

15 cosx

x3
− 15 sinx

x4
.

. . . . . . . . .
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E−0 (x) =
ε−ιx

x
,

E−1 (x) = −ε
−ιx

x

(
ι+

1

x

)
,

E−2 (x) = −ε
−ιx

x

(
1− 3ι

x
− 3

x2

)
,

E−3 (x) =
ε−ιx

x

(
ι+

6

x
− 15ι

x2
− 15

x3

)
.

. . . . . . .

The values of E+ can be got from those of E− by changing the sign of ι.
310.] We shall now proceed to the study of the oscillations of a distri-

bution of electricity over the surface of a sphere. Let us suppose that a
distribution of electricity whose surface density is proportional to a zonal
harmonic of the nth order is produced over the surface of the sphere, and
that the cause producing this distribution is suddenly removed; then, since
this distribution cannot be in equilibrium unless under the influence of
external forces, electric currents will start off to equalize it, and electrical
vibrations will be started whose period it is the object of the following
investigation to determine.

Since the currents obviously flow in planes through the axis of the zonal
harmonic, which we shall take for the axis of z, there is no electromotive
force round a circuit in a plane at right angles to this axis; and since the
electromotive force round a circuit is equal to the rate of diminution in
the number of lines of magnetic force passing through it, we see that in
this case, since the motion is periodic, there can be no lines of magnetic
force at right angles to such a circuit; in other words, the magnetic force
parallel to the axis of z vanishes. Again, taking a small closed circuit at
right angles to a radius of the sphere, we see that the electromotive force
round this circuit, and therefore the magnetic force at right angles to it,
vanish; hence the magnetic force has no component along the radius, and
is thus at right angles to both the axis of z and the radius, so that the lines
of magnetic force are a series of small circles with the axis of the harmonic
for axis.

Hence, if a, b, c denote the components of magnetic induction parallel
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to the axes of x, y, z respectively, we may put

a = yχ(r, µ),

b = −xχ(r, µ),

c = 0,

where χ(r, µ) denotes some function of r and µ. Comparing this with the
results of Art. 308, we see that inside the sphere

a = A
y

r
Sn(λ′r)

dQn

dµ
ειpt,

b = −Ax
r
Sn(λ′r)

dQn

dµ
ειpt,

c = 0,

 (103)

where λ′2 = −4πµιp/σ, and A is a constant.
Outside the sphere,

a = B
y

r
En(λr)

dQn

dµ
ειpt,

b = −Bx
r
En(λr)

dQn

dµ
ειpt,

c = 0,

 (104)

where λ = p/V , and B is a constant.
Since the tangential magnetic force is continuous, we have if a is the

radius of the sphere,
A

µ
Sn(λ′a) = BEn(λa). (105)

To get another surface condition we notice that the electromotive intensity
parallel to the surface of the sphere is continuous. Now the total current
through any area is equal to 1/4π times the line integral of the magnetic
force round that area, hence, taking as the area under consideration an
elementary one dr r sin θ dφ, whose sides are respectively parallel to an
element of radius and to an element of a parallel of latitude, we find, if q
is the current in a meridian plane at right angles to the radius,

4πq =
1

r

d

dr
(γr),

where γ is the resultant magnetic force which acts tangentially to a parallel
of latitude.
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The electromotive intensity parallel to q is, in the conductor

σq,

and in the dielectric
4π

ιpK
q.

Hence, since this is continuous, we have

Aσ

µ

d

da
(aSn(λ′a)) =

B4π

ιpK

d

da
{aEn(λa)}. (106)

Eliminating A and B from equations (105) and (106), we get

σ
d

da
{aSn(λ′a)}

Sn(λ′a)
=

4π

ιpK

d

da
{aEn(λa)}

En(λa)
. (107)

311.] The oscillations of the surface electrification about the state of uni-
form distribution are extremely rapid as the wave length must be com-
parable with the radius of the sphere. For such rapid vibrations as these
however λ′a, or {−4πµιp/σ} 1

2 a, is very large, but when this is the case, we
see from the equation

Sn(ρ) = ρn
{

1

ρ

d

dρ

}n
sin ρ

ρ
,

that S ′n(λ′a) is approximately equal to ±ιSn(λ′a), so that the left-hand
side of equation (107) is of the order

σa

√
−4πµιp

σ
,

and thus, since 1/K = V 2,

d

da
{aEn(λa)}

En(λa)

is of the order
1

4πV 2
pσa

√
−4πµιp

σ
, or

√
σ

aV
,

since p is comparable with V/a.
This, when the sphere conducts as well as iron or copper, is extremely

small unless a is less than the wave length of sodium light, while for a
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perfect conductor it absolutely vanishes, hence equation (107) is very ap-
proximately equivalent to

d

da
{aEn(λa)} = 0. (108)

This, by the relation (101), may be written

En+1(λa)− n+ 1

n
En−1(λa) = 0,

which is the form given in my paper on ‘Electrical Oscillations,’ Proc.
Lond. Math. Soc. XV, p. 197.

This condition makes the tangential electromotive intensity vanish, so
that the lines of electrostatic induction are always at right angles to the
surface of the sphere.

312.] In order to show that the equations (103) and (104) in the pre-
ceding article correspond to a distribution of electricity over the surface of
the sphere represented by a zonal harmonic Qn of the nth order, we only
need to show that the current along the radius vector varies as Qn, for the
difference between the radial currents in the sphere and in the dielectric is
proportional to the rate of variation of the surface density of the electricity
on the sphere, and therefore, since the surface density varies as ειpt, it will
be proportional to the radial current.

Consider a small area at right angles to the radius, and apply the
principle that 4π times the current through this area is equal to the line
integral of the magnetic force round it, we get, if P is the current along the
radius and µ = cos θ,

4πP =
1

r

d

dµ
(γ sin θ), (109)

where γ, as before, is the resultant magnetic force which acts along a
tangent to a parallel of latitude.

By equation (103), γ is proportional to

sin θ
dQn

dµ
,

so that P is proportional to

d

dµ

{
sin2 θ

dQn

dµ

}
;

but
d

dµ

{
sin2 θ

dQn

dµ

}
+ n(n+ 1)Qn = 0,
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hence P, and therefore the surface density, is proportional to Qn.
We shall now consider in more detail the case n = 1.

We have
p2

V 2
= λ2.

We shall take as the solution of the equation p2/V 2 = λ2

p

V
= λ,

and we shall take E−n (λr) as our solution, as this corresponds to a wave
diverging from the sphere. Thus, equation (108) becomes

d

da
{aE−1 (λa)} = 0,

or substituting for E−1 (λa) the value given in Art. 309,

ε−ιλa
{

1

(λa)2
+

ι

λa
− 1

}
= 0,

or (λa)2 − ιλa = 1,

λa =
ι

2
±
√

3

2
.

Hence p =
V

a

{
ι

2
+

√
3

2

}
,

taking the positive sign since the wave is divergent.
Hence, the time of vibration is 4πa/

√
3V , and the wave length 4πa/

√
3.

The amplitude of the vibration falls to 1/ε of its original value after a time
2a/V , that is after the time taken by light to pass across a diameter of the
sphere. In the time occupied by one complete vibration the amplitude falls

to ε
−

2π√
3 , or about 1/35 of its original value, thus the vibrations will hardly

make a complete oscillation before they become practically extinguished.
This very rapid extinction of the vibrations is independent of the resistance
of the conductor and is due to the emission of radiant energy by the sphere.
Whenever these electrical vibrations can radiate freely they die away with
immense rapidity and are practically dead beat.

If we substitute this value of λ in the expressions for the magnetic force
and electromotive intensity in the dielectric, we shall find that the following
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values satisfy the conditions of the problem. If γ is the resultant magnetic
force, acting at right angle to the meridional plane,

γ =
sin θa

r

{
1− a

r
+

a2

r2

} 1
2

ε
−

(V t− r)
2a cos(φ+ δ),

where φ =

√
3

2a
(V t− r),

tan δ =
r − a

r + a
tan

π

3
.

If Θ is the electromotive intensity at right angles to r in the meridional
plane, K the specific inductive capacity of the dielectric surrounding the
sphere, then by Art. 310

KΘ =
sin θ

V r
a
(

1− a

r

){
1 +

a

r
+

a2

r2

} 1
2

ε
−

(V t− r)
2a cos(φ+ δ′),

where tan δ′ =
sin

π

3

cos
π

3
+

a

r

,

and V is the velocity of propagation of electromagnetic action through the
dielectric. Close to the surface of the sphere δ = 0, δ′ = π/6, thus γ and
Θ differ in phase by π/6. At a large distance from the sphere

δ = δ′

so that Θ and γ are in the same phase, and we have

V KΘ = γ =
sin θa

r
ε
−

1

2a
(V t−r)

cos
(
φ+

π

3

)
.

The radial electromotive intensity P is, by equation (109), given by the
equation

KP =
2 cos θa2

V r2

{
1− a

r
+

a2

r2

} 1
2

ε
−

(V t− r)
2a sin

(
φ+ δ − π

6

)
.

Thus at a great distance from the sphere P varies as a2/r2, while Θ
only varies as a/r, thus the electromotive intensity is very approximately



313.] ELECTRICAL WAVES AND OSCILLATIONS. 369

tangential. The general character of the lines of electrostatic induction is
similar to that in the case of the cylinder shown in Fig. 110.

313.] The time of vibration of the electricity about the distribution
represented by the second zonal harmonic is given by a cubic equation,
whose imaginary roots I find to be

ιλa = −.7± 1.8ι.

The rate of these vibrations is more than twice as fast as those about
the first harmonic distribution; the rate of decay of these vibrations, though
absolutely greater than in that case, is not increased in so great a ratio as
the frequency, so that the system will make more vibrations before falling
to a given fraction of its original value than before.

The time of vibration of the electricity about the distribution repre-
sented by the third zonal harmonic is given by a biquadratic equation
whose roots are imaginary, and given by

ιλa = −.85± 2.76ι,

ιλa = −2.15± .8ι.

The quicker of these vibrations is more than three times faster than
that about the first zonal harmonic, and there will be many more vibra-
tions before the disturbance sinks to a given fraction of its original value.
The slower vibration is of nearly the same period as that about the first
harmonic, but it fades away much more rapidly than even that vibration.

The vibrations about distributions of electricity represented by the
higher harmonics thus tend to get quicker as the degree of the harmonic
increases, and more vibrations are made before the disturbance sinks into
insignificance.

314.] We have seen in Art. 16 that a charged sphere when moving
uniformly produces the same magnetic field as an element of current at
its centre. If the sphere is oscillating instead of moving uniformly, we may
prove (J. J. Thomson, Phil. Mag. [5], 28, p. 1, 1889) that if the period of its
oscillations is large compared with that of a distribution of electricity over
the surface of the sphere, the vibrating sphere produces the same magnetic
field as an alternating current of the same period. Waves of electromotive
intensity carrying energy with them travel through the dielectric, so that
in this case the energy of the sphere travels into space far away from the
sphere. When, however, the period of vibration of the sphere is less than
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that of the electricity over its surface, the electromotive intensity and the
magnetic force diminish very rapidly as we recede from the sphere, the
magnetic field being practically confined to the inside of the sphere, so
that in this case the energy of the moving sphere remains in its immediate
neighbourhood.

We may compare the behaviour of the electrified sphere with that of a
string of particles of equal mass placed at equal intervals along a tightly
stretched string; if one of the particles, say one of the end ones, is agitated
and made to vibrate more slowly than the natural period of the system, the
disturbance will travel as a wave motion along the string of particles, and
the energy given to the particle at the end will be carried far away from
that particle; if however the particle which is agitated is made to vibrate
more quickly than the natural period of vibration of the system, the dis-
turbance of the adjacent particles will diminish in geometrical progression,
and the energy will practically be confined to within a short distance of
the disturbed particle. This case possesses additional interest since it was
used by Sir G. G. Stokes to explain fluorescence.

315.] To consider more closely the effect of reflection let us take the
case of two concentric spherical conductors of radius a and b respectively.
Then in the dielectric between the spheres, the components of magnetic
induction are given by

a =
y

r

{
BE+

n (λr) + CE−n (λr)
} dQn

dµ
,

b = −x
r

{
BE+

n (λr) + CE−n (λr)
} dQn

dµ
,

c = 0.

We may show, as in Art. 311, that if the spheres are metallic and not
excessively small the electromotive intensity parallel to the surface of the
spheres vanishes when r = a and when r = b; thus we have

0 = B
d

da
{aE+

n (λa)}+ C
d

da
{aE−n (λa)},

0 = B
d

db
{bE+

n (λb)}+ C
d

db
{bE−n (λb)}.

Eliminating B and C, we have

d

da
{aE+

n (λa)} d

db
{bE−n (λb)} =

d

da
{aE−n (λa)} d

db
{bE+

n (λb)}.
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When n = 1, this becomes

tanλ{b− a} = λ

{
1

a
− 1

b

}{
λ2 +

1

ab

}
(

1

a2
− λ2

)(
1

b2
− λ2

)
+
λ2

ab

. (110)

The roots of this equation are real, so that in this case there is no decay of
the vibrations apart from that arising from the resistance of the conductors.

If a is very small compared with b, this equation reduces to

tanλb =
λb

1− λ2b2
.

The least root of this equation other than λ = 0, I find by the method of
trial and error to be λb = 2.744.

This case is that of the vibration of a spherical shell excited by some
cause inside, here there is no radiation of the energy into space, the elec-
trical waves keep passing backwards and forwards from one part of the
surface of the sphere to another.

The wave length in this case is 2πb/2.744 or 2.29b, and is therefore
less than the wave length, 4πb/

√
3, of the oscillations which would occur

if the vibrations radiated off into space: this is an example of the general
principle in the theory of vibrations that when dissipation of energy takes
place either from friction, electrical resistance, or radiation, the time of
vibration is increased.

In this case, since the radius of the inner sphere is made to vanish in
the limit, the magnetic force inside the sphere whose radius is b must be
expressed by that function of r which does not become infinite when r is
zero, i.e. by Sn(λr). In the case when n = 1, the components a, b, c of the
magnetic induction are given by

a =
∑
B
y

r
S1(λr)ειpt,

b = −
∑
B
x

r
S1(λr)ειpt,

c = 0;

where the summation extends over all values of λ which satisfy the equation

tanλb =
λb

1− λ2b2
.
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Let us consider the case when only the gravest vibration is excited.
Let e be the surface density of the electricity, then it will be given by an
equation of the form

e = C cos θ cos pt;

where p = V λ1, λ1 being equal to 2.744/b.
By equation (109) the normal displacement current P is given by the

equation

4πP =
1

r

d

d . cos θ
{sin θ{a2 + b2}

1
2}.

In this case

a =
y

r
BS1(λ1r)ε

ιpt,

b = −x
r
BS1(λ1r)ε

ιpt,

 (111)

so that 4πP = −2

r
B cos θS1(λ1r)ε

ιpt.

When r = b the normal displacement current = de/dt, hence

−4πC cos θp sin pt = − 2

b
B cos θS1(λ1b)ειpt.

Substituting this value of Bειpt in (111), we have

a =
y

r
2πbp sin ptC

S1(λ1r)

S1(λ1b)
,

b = −x
r

2πbp sin ptC
S1(λ1r)

S1(λ1b)
,

c = 0.

At the surface of the sphere the maximum intensity of the magnetic
force is

2πbpC sin θ,

or since bp = V λ1b,

and λ1b = 2.744,

the maximum magnetic force is

2π × 2.744V C sin θ.
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For air at atmospheric pressure V C may be as large as 25 without the
electricity escaping; taking this value of V C, the maximum value of the
magnetic force will be

431 sin θ;

this indicates a very intense magnetic field, which however would be diffi-
cult to detect on account of its very rapid rate of reversal.

Electrical Oscillations on Two Concentric Spheres of nearly equal radius.

316.] When d, the difference between the radii a and b, is very small
compared with a or b, equation (110) becomes

tanλd =
λd(1 + λ2a2)

λ4a4 − λ2a2 + 1
. (112)

There will be one root of this equation corresponding to a vibration
whose wave length is comparable with a, and other roots corresponding to
wave lengths comparable with d.

When the wave length is comparable with a, λ is comparable with 1/a,
so that in this case λd is very small; when this is the case (tanλd)/λd = 1,
and equation (112) becomes approximately

1 =
1 + λ2a2

λ4a4 − λ2a2 + 1
,

or λa =
√

2.

The wave length 2π/λ is thus equal to π
√

2 times the radius of the sphere.
In this case, since the distance between the spheres is very small com-

pared with the wave length, the tangential electromotive intensity, since
it vanishes at the surface of both spheres, will remain very small through-
out the space between them; the electromotive intensity will thus be very
nearly radial between the spheres, and the places nearest each other on the
two spheres will have opposite electrical charges. The tubes of electrostatic
induction are radial, and moving at right angles to themselves traverse dur-
ing a complete oscillation a distance comparable with the circumference of
one of the spheres.

When the wave length is comparable with the distance between the
spheres, λ is comparable with 1/d, and λa is therefore very large. The de-
nominator of the right-hand side of equation (112), since it involves (λa)4,
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will be exceedingly large compared with the numerator, and this side of
the equation will be exceedingly small, so that an approximate solution of
it is

tanλd = 0,

or λd = nπ,

where n is an integer.
The wave length 2π/λ = 2d/n. Hence, the length of the longest wave

is 2d, and there are harmonics whose wave lengths are d, 2d/3, 2d/4, . . ..
When λa is very large, the equation on p. 370

d

dr
{BrE+

1 (λr) + CrE−1 (λr)}r=a = 0,

is equivalent to
Bειλa + Cε−ιλa = 0.

Hence we may put, introducing a new constant A,

B = Aε−ιλa,

C = −Aειλa.

The resultant magnetic force in the dielectric is equal to

{BE+
1 (λr) + CE−1 (λr)} sin θειpt,

or substituting the preceding values of B and C and retaining only the
lowest powers of 1/λr,

Aι

λr

{
ειλ(r−a) + ε−ιλ(r−a)

}
sin θειpt,

or 2
Aι

λr
cosλ(r − a) sin θειpt.

The tangential electromotive intensity is therefore, by Art. 310,

2A
V

λr
sinλ(r − a) sin θειpt,

while the normal intensity is

4
AV

λ2r2
cosλ(r − a) cos θειpt,

and is thus, except just at the surface of the spheres, very small compared
with the tangential electromotive intensity. The normal intensity changes
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sign as we go from r = a to r = b, so that the electrification on the
portions of the spheres opposite to each other is of the same sign. In
this case the lines of electromotive intensity are approximately tangential;
during the vibrations they move backwards and forwards across the short
space between the spheres. The case of two parallel planes can be regarded
as the limit of that of the two spheres, and the preceding work shows that
the wave length of the vibrations will either be a sub-multiple of twice
the distance between the planes, or else a length comparable with the
dimensions of the plane at right angles to their common normal.

If we arrange two metal surfaces, say two silvered glass plates, so that,
as in the experiment for showing Newton’s rings, the distance between
the plates is comparable with the wave length of the luminous rays, care
being taken to insulate one plate from the other, then one of the possible
modes of electrical vibration will have a wave length comparable with that
of the luminous rays, and so might be expected to affect a photographic
plate. These vibrations would doubtless be exceedingly difficult to excite,
on account of the difficulty of getting any lines of induction to run down
between the plates before discharge took place, but this would to some
extent be counterbalanced by the fact that the photographic method would
enable us to detect vibrations of exceedingly small intensity.

On the Decay of Electric Currents in Conducting Spheres.

317.] The analysis we have used to determine the electrical oscillations
on spheres will also enable us to determine the rate at which a system
of currents started in the sphere will decay if left to themselves. Let us
first consider the case when, as in the preceding investigation, the lines of
magnetic force are circles with a diameter of the sphere for their common
axis. Using the same notation as before, when there is only a single sphere
of radius a in the field, we have by equation (107)

σ
d

da
{aSn(λ′a)}

Sn(λ′a)
=

4π

Kιp

d

da
{aEn(λa)}

En(λa)
. (113)

The rate at which the system of currents decay is infinitesimal in com-
parison with the rate at which a distribution of electricity over the surface
changes, so that λa or pa/V will in this case be exceedingly small: but
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when λa is very small

En(λa) = (−1)n1 . 3 . 5 . . . (2n− 1) .
ε±λa

an+1
,

d

da
{aEn(λa)} = (−1)n+11 . 3 . 5 . . . (2n− 1) . n

ε±λa

an+1
,

so that the right-hand side of (113) is equal to

−4πn

Kιp
,

or −4πnV 2

ιp
.

Thus
Sn(λ′a)

d

da
{aSn(λ′a)}

= − ιpσ

4πnV 2
.

Now, since V 2 = 9×1020 and σ for copper is about 1600, the right-hand
side of this equation is excessively small, so that it reduces to

Sn(λ′a) = 0.

When n = 1, since

S1(λ′a) =
cosλ′a

λ′a
− sinλ′a

λ′2a2
,

λ′ is given by the equation

tanλ′a = λ′a;

the roots of which are approximately

λ′a = 1.4303π, 2.4590π, 3.4709π . . . .

The roots of the equation

S2(λ′a) = 0

are approximately

λ′a = 1.8346π, 2.8950π, 3.9225π.

(See Prof. H. Lamb, ‘Electrical Motions on Spherical Conductors,’ Phil.
Trans. Pt. II, p. 530. 1883.)

The value of ιp corresponding to any value of λ′ is given by the equation

ιp = −σλ
′2

4πµ
.
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The time factors in the expressions for the currents will be of the form

ε−
σλ′2
4πµ

t. The most persistent type of current will be that corresponding to
the smallest value of λ′, i.e.

λ′ = 1.4303π/a.

The time required for a current of this type to sink to 1/ε of its original
value in a copper sphere when σ = 1600 is .000379a2 seconds; for an iron
sphere when µ = 1000, σ = 104, it is .0622a2 seconds, thus the currents will
be much more persistent in the iron sphere than in the copper one. The
persistence of the vibrations is proportional to the square of the radius of
the sphere, thus for very large spheres the rate of decay will be exceedingly
slow; for example, it would take nearly 5 million years for currents of this
type to sink to 1/ε of their original value in a copper sphere as large as the
earth.

Since Sn(λ′a) = 0, we see from (105) that B = 0, and therefore that
the magnetic force is zero everywhere outside the sphere. Hence, since
these currents produce no magnetic effect outside the sphere they cannot
be excited by any external magnetic influence. The current at right angles
to the radius inside the sphere is by Art. 310

sin θ

4πµr

d

dr
{ArSn(λ′r)}dQn

dµ
ειpt,

or in particular, when n = 1

sin θ

4πµr

d

dr
{rS1(λ′r)} ειpt.

Now
d

dr
{rS1(λ′r)} vanishes when λ′r = 2.744, hence the tangential

current will vanish when

r =
2.744

1.4303π
a

= .601a;

thus there is a concentric spherical surface over which the current of this
type is entirely radial.

The magnetic force vanishes at the surface and at the centre, and as
we travel along a radius attains, when n = 1, a maximum when r satisfies
the equation

d

dr
S1(λ′r) = 0.
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The smallest root of this equation is

λ′r = .662π,

where r =
.662

1.4303
a = .462a.

Fig. 112.

This is nearer the centre of the sphere than the place where the tan-
gential current vanishes. The lines of flow of the current in a meridional
section of the sphere when λ′a = 2.4590π are given in Fig. 112, which is
taken from the paper by Professor Lamb already quoted (p. 378).

Rate of Decay of Currents flowing in Circles which have a Diameter of
the Sphere as a Common Axis.

318.] In this case the lines of flow of the current are coincident with
the lines of magnetic force of the last example and vice versa.

Let P , Q, R denote the components of electromotive intensity, then in
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the sphere we have

P = A
y

r
Sn(λ′r)

dQn

dµ
ειpt,

Q = −Ax
r
Sn(λ′r)

dQn

dµ
ειpt,

R = 0;

 (114)

while in the dielectric surrounding the sphere, we have

P = B
y

r
En(λr)

dQn

dµ
ειpt,

Q = −Bx
r
En(λr)

dQn

dµ
ειpt,

R = 0.

 (115)

Since the electromotive intensity tangential to the sphere is continuous,
we have, if a is the radius of the sphere,

ASn(λ′a) = BEn(λa). (116)

If ω is the magnetic induction tangentially to a meridian, then, since
the line integral of the electromotive intensity round a circuit is equal to
the rate of diminution of the number of lines of magnetic induction passing
through it,

dω

dt
=

1

r

d

dr

{
r{P 2 +Q2}

1
2

}
.

Since the tangential magnetic force is continuous, we have at the surface(
ω

µ

)
in the sphere = ω in the dielectric.

Hence
A

µ

d

da
{aSn(λ′a)} = B

d

da
{aEn(λa)}. (117)

Eliminating A and B from equations (116) and (117), we get

µ
Sn(λ′a)

d

da
{aSn(λ′a)}

=
En(λa)

d

da
{aEn(λa)}

. (118)
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In this case the currents and magnetic forces change so slowly that λa
or pa/V is an exceedingly small quantity, but when this is the case we have
proved Art. 317, that approximately

En(λa)

d

da
{aEn(λa)}

= − 1

n
,

so that equation (118) becomes

nµSn(λ′a) +
d

da
{aSn(λ′a)} = 0. (119)

But by equation (100), Art. 309,

a
d

da
Sn(λ′a) + (n+ 1)Sn(λ′a) = −λ′aSn−1(λ′a),

hence (119) may be written

n(µ− 1)Sn(λ′a)− λ′aSn−1(λ′a) = 0. (120)

For non-magnetic metals for which µ = 1 this reduces to

Sn−1(λ′a) = 0,

while for iron, for which µ is very great, the equation approximates very
closely to

Sn(λ′a) = 0.

The smaller roots of the equation

Sn(x) = 0,

when n = 0, 1, 2, are given below;

n =0, x = π, 2π, 3π, . . . ;

n =1, x = 1.4303π, 2.4590π, 3.4709π;

n =2, x = 1.8346π, 2.8950π, 3.9225π.

Thus for a copper sphere for which σ = 1600, the time the currents
of the most permanent type, i.e. those corresponding to the root λ′a = π,
take to fall to 1/ε of their original value is .000775a2 seconds, which for
a copper sphere as large as the earth is ten million years. These numbers
are given by Prof. Horace Lamb in the paper on ‘Electrical Motion on a
Spherical Conductor,’ Phil. Trans. 1883, Part II.
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319.] As the magnetic force outside the sphere does not vanish in this
case, this distribution of currents produces an external magnetic field, and
conversely, such a distribution could be induced by changes in such a field.
We have supposed that the currents are symmetrical about an axis, but by
superposing distributions symmetrical about different axes we could get
the most general distribution of this type of current. The most general
distribution of this type would however be such that the lines of current
flow are on concentric spherical surfaces, it is only distributions of this kind
which can be excited in a sphere by variations in the external magnetic field.

We can prove without difficulty that whenever radial currents exist in a
sphere the magnetic force outside vanishes, provided displacement currents
in the dielectric are neglected.

Let u, v, w be the components of the current inside the sphere, they
will, omitting the time factor, be given by equations of the form

u = Sn(λ′r)Y ′,

v = Sn(λ′r)Y ′′,

w = Sn(λ′r)Y ′′′,

where Y ′, Y ′′, Y ′′′ are surface harmonics of the nth order.
The radial current is

Sn(λ′r)
(x
r
Y ′ +

y

r
Y ′′ +

z

r
Y ′′′
)
,

at the surface of the sphere the radial current must vanish, i.e.

Sn(λ′a)
{x

a
Y ′ +

y

a
Y ′′ +

z

a
Y ′′′
}
.

Now the second factor is a function merely of the angular coordinates,
and if it vanished there would not be any radial currents at any point in
the sphere, hence, on the hypothesis that there are radial currents in the
sphere, we must have

Sn(λ′a) = 0,

i.e. u, v, w all vanish on the surface of the sphere. But if there are no
currents on the surface the electromotive intensity must vanish over the
surface, and hence also the radial magnetic induction; for the rate of change
of the radial induction through a small area on the surface of the sphere
is equal to the electromotive force round that area. But neglecting the
displacement current in the dielectric the magnetic force outside the sphere
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will be derived from a potential; hence, since the radial magnetic force
vanishes over the sphere r = a, and over r = ∞, and since the space
between the two is acyclic, the magnetic force must vanish everywhere in
the region between them. Thus the presence of radial currents in the sphere
requires the magnetic force due to the currents to be entirely confined to
the inside of the sphere.

320.] Returning to the case where the system is symmetrical about an
axis, we see from equation (120) that if the sphere is an iron one, λ′ is
given approximately by the equation

Sn(λ′a) = 0.

Hence, by equation (114) the electromotive intensity, and therefore the
currents, vanish over the surface of the sphere. Since the currents also
vanish at the centre, they must attain a maximum at some intermediate
position; the distance r of this position from the centre of the sphere is
given by the equation

d

dr
Sn(λ′r) = 0;

if n = 1, a root of this equation is

λ′r = .663π,

and since λ′a = 1.4303π,

we have r = .463a.

Currents induced in a Uniform Sphere by the sudden destruction of a
Uniform Magnetic Field.

321.] We shall now apply the results we have just obtained to find the
currents produced in a sphere placed in a uniform magnetic field which is
suddenly destroyed; this problem was solved by Lamb (Proc. Lond. Math.
Soc. 15, p. 139, 1884). The currents will evidently flow in circles having
the diameter of the sphere which is parallel to the magnetic force for axis.

If H is the intensity of the original field at a great distance from the
sphere, the lines of force being parallel to z, then inside the sphere the
magnetic induction will be parallel to z, and will be equal to 3µH/(µ+ 2).
The radial component will thus be proportional to cos θ. If ρ be the normal
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component of magnetic induction, a, b, c the components parallel to the
axes of x, y, z respectively, then

rρ = xa+ yb+ zc,

∇2(rρ) = x∇2a+ y∇2b+ z∇2c+ 2

{
da

dx
+
db

dy
+
dc

dz

}
= −λ′2rρ,

since ∇2a = −λ′2a,

and
da

dx
+
db

dy
+
dc

dz
= 0.

Hence, by (97), rρ = C cos θS1(λ′r)ειpt (121)

where, by (119), λ′ is given by the equation

(µ+ 1)S1(λ′a) + a
dS1(λ′a)

da
= 0,

or by (120) (µ− 1)S1(λ′a)− λ′aS0(λ′a) = 0. (122)

When the sphere is non-magnetic µ = 1, and the values of λ′ are given
by

S0(λ′a) = 0,

or
sinλ′a

λ′a
= 0,

hence λ′ =
pπ

a
, where p is an integer.

When µ is very large, λ′ is given approximately by the equation

S1(λ′a) = 0,

or tanλ′a = λ′a.

The roots of this equation are given in Art. 317.
We shall for the present not make any assumption as to the magnitude

of µ, but suppose that λ1, λ2 . . . are the values of λ′ which satisfy (122).
The value of ιp corresponding to λs is −σλ2

s/4πµ, hence by (121) we have

rρ = cos θ
{
C1S1(λ1r) ε

−σλ
2
1

4πµ
t + C2S1(λ2r) ε

−σλ
2
2

4πµ
t + . . .

}
.

To determine C1, C2 . . . we have the condition that when t = 0,

rρ = 3r cos θ
µH

µ+ 2
,
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hence, for all values of r between 0 and a, we have

3µHr

µ+ 2
= C1S1(λ1r) + C2S1(λ2r) + . . . . (123)

Now by Art. 309, if λp, λq are different roots of (122)∫ a

0

r2S1(λpr)S1(λqr) dr = 0,

while∫ a

0

r2S2
1(λpr) dr = −1

2

a2

λ2
p

{
S1(λpa)

d

da

{
a
dS1(λpa)

da

}
−a

(
dS1(λpa)

da

)2
}
. (124)

But

d2

da2
S1(λpa) +

2

a

d

da
S1(λpa) +

(
λ2
p −

2

a2

)
S1(λpa) = 0,

and (µ+ 1)S1(λpa) + a
d

da
S1(λpa) = 0.

Substituting in (124) the values of
d2

da2
S1(λpa) and

d

da
S1(λpa) given by

these equations, we get∫ a

0

r2S2
1(λpr) dr =

a

2λ2
p

S2
1(λpa){λ2

pa
2 + (µ+ 2)(µ− 1)}.

Hence, multiplying both sides of (123) by r2S1(λpr) and integrating
from 0 to a, we get

3µH

µ+ 2

∫ a

0

r3S1(λpr) dr

=
1

2

aCp
λ2
p

S2
1(λpa){λ2

pa
2 + (µ+ 2)(µ− 1)}. (125)

To find the integral on the left-hand side, we notice

r3 d
2S1(λpr)

dr2
+ 2r2 d

dr
S1(λpr)− 2rS1(λpr) + λ2

pr
3S1(λpr) = 0,

or
d

dr

{
r3 d

dr
S1(λpr)

}
− d

dr
{r2S1(λpr)}+ λ2

pr
3S1(λpr) = 0;
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hence, integrating from 0 to a

a3 d

da
S1(λpa)− a2S1(λpa) + λ2

p

∫ a

0

r3S1(λpr) dr = 0,

which by the use of (122) reduces to∫ a

0

r3S1(λpr) dr =
a2(µ+ 2)

λ2
p

S1(λpa).

Hence, from (125) we get

Cp =
6µHa

S1(λpa)
÷ {λ2

pa
2 + (µ+ 2)(µ− 1)}.

322.] When the sphere is non-magnetic µ = 1, and therefore

Cp =
6H

aS1(λpa)λ2
p

.

In this case λp =
pπ

a
, and therefore

λ2
pS1(λpa) = λp

cosλpa

a
− sinλpa

a2

= (−1)p
pπ

a2
.

Thus the normal magnetic induction

=
6H cos θ . a3

rπ3

p=∞∑
p=1

(−1)p
1

p3

{
pπ

ar
cos p

πr

a
− 1

r2
sin p

πr

a

}
ε−

p2πσ

4a2 t.

When r = a, this equals

6H cos θ

π2

p=∞∑
p=1

1

p2
ε−

p2πσ

4a2 t.

This summation could be expressed as a theta function, but as the
series converges very rapidly it is more convenient to leave it in its present
form.

Since we neglect the polarization currents outside the sphere, the mag-
netic force in that region is derivable from a potential, hence we find that
the radial magnetic force is

6H cos θ

π2

a3

r3

p=∞∑
p=1

1

p2
ε−

p2πσ

4a2 t.
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The magnetic force at right angles to the radius is

3H sin θa3

π2r3

p=∞∑
p=1

1

p2
ε−

p2πσ

4a2 t.

The sphere produces the same effect at an external point as a small
magnet whose moment is

3Ha3

π2

p=∞∑
p=1

1

p2
ε−

p2πσ

4a2 t.

323.] When µ is very great

Cp =
6Ha

µS1(λpa)
.

Hence, the normal magnetic force at the surface of the sphere is

6H

µ2
cos θ

∑
ε−

λp2σ
4πµ

t.

Outside the sphere the magnetic force is the same as that due to a magnet
whose moment is

3Ha3

µ

∑
ε−

λp2σ
4πµ

t,

placed at its centre. These results are given by Lamb (l.c.).
Thus the magnetic effects of the currents induced in a soft iron sphere

are less than those which would be produced by a copper sphere of the same
size placed in the same field. This is due to the changes of magnetic force
proceeding more slowly in the iron sphere on account of its greater self-
induction; as the changes in magnetic force are slower, the electromotive
forces, and therefore the currents, will be smaller.

Since S1(λpa) = 0 when µ is large, the currents on the surface of
the sphere vanish, and the currents congregate towards the middle of the
sphere.



CHAPTER V.

EXPERIMENTS ON ELECTROMAGNETIC WAVES.

324.] Professor Hertz has recently described a series of experiments
which show that waves of electromotive and magnetic force are present in
the dielectric medium surrounding an electrical system which is execut-
ing very rapid electrical vibrations. A complete account of these will be
found in his book Ausbreitung der elektrischen Kraft, Leipzig, 1892. The
vibrations which Hertz used in his investigations are of the type of those
which occur when the inner and outer coatings of a charged Leyden jar are
put in electrical connection. The time of vibration of such a system when
the resistance of the discharging circuit may be neglected is, as we saw
in Art. 296, approximately equal to 2π

√
LC, where L is the coefficient of

self-induction of the discharging circuit for infinitely rapid vibrations and
C is the capacity of the jar in electromagnetic measure. If C is the capac-
ity of the jar in electrostatic measure, then, since C = C/V 2, where V is
the ratio of the electromagnetic unit of electricity to the electrostatic unit,
the time of vibration is equal to 2π

√
LC/V . But since V is equal to the

velocity of propagation of electrodynamic action through air, the distance
the disturbance will travel in the time occupied by a complete oscillation,
in other words the wave length in air of these vibrations, will be 2π

√
LC.

By using electrical systems which had very small capacities and coefficients
of self-induction Hertz succeeded in bringing the wave length down to a
few metres.

Fig. 113.

325.] The electrical vibrator which
Hertz used in his earlier experiments
(Wied. Ann. 34, pp. 155, 551, 609,
1888) is represented in Figure 113.

A and B are square zinc plates
whose sides are 40 cm. long, copper
wires C and D each about 30 cm. long are soldered to the plates, these
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wires terminate in brass balls E and F. To ensure the success of the ex-
periments it is necessary that these balls should be exceedingly brightly
and smoothly polished, and inasmuch as the passage of the sparks from
one ball to the other across the air space EF roughens the balls by tearing
particles of metal from them, it is necessary to keep repolishing the balls
at short intervals during the course of the experiment. It is also advisable
to keep the air space EF shaded from the light from any sparks that may
be passing in the neighbourhood. In order to excite electrical vibrations in
this system the extremities of an induction coil are connected with C and D

respectively. When the coil is in action it produces so great a difference of
potential between the balls E and F that the electric strength of the air is
overcome, sparks pass across the air gap which thus becomes a conductor;
the two plates A and B are now connected by a conducting circuit, and the
charges on the plates oscillate backwards and forwards from one plate to
another just as in the case of the Leyden jar.

326.] As these oscillations are exceedingly rapid they will not be ex-
cited unless the electric strength of the air gap breaks down suddenly; if it
breaks down so gradually that instead of a spark suddenly rushing across
the gap we have an almost continuous glow or brush discharge, hardly any
vibrations will be excited. A parallel case to this is that of the vibrations
of a simple pendulum, if the bob of such a pendulum is pulled out from the
vertical by a string and the string is suddenly cut the pendulum will oscil-
late; if however the string instead of breaking suddenly gives way gradually,
the bob of the pendulum will merely sink to its position of equilibrium and
no vibrations will be excited. It is this which makes it necessary to keep
the balls E and F well polished, if they are rough there will in all likelihood
be sharp points upon them from which the electricity will gradually es-
cape, the constraint of the system will then give way gradually instead of
suddenly and no vibrations will be excited.

The necessity of shielding the air gap from light coming from other
sparks is due to a similar reason. Ultra-violet light in which these sparks
abound possesses, as we saw in Art. 39, the property of producing a gradual
discharge of electricity from the negative terminal, so that unless this light
is shielded off there will be a tendency to produce a gradual and therefore
non-effective discharge instead of an abrupt and therefore effective one.

327.] The presence of the coil does not, as the following calculation of
the period of the compound system shows, affect the time of vibration to
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more than an infinitesimal extent, if, as is practically always the case, the
coefficient of self-induction of the secondary of the coil is almost infinite in
comparison with that of the vibrator.

Let L be the coefficient of self-induction of the vibrator AB, C its
capacity, L′ the coefficient of self-induction of the secondary of the coil,
M the coefficient of mutual induction between this coil and the vibrator,
x the quantity of electricity at any time on either plate of the condenser,
ẏ the current in the vibrator, ż that through the secondary of the coil.

Then we have ẋ = ẏ + ż

or x = y + z.

The Kinetic energy of the currents is
1
2
Lẏ2 + 1

2
L′ż2 +Mẏż.

The potential energy is

1
2

x2

C
or 1

2

(y + z)2

C
.

Hence, if we neglect the resistance of the circuit, we have by Lagrange’s
equations

Ly′′ +Mz′′ +
y + z

C
= 0,

L′z′′ +My′′ +
y + z

C
= 0.

Thus if x and y each vary as ειpt, we have

y

(
1

C
− Lp2

)
+ z

(
1

C
−Mp2

)
= 0,

z

(
1

C
− L′p2

)
+ y

(
1

C
−Mp2

)
= 0.

Eliminating y and z we get(
1

C
− Lp2

)(
1

C
− L′p2

)
=

(
1

C
−Mp2

)2

,

or p2 =
1

CL

{
1 +

L

L′
− 2M

L′

}/(
1− M2

LL′

)
.

But for a circuit as short as a Hertzian vibrator L/L′ and M/L′ will be
exceedingly small, so that we have as before

p2 =
1

CL
.
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The Resonator.

Fig. 114.

328.] When the electrical oscillations are taking
place in the vibrator the space around it will be the
seat of electric and magnetic intensities. Hertz found
that he could detect these by means of an instru-
ment which is called the Resonator. It consists of a
piece of copper wire bent into a circle; the ends of
the wire, which are placed very near together, are
furnished with two balls or a ball and a point, these
are connected by an insulating screw, so that the dis-
tance between them admits of very fine adjustment. A resonator without
the screw adjustment is shown in Fig. 114. With a vibrator having the
dimensions of the one in Art. 325, Hertz used a resonator 35 cm. in radius.

329.] When the resonator was held near the vibrator Hertz found that
sparks passed across the air space in the resonator and that the length of
the air space across which the sparks would pass varied with the position
of the resonator. This variation was found by Hertz to be of the following
kind:

Let the vibrator be placed so that its axis, the line EF, Fig. 113, is
horizontal; let the horizontal line which bisects this axis at right angles,
i.e. which passes through the middle point of the air space EF, be called the
base line. Then, when the resonator is placed so that its centre is on the
base line and its plane at right angles to that line, Hertz found that sparks
pass readily in the resonator when its air space is either vertically above or
vertically below its centre, but that they cease entirely when the resonator
is turned in its own plane round its centre until the air space is in the
horizontal plane through that point. Thus the sparks are bright when the
line joining the ends of the resonator is parallel to the axis of the vibrator
and vanish when it is at right angles to this axis. In intermediate positions
of the air gap faint sparks pass between the terminals of the resonator.

When the centre of the resonator is in the base line and its plane at
right angles to the axis of the vibrator no sparks pass, whatever may be
the position of the air space.

When the centre of the resonator is in the base line and its plane hori-
zontal the sparks are strongest when the air space is nearest to the vibrator,
and as the resonator turns about its centre in its own plane the length of
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the sparks diminishes as the air space recedes from the vibrator and is a
minimum when the air gap is at its maximum distance from the axis of
the vibrator. They do not however vanish in this case for any position of
the air space.

330.] In the preceding experiments the length of the sparks changes as
the resonator rotates in its own plane about its centre. Since rotation is
not accompanied by any change in the number of lines of magnetic force
passing through the resonator circuit, it follows that we cannot estimate
the tendency to spark across the air gap by calculating by Faraday’s rule
the electromotive force round the circuit from the diminution in the number
of lines of magnetic force passing through it.

331.] The effects on the spark length are, however, easily explained
if we consider the arrangement of the Faraday tubes radiating from the
vibrator. The tendency to spark will be proportional to the number of
tubes which stretch across the air gap; these tubes may fall directly on the
air gap or they may be collected by the wire of the resonator and thrown
on the air gap, the resonator acting as a kind of trap for Faraday tubes.

Fig. 115.

Let us first consider the case when the centre of the resonator is on, and
its plane at right angles to, the base line, then in the neighbourhood of the
base line the Faraday tubes are approximately parallel to the axis of the
vibrator, and their direction of motion is parallel to the base line; thus the
Faraday tubes are parallel to the plane of the resonator and are moving at
right angles to it. When they strike against the wire of the resonator they
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will split up into separate pieces as in Fig. 115, which represents a tube
moving up to and across the resonator, and after passing the cross-section
of the wire of the resonator will join again and go on as if they had not
been interrupted. The resonator will thus not catch Faraday tubes and
throw them in the air gap, and therefore the tendency to spark across the
gap will be due only to those tubes which fall directly upon it. When the
air gap is parallel to the tubes, i.e. when it is at the highest or lowest point
of the resonator, some of the tubes will be caught and will stretch across
the gap and thus tend to produce a spark. When, however, the gap is at
right angles to the tubes, i.e. when it is in the horizontal plane through the
centre of the resonator, the tubes will pass right through it. None of them
will stretch across the gap and there will be consequently no tendency to
spark.

When the plane of the resonator is at right angles to the axis of the
vibrator, the tubes when they meet the wire of the resonator are, as in the
last case, travelling at right angles to it, so that the wire of the resonator
will not collect the tubes and throw them into the air gap. In this case
the air gap is always at right angles to the tubes, which will therefore pass
right through it, and none of them will stretch across the gap. Thus in this
case there is no tendency to spark whatever may be the position of the air
space.

Let us now consider the case when the centre of the resonator is on the
base line and its plane horizontal. In this case, as we see by the figures
Fig. 116, Faraday tubes will be caught by the wire of the resonator and
thrown into the air gap wherever that may be; thus, whatever the position
of the gap, Faraday tubes will stretch across it, and there will be a tendency
to spark. When the gap is as near as possible to the vibrator the Faraday
tubes which strike against the resonator will break and a portion of them
will stretch right across the gap. When however the gap is a considerable
distance from this position the tubes which stretch across it are due to the
bending together of two portions of the tubes broken by previously striking
against the resonator, the end of one of the portions having travelled along
one side of the resonator while the end of the other has travelled along the
other side, (a); these portions bend together across the gap, (b) and (c);
then break up again, one long straight tube travelling outwards, the other
shorter one running into the gap, as in (d) Fig. 116. The portion connecting
the two sides of the gap diverges more from the shortest distance between
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the terminals than in the case where the air gap is as near to the vibrator
as possible, the field in Fig. 116 will not therefore be so concentrated round
the gap, so that there will be less tendency to spark, though this tendency
will still remain finite.

Fig. 116.

Resonance.

332.] Hitherto we have said nothing as to the effect produced by the
size of the resonator on the brightness of the sparks, this effect is however
often very great, especially when we are using condensers with fairly large
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capacities which can execute several vibrations before the radiation of their
energy reduces the amplitude of the vibration to insignificance.

The cause of this effect is that the resonator is itself an electrical system
with a definite period of vibration of its own, hence if we use a resonator
the period of whose free vibration is equal to that of the vibrator, the
efforts of the vibrator to produce a spark in the resonator will accumulate,
and we may be able as the result of this accumulation to get a spark which
would not have been produced if the resonator had not been in tune with
the vibrator. The case is analogous to the one in which a vibrating tuning
fork sets another of the same pitch in vibration, though it does not produce
any appreciable effect on another of slightly different pitch.

Fig. 117.

333.] Professor Oliver Lodge (Nature, Feb. 20, 1890, vol. 41, p. 368) has
described an experiment which shows very beautifully the effect of electric
resonance. A and B, Fig. 117, represent two Leyden jars whose inner and
outer coatings are connected by a wire bent so as to include a considerable
area. The circuit connecting the coatings of one of these jars, A, contains
an air break. Electrical oscillations are started in this jar by connecting the
two coatings with the poles of an electrical machine. The circuit connecting
the coatings of the other jar, B, is provided with a sliding piece by means of
which the self-induction of the discharging circuit, and therefore the time
of an electrical oscillation of the jar, can be adjusted. The inner and outer
coatings of this jar are put almost but not quite into electrical contact by
means of a piece of tin-foil bent over the lip of the jar. The jars are placed
face to face so that the circuits connecting their coatings are parallel to
each other, and approximately at right angles to the line joining the centre
of the circuits. When the electrical machine is in action sparks pass across
the air break in the circuit in A, and by moving the slider in B about it
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is possible to find a position for it in which sparks pass by means of the
tin-foil from one coating of the jar to the other; as soon however as the
slider is moved from this position the sparks cease.

Resonance effects are most clearly marked in cases of this kind, where
the system which is vibrating electrically has considerable capacity, since
in such cases several complete oscillations have to take place before the
radiation of energy from the system has greatly diminished the amplitude
of the vibrations. When the capacity is small, the energy radiates so quickly
that only a small number of vibrations have any appreciable amplitude;
there are thus only a small number of impulses acting on the resonator, and
even if the effects of these few conspire, the resonance cannot be expected
to be very marked. In the case of the vibrating sphere we saw (Art. 312)
that for vibrations about the distribution represented by the first harmonic
the amplitude of the second vibration is only about 1/35 of that of the first,
in such a case as this the system is practically dead-beat, and there can be
no appreciable resonance or interference effects.

The Hertzian vibrator is one in which, as we can see by considering
the disposition of the Faraday tubes just before the spark passes across
the air, there will be very considerable radiation of energy. Many of the
tubes stretch from one plate of the vibrator to the other, and when the
insulation of the air space breaks down, closed Faraday tubes will break
off from these in the same way as they did from the cylinder; see Fig. 14.
These closed tubes will move off from the vibrator with the velocity of light,
and will carry the energy of the vibrator away with them. In consequence
of this radiation the decay of the oscillations in the vibrator will be very
rapid, indeed we should expect the rate of decay to be comparable with its
value in the case of the vibrations of electricity over the surfaces of spheres
or cylinders, where the Faraday tubes which originally stretched from one
part to another of the electrified conductor emit closed tubes which radiate
into space in the same way as the similar tubes in the case of the Hertzian
vibrator: we have seen, however, that for spheres and cylinders the decay
of vibration is so rapid that they may almost be regarded as dead-beat. We
should expect a somewhat similar result for the oscillations of the Hertzian
vibrator.

334.] On the other hand, the disposition of the Faraday tubes shows us
that the electrical vibrations of the resonator will be much more persistent.
In this case the Faraday tubes will stretch from side to side across the inside
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of the resonator as in Fig. 118, and these tubes will oscillate backwards and
forwards inside the resonator; they will have no tendency to form closed

Fig. 118.

curves, and consequently there will be little or no
radiation of energy. In this case the decay of the
vibrations will be chiefly due to the resistance
of the resonator, as in the corresponding cases
of oscillations in the electrical distribution over
spherical or cylindrical cavities in a mass of metal,
which are discussed in Arts. 315 and 300.

335.] The rate at which the vibrations die
away for a vibrator and resonator of dimensions
not very different from those used by Hertz has
been measured by Bjerknes (Wied. Ann. 44, p. 74,
1891), who found that in the vibrator the oscillations died away to 1/ε of
their original value after a time T/.26, where T is the time of oscillation
of the vibrator. This rate of decay, though not so rapid as for spheres and
cylinders, is still very rapid, as the amplitude of the tenth swing is about
1/14 of that of the first. The amplitudes of the successive vibrations are
represented graphically in Fig. 119, which is taken from Bjerknes’ paper.

Fig. 119.

The time taken by the vibrations in the resonator to fade away to
1/ε of their original value was found by Bjerknes to be T ′/.002 or 500T ′,
where T ′ is the time of the electrical oscillation of the resonator; thus
the resonator will make more than 1000 complete oscillations before the
amplitude of the vibration falls to 1/10 of its original value. The very
slow rate of decay of these oscillations confirms the conclusion we arrived
at from the consideration of the Faraday tubes, that there was little or
no radiation of energy in this case. The rate of decay of the vibrations in
the resonator compares favourably with that of pendulums or tuning-forks,
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and is in striking contrast to the very rapid fading away of the oscillations
of the vibrator. These experiments show that, as the theory led us to
expect, we must regard the vibrator as a system having a remarkably large
logarithmic decrement, the resonator as one having a remarkably small
one.

Reflection of Electromagnetic Waves from a Metal Plate.

336.] We shall now proceed to describe the experiments by which Hertz
succeeded in demonstrating, by means of the vibrator and resonator de-
scribed in Arts. 325 and 328, the existence in the dielectric of waves of
electromotive intensity and magnetic force (Wied. Ann. 34, p. 610, 1888).

The experiments were made in a large room about 15 metres long,
14 broad, and 6 high. The vibrator was placed 2 m. from one of the main
walls, in such a position that its axis was vertical and its base line at
right angles to the wall. At all points along the base line the electromotive
intensity is vertical, being parallel to the axis of the vibrator. At the further
end of the room a piece of sheet zinc 4 metres by 2 was placed vertically
against the wall, its plane being thus at right angles to the base line of the
vibrator. The zinc plate was connected to earth by means of the gas and
water pipes. In one set of experiments the centre of the resonator was on
and its plane at right angles to the base line. When it is in this position the
Faraday tubes from the vibrator strike the wire of the resonator at right
angles; the resonator therefore does not catch the tubes and throw them
into the air gap, and the spark will be due to the tubes which fall directly
upon the air gap. Thus, as might be expected, the sparks vanish when the
gap is at the highest or lowest point of the resonator, when the tubes are
at right angles to the direction in which the sparks would pass, and the
sparks are brightest when the air gap is in the horizontal plane through
the base line, when the incident tubes are parallel to the sparks.

337.] Let the air gap be kept in this plane, and the resonator moved
about, its centre remaining on the base line, and its plane at right angles
to it. When the resonator is quite close to the zinc plate no sparks pass
across the air space; feeble sparks, however, begin to pass as soon as the
resonator is moved a short distance away from the plate. They increase
rapidly in brightness as the resonator is moved away from the plate until
the distance between the two is about 1.8 m., when the brightness of the
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sparks is a maximum. When the distance is still further increased the
brightness of the sparks diminishes, and vanishes again at a distance of
about 4 metres from the zinc plate, after which it begins to increase, and
attains another maximum, and so on. Thus the sparks exhibit a remarkable
periodic character, similar to that which occurs when stationary vibrations
are produced by the reflection of wave motion from a surface at right angles
to the direction of propagation of the motion.

338.] Let the resonator now be placed so that its plane is the vertical
one through the base line, the air gap being at the highest or lowest point;
in this position the Faraday tubes which fall directly on the air gap are at
right angles to the sparks, so that the latter are due entirely to the Faraday
tubes collected by the resonator and thrown into the air gap.

When the resonator is in this position and close to the reflecting plate
sparks pass freely. As the resonator recedes from the plate the sparks
diminish and vanish when its distance from the plate is about 1.8 metres,
the place at which they were a maximum when the resonator was at right
angles to the base line; after the resonator passes through this position the
sparks increase and attain a maximum 4 metres from the plate, the place
where, with the other position of the resonator, they were a minimum; when
the resonator is removed still further from the plate the sparks diminish,
then vanish, and so on. The sparks in this case show a periodicity of the
same wave length as when the resonator was in its former position, the
places of minimum intensity for the sparks in one position of the resonator
corresponding to those of maximum intensity in the other.

339.] If the zinc reflecting plate is mounted on a movable frame work so
that it can be placed behind the resonator and removed at will, its effect
can be very clearly shown by the following experiments:—

Hold the resonator in the position it had in the last experiment at some
distance from the vibrator and observe the sparks, the zinc plate being
placed on one side out of action: then place the reflector immediately
behind the resonator, the sparks will increase in brightness; now push the
reflector back, and at about 2 metres from the resonator the sparks will
stop. On pushing it still further back the sparks will increase again, and
when the reflector is about 4 metres away they will be a little brighter than
when it was absent altogether.

340.] Hertz only used one size of resonator, which was selected so
as to be in tune with the vibrator. Sarasin and De la Rive (Comptes
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Rendus, March 31, 1891), who repeated this experiment with vibrators
and resonators of various sizes, found however that the apparent wave
length of the vibrations, that is twice the distance between two adjacent
places where the sparks vanish, depended entirely upon the size of the
resonator, and not at all upon that of the vibrator. The following table
contains the results of their experiments; λ denotes the wave length, a
‘loop’ means a place where the sparks are at their maximum brightness
when the resonator is held in the first position, a ‘node’ a place where the
brightness is a minimum. The line beginning ‘1/4 λ wire’ relates to another
series of experiments which we shall consider subsequently. It is included
here to avoid the repetition of the table. The distances of the loops and
nodes are measured in metres from the reflecting surface.

Diameter of
resonator circle (D).

1 metre,
stout wire
1 cm. in

diameter.

.75 m.
stout wire.

.50 m.
stout wire.

.35 m.
stout wire.

.35 m.
fine wire
2 mm. in
diameter.

1st Loop . . . . 2.11 1.60 1.11 .76 .75
1st Node . . . 4.14 3.01 1.49 1.51
2nd Loop . . . 2.30 2.37
2nd Node . . . 3.04 3.10
3rd Loop . . .
3rd Node . . .
1
4λ air . . . . . 2.03 1.41 1.11 .76 .80
1
4λ wire . . . . 1.92 1.48 .98 .73
2D . . . . . . 2.00 1.50 1.00 .70 .70

Diameter of
resonator circle (D).

.25 m.
stout wire

.25 m.
fine wire.

.20 m.
stout wire.

.20 m.
fine wire.

.10 m.
stout wire.

1st Loop . . . . .46 .54 .39 .42 .21
1st Node . . . .94 1.17 .80 .93 .41
2nd Loop . . . 1.63 1.89 1.24 1.55 .59
2nd Node . . . 2.15 2.40 1.69 2.05 .79
3rd Loop . . . 2.71 2.46 .96
3rd Node . . . 3.14
1
4λ air . . . . . .60 .43 .51 .19
1
4λ wire . . . . .56 .45
2D . . . . . . .50 .40 .40 .20

The most natural interpretation of Hertz’s original experiment was to
suppose that the vibrator emitted waves of electromotive intensity which,
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by interference with the waves reflected from the zinc plate, produced
standing waves in the region between the vibrator and the reflector, the
places in these waves where the electromotive intensity was a maximum
being where the sparks were brightest when the resonator was held in the
first position.

Sarasin’s and De la Rive’s discovery of the influence of the size of the
resonator on the positions of maximum sparking, and the independence of
these positions on the period of the vibrator, compels us, if we retain this
explanation, to suppose that any electrical vibrator gives out vibrations of
all periods, emitting as it were a continuous electric spectrum.

340*.] This hypothesis appears most improbable, and a more satis-
factory explanation seems to be afforded by means of the fact that the
oscillations of the vibrator die away with great rapidity, while those of the
resonator are extremely persistent. Let us consider what would happen in
the extreme case when the oscillations in the vibrator are absolutely dead-
beat. Here an electric impulse starts from the vibrator; on its way to the
reflector it strikes against the resonator and sets it in electrical vibration;
the impulse then travels up to the plate and is reflected, the electromotive
intensity in the impulse being reversed by reflection; after reflection the
impulse again strikes the resonator, which has maintained the vibrations
started by the first impact. If when the reflected impulse reaches the res-
onator the phase of the vibrations of the latter is opposite to the phase
when the impulse passed it on its way to the reflector, the electromotive
intensity across the air gap due to the direct and reflected impulses will
conspire, so that if the resonator is held in the first position a bright spark
will be produced. Now the reflected impulse will strike the resonator the
second time when its vibration is in the opposite phase to that which it
had just after the first impact if the time which has elapsed between the
two impacts is equal to half the time of a complete electrical oscillation of
the resonator. The impulse travels at the rate at which electromagnetic
action is propagated; hence, if the distance travelled by the impulse be-
tween the two impacts is equal to half the wave length of the free electrical
vibrations of the resonator, that is, if the distance of the resonator from the
reflecting plane is equal to one quarter of the wave length of this vibration,
the direct and reflected waves will conspire. If the path travelled by the
impulse between the two impacts is equal to a wave length, the electromo-
tive intensity at the air gap due to the incident impulse will be equal and
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opposite to that due to the reflected one; so that there will in this case, in
which the resonator is half a wave length away from the reflector, be no
tendency to spark when the resonator is held in this position.

Thus we see that on this view the distances from the reflecting plane
of the places where the sparks have their maximum brightness will depend
entirely upon the size of the resonator, and not upon that of the vibrator.
This, as we have seen, was found by Sarasin and De la Rive to be a very
marked feature in their experiments. We have assumed in this explanation
that the vibrator does not vibrate. Bjerknes’ experiments (l.c.) show that
though the vibrations die away very rapidly they are not absolutely dead-
beat. The existence of a small number of oscillations in the vibrator will
cause the effects to be more vivid with a resonator in tune with it than
with any other resonator. Since, however, the rate of decay of the vibrator
is infinitely rapid compared with that of the resonator, the positions in
which the sparks are brightest will depend much more upon the time of
oscillation of the resonator than upon that of the vibrator.

341.] We have still to explain why the places at which the sparks
were a maximum when the resonator was in the first position (i.e. with its
plane at right angles to the base line) were the places where the sparks
vanished when the vibrator was in the second position (i.e. with its plane
containing the base line and the axis of the vibrator). When the resonator
is in the first position the sparks are wholly due to the Faraday tubes
which fall directly upon the air gap, hence the sparks will be a maximum
when the state of the resonator corresponds to the incidence upon it of
Faraday tubes from the vibrator of the same kind as those which reach it
after reflection from the zinc plate. When the resonator is in the second
position, having the line joining the terminals of the air gap at right angles
to the axis of the vibrator, the sparks are due entirely to the Faraday
tubes collected by the resonator and thrown into the air gap, and there
would be no tendency to spark in the case just mentioned. For when two
Faraday tubes of the same kind moving in opposite directions strike against
opposite sides of the resonator, the tubes thrown into the air gap are of
opposite signs, and thus do not produce any tendency to spark. When the
resonator is in this position the maximum sparks will be produced when
the positive tubes strike against one side of the resonator, the negative
tubes against the other; the tubes thrown into the air gap will then be of
the same sign and their efforts to produce a spark will conspire: if however
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the resonator had been held in the first position the positive tubes would
have counterbalanced the negative ones, and there would not have been
any tendency to spark.

342.] There is one result of Sarasin’s and De la Rive’s experiments
which it is difficult to reconcile with theory. As will be seen from the table
they found that the wave length of the vibration was equal to 8 times
the diameter of the resonator; theory would lead us to expect that the
circumference of the resonator should be half a wave length, since, until
the sparks pass, the current in the resonator will vanish at each end of the
resonator, as we may neglect the capacity of the knobs. Thus there will be
a node at each end of the resonator, and we should expect the wave length
to be 2π times the diameter instead of 8 times, as found by Sarasin and
De la Rive.

Parabolic Mirrors.

343.] If the vibrator is placed in the focal line of a parabolic cylinder,
and if it is of such a kind that the Faraday tubes it emits are parallel to
the focal line, then the waves emitted by the vibrator will, if the laws of
reflection of these waves are the same as for light, after reflection from
the cylinder emerge as a parallel beam and will therefore not diminish in
intensity as they recede from the mirror; if such a beam falls on another
parabolic mirror whose axis (i.e. the axis of its cross-section) is parallel
to the beam, it will be brought to a focus on the focal line of the second
mirror. For these reasons the use of parabolic mirrors facilitates very much
many experiments on electromagnetic waves.

Fig. 120.

The parabolic mirrors used by Hertz were made of sheet zinc, and their
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focal length was about 12.5 cm. The vibrator which was placed in the focal
line of one of the mirrors consisted of two equal brass cylinders placed so
that their axes were coincident with each other and with the focal line; the
length of each of the cylinders was 12 cm. and the diameter 3 cm., their
sparking ends being rounded and well polished. The resonator, which was
placed in the focal line of an equal parabolic mirror, consisted of two pieces
of wire, each had a straight piece 50 cm. long, and was then bent round at
right angles so as to pass through the back of the mirror, the length of this
bent piece being 15 cm. The ends which came through the mirror were
connected with a spark micrometer and the sparks were observed from
behind the mirror. The mirrors are represented in Fig. 120.

Electric Screening.

344.] If the mirrors are placed about 6 or 7 feet apart in such a way that
they face each other and have their axes coincident, then when the vibrator
is in action vigorous sparks will be observed in the resonator. If a screen
of sheet zinc about 2 m. high by 1 broad is placed between the mirrors
the sparks in the resonator will immediately cease; they will also cease if a
paste-board screen covered with gold-leaf or tin-foil is placed between the
mirrors; the interposition of a non-conductor, such as a wooden door, will
not however produce any effect. We thus see that a very thin metallic plate
acts as a perfect screen and is absolutely opaque to electrical oscillations,
while on the other hand a non-conductor allows these radiations to pass
through quite freely. The human body is a sufficiently good conductor to
produce considerable screening when interposed between the vibrator and
resonator.

345.] If wire be wound round a large rectangular framework in such a
way that the turns of wire are parallel to one pair of sides of the frame, and
if this is interposed between the mirrors, it will stop the sparks when the
wires are vertical and thus parallel to the Faraday tubes emitted from the
resonator; the sparks however will begin again if the framework is turned
through a right angle so that the wires are at right angles to the Faraday
tubes.
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Reflection of Electric Waves.

346.] To show the reflection of these waves place the mirrors side by
side, so that their openings look in the same directions and their axes
converge at a point distant about 3 m. from the mirrors. No sparks can
be detected at the resonator when the vibrator is in action. If, however,
we place at the point of intersection of the axes of the mirrors a metal
plate about 2 m. square at right angles to the line which bisects the angle
between the axes of the mirrors, sparks will appear at the resonator; they
will however disappear if the metal plate is twisted through about 15◦ on
either side. This experiment shows that these waves are reflected and that,
approximately at any rate, the angle of incidence is equal to the angle of
reflection.

If the framework wound with wire is substituted for the metal plate
sparks will appear when the wires are vertical and so parallel to the Faraday
tubes, while the sparks will disappear if the framework is turned round
until the wires are horizontal. Thus this framework reflects but does not
transmit Faraday tubes parallel to the wires, while it transmits but does
not reflect Faraday tubes at right angles to them. It behaves in fact towards
the electrical waves very much as a plate of tourmaline does to light waves.

Refraction of Electric Waves.

347.] To show the refraction of these waves Hertz used a large prism
made of pitch; it was about 1.5 metres in height, had a refracting angle
of 30◦, and a slant side of 1.2 metres. When the electric waves from the
vibrator passed through this prism the sparks in the resonator were not
excited when the axes of the two mirrors were parallel, but they were
produced when the axis of the mirror of the resonator made a suitable angle
with that of the vibrator. When the system was adjusted for minimum
deviation the sparks were most vigorous in the resonator when the axis of
its mirror made an angle of 22◦ with that of the vibrator. This shows that
the refractive index for pitch is 1.69 for these long electrical waves.

Angle of Polarization.

348.] When light polarized in a plane at right angles to that of incidence
falls upon a plate of refracting substance and the normal to the wave front
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makes with the normal to the surface an angle tan−1 µ where µ is the
refractive index, all the light is refracted and none reflected.

Trouton (Nature, February 21, 1889) has observed a similar effect with
these electrical vibrations. From a wall 3 feet thick reflections were ob-
tained when the vibrator, and therefore the Faraday tubes, were perpen-
dicular to the plane of incidence, while there was no reflection when the
vibrator was turned through a right angle so that the Faraday tubes were
in the plane of incidence. This experiment proves that in the Electromag-
netic Theory of Light the Faraday tubes and the electric polarization are
at right angles to the plane of polarization.

Before proceeding to describe some other interesting experiments of
Mr. Trouton’s on the reflection of these waves from slabs of dielectrics, we
shall investigate the theory of these phenomena on Maxwell’s Theory.

349.] Let us suppose that plane waves are incident on a plate of di-
electric bounded by parallel planes, let the plane of the paper be taken as
that of incidence and of xy, let the plate be bounded by the parallel planes
x = 0, x = −h, the wave being incident on the plane x = 0. We shall first
take the case when the polarization and Faraday tubes are at right angles
to the plane of incidence. Let the electromotive intensity in the incident
wave be represented by the real part of

Aει(ax+by+pt);

if i is the angle of incidence, λ the wave length of the vibrations, V their
velocity of propagation,

a =
2π

λ
cos i, b =

2π

λ
sin i, p =

2π

λ
V.

Let the intensity in the reflected wave be represented by the real part
of

A′ ει(−ax+by+pt).

The coefficient of y in the exponential in the reflected wave must be
the same as that in the incident wave, otherwise the ratio of the reflected
to the incident light would depend upon the portion of the plate on which
the light fell. The coefficient of x in the expression for the reflected wave
can only differ in sign from that in the incident wave: for if E is the
electromotive intensity in either the incident or reflected wave, we have

d2E

dx2
+
d2E

dy2
=

1

V 2

d2E

dt2
,
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hence the sum of the squares of the coefficients of x and y must be the
same for the incident and reflected waves, and since the coefficients of y
are the same the coefficients of x can only differ in sign. If E1, E2, E3 are
the total electromotive intensities at right angles to the plane of incidence
in the air, in the plate, and in the air on the further side of the plate, we
may put

E1 = Aει(ax+by+pt) + A′ ει(−ax+by+pt),

E2 = B ει(a
′x+by+pt) +B′ ει(−a

′x+by+pt),

E3 = C ει(ax+by+pt),

where a′2 + b2 =
p2

V ′2
,

V ′ being the velocity with which electromagnetic action travels through
the plate. The real parts of the preceding expressions only are to be taken.

Since the electromotive intensity is continuous when x = 0 and when
x = −h, we have

A+ A′ = B +B′, (1)

C ε−ιah = B ε−ιa
′h +B′ ειa

′h. (2)

Since there is no accumulation of Faraday tubes on the surface of the
plate the normal flow of these tubes in the air must equal that in the
dielectric. Let K be the specific inductive capacity of the plate, that of air
being taken as unity, then in the air just above the plate the normal flow
of tubes towards the plate is

1

4π
(A− A′)V cos iει(by+pt),

the normal flow of tubes in the plate away from the surface x = 0 is

K

4π
(B −B′)V ′ cos rει(by+pt),

where r is the angle of refraction. Since these must be equal we have

(A− A′)V cos i = K(B −B′)V ′ cos r. (3)

The corresponding condition when x = −h gives

C ε−ιah V cos i = K
(
B ε−ιa

′h −B′ ειa′h
)
V ′ cos r. (4)
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Equations (3) and (4) are equivalent to the condition that the tangential
magnetic force is continuous.

Solving equations (1), (2), (3), (4), we get

A′ = −A(K2V ′2 cos2 r − V 2 cos2 i)(ειa
′h − ε−ιa′h)÷∆,

B = 2AV cos i(KV ′ cos r + V cos i)ειa
′h ÷∆,

B′ = 2AV cos i(KV ′ cos r − V cos i)ε−ιah ÷∆,

C = 4AKV V ′ cos i cos rειah ÷∆,

 (5)

where

∆ = (K2V ′2 cos2 r + V 2cos2i)(ειa
′h − ε−ιa′h)

+ 2KV V ′ cos i cos r(ειa
′h + ε−ιa

′h).

Thus, corresponding to the incident wave of electromotive intensity

cos
2π

λ
(x cos i+ y sin i+ V t),

there will be a reflected wave represented by

− (K2V ′2 cos2 r − V 2 cos2 i) sin

(
2π

λ′
h cos r

)
×

cos

[
2π

λ
(−x cos i+ y sin i+ V t) +

π

2
− ϑ
]
÷D,

where λ′ is the wave length in the plate.

D2 = (K2V ′2 cos2 r + V 2 cos2 i)2 sin2

(
2π

λ′
h cos r

)
+ 4K2V ′2V 2 cos2 i cos2 r cos2

(
2π

λ′
h cos r

)
,

and tanϑ =
K2V ′2 cos2 r + V 2 cos2 i

2KV V ′ cos i cos r
tan

(
2π

λ′
h cos r

)
.

The waves in the plate will be

V cos i(KV ′ cos r + V cos i)×

cos

[
2π

λ′
(
(x+ h) cos r + y sin r + V ′t

)
− ϑ
]
÷D,
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and

V cos i(KV ′ cos r − V cos i)×

cos

[
2π

λ′
(
−(x+ h) cos r + y sin r + V ′t

)
− ϑ
]
÷D;

while the wave emerging from the plate will be

2KV V ′ cos i cos r cos

[
2π

λ

(
(x+ h) cos i+ y sin i+ V t

)
− ϑ
]
÷D.

Thus we see that when 2πh cos r/λ′ is very small the reflected wave
vanishes; this is what we should have expected, as it must require a slab
whose thickness is at least comparable with the wave length in the slab
to produce any appreciable reflection. When the reflecting surface is too
thin we get a result analogous to the blackness of very thin soap films.
Trouton has verified that there is no reflection of the electrical waves from
window-glass unless this is covered with moisture.

The expression for the amplitude for the reflected wave shows that
this will vanish not merely when 2πh cos r/λ′ vanishes but also when this
is a multiple of π. Trouton used as the dielectric plate a wall built of
paraffin bricks, a method which enabled him to try the effect of altering
the thickness of the plate; he found that after reaching the thickness at
which the reflected wave became sensible, by making the wall still thicker
the reflected wave could be diminished so that its effects were insensible.
The case is exactly analogous to that of Newton’s rings, where we have
darkness whenever 2h cos r is a multiple of a wave length of the light in the
plate.

There will be a critical angle in this case if the solution of the equation

K2V ′2 cos2 r − V 2 cos2 i = 0 (6)

is real. If the plate is non-magnetic the magnetic permeability is unity,
and we have

K =
V 2

V ′2
=

sin2 i

sin2 r
,

so equation (6) becomes

cot2 r − cot2 i = 0,

an equation which cannot be satisfied, so that there is no critical angle in
this case. This result would not however be true if it were possible to find
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a magnetic substance which was transparent to electric waves; for if µ′ is
the magnetic permeability of the substance, we have

µ′K =
V 2

V ′2
,

so that equation (6) becomes

cot2 r

µ′2
= cot2 i,

or
cot r

µ′
= cot i.

Since
√
µ′K sin r = sin i

we may transform this equation to

sin2 i =
µ′2 − µ′K
µ′2 − 1

=
µ′(µ′ −K)

µ′2 − 1
;

hence if i is real, µ′ must be greater than K. No substance is known
which fulfils the conditions of being transparent and having the magnetic
permeability greater than the specific inductive capacity, which are the
conditions for the existence of a polarizing angle when the Faraday tubes
are at right angles to the plane of incidence.

When the plane is infinitely thick, we see that

A′ = −KV
′ cos r − V cos i

KV ′ cos r + V cos i
A,

or if the magnetic permeability is unity,

A′ = −sin(i− r)
sin(i+ r)

A,

which is analogous to the expression obtained by Fresnel for the amplitude
of the reflected ray when the incident light is polarized in the plane of
incidence.

350.] In the preceding investigation the Faraday tubes were at right
angles to the plane of incidence, we shall now consider the case when they
are in that plane: they are also of course in the planes at right angles to
the direction of propagation of the several waves.

Let the electromotive intensity at right angles to the incident ray be

Aει(ax+by+pt),
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that at right angles to the reflected ray

A′ ει(−ax+by+pt).

Let the electromotive intensity at right angles to the ray which travels
in the same sense as the incident one through the plate of dielectric, i.e. in
a direction in which x diminishes, be

B ει(a
′x+by+pt),

while that at right angles to the ray travelling in a direction in which
x increases is represented by

B′ ει(−a
′x+by+pt).

The electromotive intensity at right angles to the ray emerging from the
plate is

C ει(ax+by+pt)

The conditions at the boundary are (1) that the electromotive inten-
sity parallel to the surface of the plate is continuous; (2) that the electric
polarization at right angles to the plate is also continuous.

Hence if i is the angle of incidence, r that of refraction, the boundary
conditions at the surface x = 0 of the plate give

(A− A′) cos i = (B −B′) cos r,

(A+ A′) sin i = K(B +B′) sin r,

}
(7)

where K is the specific inductive capacity of the plate.
The boundary conditions at the lower surface of the plate give

C ε−ιah cos i = (B ε−ιa
′h −B′ ειa′h) cos r,

C ε−ιah sin i = K(B ε−ιa
′h +B′ ειa

′h) sin r.

}
(8)

Solving equations (7) and (8) we get

A′ = A(K2 tan2 r − tan2i)(ειa
′h − ε−ιa′h)÷∆′,

B = 2A(sin i/ cos r)(K tan r + tan i)ειa
′h ÷∆′,

B′ = −2A(sin i/ cos r)(K tan r − tan i)ε−ιa
′h ÷∆′,

C = 4AK tan i tan rειah ÷∆′,

where

∆′ = (K2 tan2 r + tan2 i)(ειa
′h − ε−ιa′h) + 2K tan i tan r(ειa

′h + ε−ιa
′h).
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From these equations we see that if the incident wave is equal to

cos
2π

λ
(x cos i+ y sin i+ V t)

the reflected wave will be

(K2 tan2 r − tan2 i) sin

(
2π

λ′
h cos r

)
×

cos

[
2π

λ
(−x cos i+ y sin i+ V t) +

π

2
− θ
]
÷D′;

the waves in the plate will be represented by

(sin i/ cos r)(K tan r + tan i)×

cos

[
2π

λ′
(
(x+ h) cos r + y sin r + V ′t

)
− θ
]
÷D′,

and

− (sin i/ cos r)(K tan r − tan i)×

cos

[
2π

λ′
(
−(x+ h) cos r + y sin r + V ′t

)
− θ
]
÷D′

respectively, while the emergent wave is

2K tan i tan r cos

[
2

π
λ
(
(x+ h) cos i+ y sin i+ V t

)
− θ
]
÷D′,

where

D′2 = (K2 tan2 r + tan2 i)2 sin2

(
2π

λ′
h cos r

)
+ 4K2 tan2 r tan2 i cos2

(
2π

λ′
h cos r

)
,

and tan θ =
K2 tan2 r + tan2 i

2K tan r tan i
tan

(
2π

λ′
h cos r

)
.

From these expressions we see that, as before, there is no reflected
wave when h is very small compared with λ′ and when h cos r is a multiple
of λ′/2; these results are the same whether the Faraday tubes are in or
at right angles to the plane of incidence. We see now, however, that in
addition to this the reflected wave vanishes, whatever the thickness of the
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plate, when K tan r = tan i, or since
√
µ′K sin r = sin i where µ′ is the

magnetic permeability, the reflected wave vanishes when

tan2 i =
K(K − µ′)
µ′K − 1

;

if the plate is non-magnetic µ′ = 1, and we have

tan i =
√
K.

When K tan r = tan i the reflected wave and one of the waves in the
plate vanish; the electromotive intensity in the other wave in the plate is
equal to √

µ′

K
cos

2π

λ′
(x cos r + y sin r + V ′t),

and the emergent wave is

cos
2π

λ

(
(x+ h) cos i+ y sin i+ V t− hλ

λ′
cos r

)
.

The intensity of all these waves are independent of the thickness of the
plate.

If the plate is infinitely thick we must put B′ = 0 in equations (7);
doing this we find from these equations that

A′ = A
(K tan r − tan i)

K tan r + tan i
,

B = A
sin 2i

sin i cos r +K cos i sin r
.

If the plate is made of a non-magnetic material K = sin2 i/ sin2 r, and
in this case we have

A′ = A
tan(i− r)
tan(i+ r)

,

B = 4A
sin r cos i

sin 2i+ sin 2r
.
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Reflection from a Metal Plate.

351.] The very important case when the plate is made of a metal
instead of an insulator can be solved in a similar way. The expressions
for the electromotive intensities in the various media will be of the same
type as before; in the case of metallic reflection however the quantity a′,
which occurs in the expression for the electromotive intensity in the plate,
will no longer be real. In a conductor whose specific resistance is σ the
electromotive intensity will satisfy a differential equation of the form

d2E

dx2
+
d2E

dy2
=

4πµ

σ

dE

dt
,

or, since E varies as ειpt,

d2E

dx2
+
d2E

dy2
=

4πµιp

σ
E.

Hence, since in the metal plate E varies as ει(±a
′x+by+pt), we see that

a′2 + b2 = −4πµιp/σ. (9)

To compare the magnitude of the terms in this equation, let us suppose
that we are dealing with a wave whose wave length is 10q centimetres. Then
since 2π/p is the time of a vibration, if V is the velocity of propagation of
electromagnetic action in air,

V 2π/p = λ,

but V is equal to 3× 1010, hence

p = 6π1010−q.

If the plate is made of zinc σ is about 104, so that the modulus of
4πµιp/σ is about 24π2106−q. Now b2 is less than 4π2/λ2, i.e. 4π2 × 10−2q,
hence the ratio of the modulus of 4πµιp/σ to b2 is of the order 6× 106+q,
and is therefore exceedingly large unless q is less than −6, that is, unless
the wave length of the electrical oscillation is much less than that of green
light. Thus for waves appreciably longer than this we may for a zinc plate
neglect b2 in equation (9), which then becomes

a′2 = −4πµιp/σ,

or a′ = ±
√

2πµp/σ(1− ι),
thus a′ is exceedingly large compared with a.
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We shall first consider the case when the Faraday tubes are at right
angles to the plane of incidence as in Art. 349. The condition that the
electromotive intensity parallel to the surface of the plate is continuous
will still be true, but since there is no real angle of refraction in metals it
is convenient to recognize the second condition of that article as express-
ing the condition that the tangential magnetic force is continuous. The
tangential magnetic force is parallel to y and is equal to

1

µιp

dE

dx
,

where µ is the magnetic permeability. By means of this and the previous
condition we find, using the notation of Art. 349,

A′ = −A(a′2/µ2 − a2)(ειha
′ − ε−ιha′)÷D,

B = 2Aa(a′/µ+ a)ειha
′ ÷D,

B′ = 2Aa(a′/µ− a)ε−ιha
′ ÷D,

C = A4a(a′/µ)ειha ÷D,
where

D = (a′2/µ2 + a2)(ειha
′ − ε−ιha′) + 2a(a′/µ)(ειha

′
+ ε−ιha

′
).


(10)

Since ει(a
′x+by+pt) represents a wave travelling in the plate in the direc-

tion of the incident wave, i.e. so that x is increasingly negative; the real
part of ιa′ must be positive, otherwise the amplitude of the wave would
continually increase as the wave travelled onwards; hence if ha′ is very
large, equations (10) become approximately, remembering that a′/a is also
very large,

A′ = −A,

B =
2aµ

a′
A,

C = B′ = 0.

Hence in this case there is complete reflection from the metal plate, and
since A′ + A = 0 we see that the electromotive intensity vanishes at the
surface of the plate, and since C = 0 there is no electromotive intensity
on the far side of the plate. The condition that the plate should act as a
perfect reflector or, which is the same thing, as a perfect screen, is that
{4πµph2/σ} 1

2 should be large. In the case of zinc plates the value of this
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quantity for vibrations whose wave length is 10q centimetres is equal to
1.5× 104−q/2h, so that for waves 1 metre long it is equal to 1500h; thus, if
h were as great as 1

15
of a millimetre, a′h would be equal to 10, and since

ε10 is very large the reflection in this case would be practically perfect. We
see from this result the reason why gold-leaf and tin-foil are able to reflect
these very rapid oscillations almost completely. If however the conductor is
an electrolyte σ may be of the order 1010, so that a′h will now be only 1.5h
for waves 1 metre in length, in this case it will require a slab of electrolyte
several millimetres in thickness to produce complete reflection. We shall
consider a little more fully the wave emergent from the metallic plate. We
have by equations (10)

C =
4Aaa′ ειha

µ{(a′2/µ2 + a2)(ειha′ − ε−ιha′) + (2aa′/µ)(ειha′ + ε−ιha′)}
. (11)

If ha′ is very small this may be written

C =
2Aaa′ ειha

µ{(a′2/µ2 + a2)ha′ι+ (2aa′/µ)}
,

or, since a′2/µ2 is very large compared with a2,

C =
Aειha

1 +
ιha′2

2µa
+ 1

2
ιµha

=
Aειha

1 + (2πV h/σ) + 1
2
ιµha

.

Thus, corresponding to the incident wave

cos
2π

λ
(x+ V t),

we have, since ha is very small, an emergent wave
1

1 + (2πhV/σ)
cos

2π

λ
(x+ h′ + V t),

where h′ = h

{
1− 1

2

µ

1 + 2πhV/σ

}
.

Since V is equal to 3 × 1010 and σ for electrolytes is rarely greater
than 109, we see that for very moderate thicknesses (2πhV/σ) will be large
compared with unity, so that the expression for the emergent wave becomes

1

(2πhV/σ)
cos

2π

λ
(x+ h+ V t).
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The thickness of the conducting material which, when interposed in the
path of the wave, produces a given diminution in the electric intensity is
thus proportional to the specific resistance of the material; this result has
been applied to measure the specific resistance of electrolytes under very
rapidly alternating currents (see J. J. Thomson, Proc. Roy. Soc. 45, p. 269,
1889).

The preceding investigation applies to the case when the Faraday tubes
are at right angles to the plane of incidence, the same results will apply
when the Faraday tubes are in the plane of incidence: the proof of these
results for this case we shall however leave as an exercise for the student.

Reflection of Light from Metals.

352.] The assumption that a′/a is very large is legitimate when we
are dealing with waves as long as those produced by Hertz’s apparatus, it
ceases however to be so when the length of the wave is as small as it is in the
electrical vibrations we call light. We shall therefore consider separately
the theory of the reflection of such waves from metallic surfaces. With the
view of making our equations more general we shall not in this case neglect
the effects of the polarization currents in the metal; when we include these,
the components of the magnetic force and electromotive intensity in the
metal satisfy differential equations of the form

µK ′
d2f

dt2
+

4πµ

σ

df

dt
=
d2f

dx2
+
d2f

dy2
+
d2f

dz2
. (1)

See Maxwell’s Electricity and Magnetism, Art. 783; here K ′ is the specific
inductive capacity of the metal.

353.] Let us first consider the case when the incident wave is polarized
in the plane of incidence, which we take as the plane of xy, the reflecting
surface being given by the equation x = 0. In this case the electromotive
intensity Z is parallel to the axis of z; let the incident wave be

Z = ει(ax+by+pt),

the reflected wave

Z = Aει(−ax+by+pt),

where a2 + b2 = Kp2, (2)



353.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 417

K being the specific inductive capacity of the dielectric, and the magnetic
permeability of this dielectric being assumed to be unity.

Let the wave in the metal be given by the equation

Z = B ει(a
′x+by+pt),

where a′2 + b2 = p2µK ′ − 4πµιp

σ
. (3)

Thus in the dielectric we have

Z = ει(ax+by+pt) + Aει(−ax+by+pt),

and in the metal Z = B ει(a
′x+by+pt).

Since Z, the electromotive intensity, is continuous when x = 0, we have

1 + A = B.

By equation (2) of Art. 256 the magnetic induction parallel to y is equal
to

1

ιp

dZ

dx
,

and since the magnetic force parallel to y is continuous when x = 0, we
have

a(1− A) =
a′

µ
B.

From these equations we find

A =

1− a′

µa

1 +
a′

µa

. (3*)

Let us for the present confine our attention to the non-magnetic metals
for which µ = 1, in this case the preceding equation becomes

A =
1− a′

a

1 +
a′

a

.

The expression given by Fresnel for the amplitude of the wave reflected
from a transparent substance is of exactly the same form as this result, the
only difference being that for a transparent substance a′ is real, while in
the case of metals it is complex.
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Now for transparent substances the relation between a′ and a is

a′2 + b2

a2 + b2
= µ′2,

where µ′ is the refractive index of the substance.
In the case of metals however the relation between a′ and a is

a′2 + b2

a2 + b2
= µ

K ′

K
− 4πµι

Kpσ
= R2 ε2ια, say, (4)

which is of exactly the same form as the preceding, with R εια written
instead of µ′, the refractive index of the transparent substance.

Thus, if in Fresnel’s formula for the reflected light we suppose that the
refractive index is complex and equal to R εια, where R and α are defined
by equation (4), we shall arrive at the results given by the preceding theory
of the reflection of light by metals.

354.] Let us now consider the case when the plane of polarization
is perpendicular to the plane of incidence; in this case the electromotive
intensity is in the plane of incidence and the magnetic force γ at right
angles to it. If the incident wave is expressed by the equation

γ = ει(ax+by+pt),

then in the dielectric we may put

γ = ει(ax+by+pt) + A′ ει(−ax+by+pt),

while in the metal we have

γ = B′ ει(a
′x+by+pt).

Since the magnetic force parallel to the surface is continuous, we have

1 + A′ = B′. (5)

The other boundary condition we shall employ is that Q, the tangential
electromotive intensity parallel to the axis of y, is continuous. Now if g is
the electric polarization parallel to y, and v the conduction current in the
same direction, then in the dielectric above the metal

4π
dg

dt
= −dγ

dx
,

or since

g =
K

4π
Q =

a2 + b2

4πp2
Q
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by equation (2) we have

ι(a2 + b2)

p
Q = −dγ

dx
.

In the metal

4π
dg

dt
+ 4πv = −dγ

dx
,

or

(
K ′ιp+

4π

σ

)
Q = −dγ

dx
,

this by equation (3) becomes

ι

pµ
(a′2 + b2)Q = −dγ

dx
;

hence, since Q is continuous when x = 0, we have

a

a2 + b2
(1− A′) =

µa′

(a′2 + b2)
B′. (6)

Equations (5) and (6) give

A′ =
1− µa

′

a

a2 + b2

a′2 + b2

1 + µ
a′

a

a2 + b2

a′2 + b2

,

which is again, for non-magnetic metals for which µ = 1, of the same
form as Fresnel’s expression for the amplitude of the reflected wave from
a transparent substance. So that in this case, as in the previous one,
we see that we can get the results of this theory of metallic reflection by
substituting in Fresnel’s expression a complex quantity for the refractive
index.

355.] This result leads to a difficulty similar to the one which was
pointed out by Lord Rayleigh (Phil. Mag. [4], 43, p. 321, 1872) in the the-
ory of metallic reflection on the elastic solid theory of light. The result
of substituting in Fresnel’s expressions a complex quantity for the refrac-
tive index has been compared with the result of experiments on metallic
reflection by Eisenlohr (Pogg. Ann. 104, p. 368, 1858) and Drude (Wied.
Ann. 39, p. 481, 1890). The latter writer finds that if the real part of
R2 ε2ια, the quantity which for metals replaces the square of the refractive
index for transparent substances, is written as n2(1 − k2), the imaginary
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part as −2ιn2k; then n and k have the following values, where the accented
letters refer to the values for red light, the unaccented to sodium light.

n n′ k k′

Bismuth . . . . . 1.90 2.07 1.93 1.90
Lead, pure . . . . . 2.01 1.97 1.73 1.74
Lead, impure . . . . 1.97 1.74
Mercury, pure . . . 1.73 1.87 2.87 2.78
Mercury, impure . . 1.55 3.14
Platinum, pure . . . 2.06 2.16 2.06 2.06
Platinum, impure . . 2.15 1.92
Gold, pure . . . . . .366 .306 7.71 10.2
Gold, impure . . . . .570 5.31
Antimony . . . . . 3.04 3.17 1.63 1.56
Tin, solid . . . . . 1.48 1.66 3.55 3.30
Tin, liquid . . . . . 2.10 2.15
Cadmium . . . . . 1.13 1.31 4.43 4.05
Silver . . . . . . . .181 .203 20.3 19.5
Zinc . . . . . . . 2.12 2.36 2.60 2.34
Copper, pure . . . . .641 .580 4.09 5.24
Copper, impure . . . .686 3.85
Copper-Nickel alloy . 1.55 2.14
Nickel . . . . . . 1.79 1.89 1.86 1.88
Iron . . . . . . . 2.36 1.36
Steel . . . . . . . 2.41 2.62 1.38 1.32
Aluminium . . . . 1.44 1.62 3.63 3.36
Magnesium . . . . .37 .40 11.8 11.5

It will be seen that for all these metals without exception the value of k is
greater than unity, so that the real part of R2 ε2ια or n2(1−k2) is negative.
Equation (4), Art. 353, shows, however, that the real part of R2 ε2ια is
equal to µK ′/K, an essentially positive quantity. This shows that the
electromagnetic theory of metallic reflection is not general enough to cover
the facts. In this respect, however, it is in no worse position than any
other existing theory of light, while it possesses the advantage over other
theories of explaining why metals are opaque.

356.] The direction in which to look for an improvement of the theory
seems pretty obvious. The preceding table shows how rapidly the effects
vary with the frequency of the light vibrations; they are in this respect
analogous to the effects of ‘anomalous dispersion’ (see Glazebrook, Report
on Optical Theories, B. A. Report, 1885), which have been accounted for
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by assuming that the molecules of the substance through which the light
passes have free periods of vibration comparable with the frequency of
the light vibrations. The energy absorbed by such molecules is then a
function of the frequency of the light vibrations, and the optical character
of the medium cannot be fixed by one or two constants, such as the specific
inductive capacity or the specific resistance; we require to know in addition
the free periods of the molecules.

357.] We now return to the case of the magnetic metals; the question
arises whether or not these substances retain their magnetic properties
under magnetic forces which oscillate as rapidly as those in a wave of
light. We have seen (Art. 286) that iron retains its magnetic properties
when the magnetic forces make about one million vibrations per second;
in the light waves, however, the magnetic forces are vibrating more than
five hundred million times faster than this, and the only means we have
of testing whether magnetic substances retain their properties under such
circumstances is to examine the light reflected from or transmitted through
such bodies. When we do this, however, we labour under the disadvantage
that, as the preceding investigation shows, the theory of metallic reflection
is incomplete, so that the conclusions we may come to as the results of this
theory are not conclusive. Such evidence as we have, however, tends to
show that iron does not retain its magnetic properties under such rapidly
alternating magnetic forces. An example of such evidence is furnished by
equation (3*), Art. 353. We see from that equation that if µ for light waves
in iron were very large, the intensity of the light reflected from iron would
be very nearly the same as that of the incident light, in other words iron
would have a very high reflecting power. The reverse, however, seems to be
true; thus Drude (Wied. Ann. 39, p. 549, 1890) gives the following numbers
as representing the reflective powers of some metals for yellow light:—

Silver. Gold. Copper. Iron. Steel. Nickel.
95.3 85.1 73.2 56.1 58.5 62.0

Rubens (Wied. Ann. 37, p. 265, 1889) gives for the same metals the fol-
lowing numbers:—

Silver. Gold. Copper. Iron. Nickel.
90.3 71.1 70.0 56.1 62.1

The near agreement of the numbers found by these two experimenters
seems to show that the smallness of the reflection observed from iron could
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not be due to any accidental cause such as want of polish. Another reason
for believing that iron does not manifest magnetic properties under the
action of light waves, is that there is nothing exceptional in the position
of iron with respect to the optical constants of metals in the table given in
Art. 353. The theory of metallic reflection is however so far from accounting
for the facts that we cannot attach much weight to considerations based
on it. The only conclusion we can come to is the negative one, that there
is no evidence to show that iron does retain its magnetic properties for the
light vibrations.

The change in Phase produced by the Transmission of Light through thin
Films of Metal.

358.] Quincke (Pogg. Ann. 120, p. 599, 1863) investigated the change
in phase produced when light passed through thin silver plates, and found
that in many cases the phase was accelerated, the effect being the same
as if the velocity of light through silver was greater than that through
air. Kundt (Phil. Mag. [5], 26, p. 1, 1888), in a most beautiful series of
experiments, measured the deviation of a ray passing through a small metal
prism, and found that when the prism was made of silver, gold, or copper,
the deviation was towards the thin end. With platinum, nickel, bismuth,
and iron prisms the deviation was, on the other hand, towards the thick
end. We can readily find on the electromagnetic theory of light the change
in phase produced when the light passes through a thin film of metal. The
equation (11) of Art. 351 shows, that if the incident wave (supposed for
simplicity to be travelling at right angles to the film) is represented by

ει(ax+pt),

the emergent wave will be

4a(a′/µ) ειha ει(ax+pt)

(a′2/µ2 + a2)(ειha′ − ε−ιha′) + 2a(a′/µ)(ειha′ + ε−ιha′)
,

or if the film is so thin that ha′ is a small quantity, the emergent wave is
equal to

ειha ει(ax+pt)

1 + 1
2

ιhµ

a

(
a′2

µ2
+ a2

) .
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Now, since in this case b = 0, we have by equation (4) of Art. 353
a′2

a2
= R2 ε2ια, hence the emergent wave is equal to

ειha ει(ax+pt)

1 + 1
2
ιhµa

{
R2 ε2ια

µ2
+ 1

} ,
or, neglecting squares and higher powers of h, this is equal to

ε
1
2
haR2 sin 2αµ−1

ειha ε−
1
2
ιhµa(1+R2 cos 2α/µ2) ει(ax+pt)

= ε
1
2
haR2 sin 2αµ−1

ειha(1−µ
2
{1+R2 cos 2α/µ2}) ει(ax+pt),

hence the acceleration of phase expressed as a length is equal to

h
(

1− µ

2
{1 +R2 cos 2α/µ2}

)
,

or for non-magnetic substances to

1
2
h(1−R2 cos 2α).

In the interpretation of this result we are beset with difficulties, whether
we take R2 cos 2α as determined by the electromagnetic theory, or whether
we take it as given by Drude’s experiments. In the former case R2 cos 2α
is positive, so that the acceleration cannot be greater than h/2, or the
apparent speed of light through the metal cannot be greater than twice
that through air; this is not in accordance with Kundt’s experiments on
silver and gold. If, on the other hand, we take Drude’s values for R2 cos 2α,
since these are negative for all metals, the apparent velocity of light through
a film of any metal ought to be more than double that through air; this
again is not in accordance with Kundt’s observations, according to which
the apparent velocity of light through films of metals other than gold,
silver, or copper is less than that through air. We might have anticipated
that such a discrepancy would arise, for we have assumed in deducing the
expression for the transmitted ray that the electromotive intensity parallel
to the surface of the metal is continuous. Now if we suppose that the light
vibrations have periods comparable with periods of the molecules of the
metal, the electromotive intensity in the metal will arise from two causes.
The first is due to magnetic induction, this will be continuous with that
due to the same cause in the air; the second is due to the reaction of the
molecules of the metal on the medium conveying the light. Now there does



359.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 424

not seem to be any reason to assume that this part of the electromotive
intensity should be continuous as we pass from the air which does not
exhibit anomalous dispersion to the metal which does. The electromotive
intensity parallel to the boundary is thus probably discontinuous, and we
could not therefore expect a formula obtained by the condition that this
intensity was continuous to be in accordance with experiment.

Reflection of Electromagnetic Waves from Wires.

Reflection from a Grating.

359.] We shall now consider the reflection of electromagnetic waves
from a grating consisting of similar and parallel metallic wires, whose cross-
sections we leave for the present indeterminate, arranged at equal intervals,
the axes of all the wires being in one plane, which we shall take as the plane
of yz, the axis of z being parallel to the wires: the distance between the
axes of two adjacent wires is a. We shall suppose that a wave in which the
electromotive intensity is parallel to the wires, and whose front is parallel to
the plane of the grating, falls upon the wires. The electromotive intensity
in the incident wave may be represented by the real part of Aε

ι2π
λ

(V t+x),
x being measured from the plane of the grating towards the advancing
wave. The incidence of this wave will induce currents in the wires, and
these currents will themselves produce electromotive intensities parallel
to z in the region surrounding them; these intensities will evidently be
expressed by a periodic function of y of such a character that when y is
increased by a the value of the function remains unchanged. If we make
the axis of z coincide with the axis of one of the wires, the electromotive
intensity will evidently be an even function of y. Thus E2, the electromotive
intensity due to the currents in the wire, will be given by an equation of
the form

E2 =
∑
Am cos

2mπy

a
ειnx ε

ι2π
λ
V t,

where m is an integer.
Since the electromotive intensity satisfies the equation

d2E

dx2
+
d2E

dy2
=

1

V 2

d2E

dt2
,



359.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 425

we have

n2 = −4π2m2

a2
+

4π2

λ2
.

We shall assume that the distance between the wires of the grating is
very small compared with the length of the wave; thus, unless m is zero,
the first term on the right-hand side of the above equation will be very
large compared with the second, so that when m is not zero we may put

n = ±ι2πm
a

,

while when m is zero

n = −2π

λ
,

the minus sign being taken so as to represent a wave diverging from the
wires. Substituting these values we find that when x is positive,

E2 = A0 ε
ι2π
λ

(
V t−(x+α)

)
+

m=∞∑
m=1

Am ε
− 2πm

a
x cos

2πmy

a
ε
ι2π
λ
V t,

where α is a constant.
When the rate of alternation is so rapid that the waves are only a few

metres in length the electromotive intensity at the surface of the metal
wire must vanish, see Arts. 300 and 301; hence if E1 is the electromotive
intensity in the incident wave, E1 + E2 must vanish at the surface of the
wire. Near the grating however x/λ will be small; hence we may put,
writing

A′m cos
2π

λ
V t+B′m sin

2π

λ
V t for Am ε

ι2πV t/λ,

E1 + E2 = (A+ A0) cos
2π

λ
V t+

(
A0(x+ α)− Ax

)2π

λ
sin

2π

λ
V t

+
∑
ε−

2πmx
a cos

2πmy

a

(
A′m cos

2π

λ
V t+B′m sin

2π

λ
V t

)
.

Now in Maxwell’s Electricity and Magnetism, Vol. i. Art. 203, it is
shown that the expression

C log

{
1− 2ε−

2πx
a cos

2πy

a
+ ε−

4πx
a

}
+Dx,
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where C and D are constants, is constant over a series of equidistant par-
allel wires, whose axes are at a distance a apart and whose cross-section is
approximately circular. The logarithm can be expanded in the form

−2C
∑ 1

m
ε−

2mπx
a cos

2mπy

a
.

Now in the expression for E1 + E2 put

A+ A0 = 0, Am = 0, Bm = −2C

m
,

then

E1 + E2 = A cos
2π

λ
(V t+ x)− A cos

2π

λ

(
V t− (x+ α)

)
+ C log

(
1− 2ε−

2πx
a cos

2πy

a
+ ε−

4πx
a

)
sin

2π

λ
V t,

hence near the grating where x/λ is small

E1 + E2 = sin
2π

λ
V t

{
−A2πx

λ
− A2π

λ
(x+ α)

+C log

(
1− 2ε−

2πx
a cos

2πy

a
+ ε−

4πx
a

)}
,

and we see by Maxwell’s result that the quantity inside the bracket has a
constant value over the surface of the wires; hence, if we make this value
zero, we shall have satisfied the conditions of the problem. Let 2c be the
diameter of any one of the wires in the plane of the grating, then when
x = 0 and y = c the expression inside the bracket must vanish, hence

−A2π

λ
α + C log 4 sin2 πc

a
= 0.

To find another relation between A, C, and α we must consider the
equation to the cross-section of the wire at the origin, viz.,

−A2π

λ
(2x+ α) + C log

(
1− 2ε−

2πx
a cos

2πy

a
+ ε−

4πx
a

)
= 0,

or substituting for C its value in terms of A,(
2x

α
+ 1

)
log
{

4 sin2 πc

a

}
= log

(
1− 2ε−

2πx
a cos

2πy

a
+ ε−

4πx
a

)
. (1)
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If d is the value of x when y = 0,

α = 2d
log 2 sin

πc

a

log

1− ε− 2πd
a

2 sin
πc

a


. (2)

When c = d, this equation becomes, since c/a is small,

α = −2a

π
log 2 sin

πc

a
.

The expression for E2 consists of two parts, one of which is

−Aε
ι2π
λ

(V t−(x+α)),

which represents a reflected wave equal in intensity to the incident one,
but whose phase is changed by reflection by

(
1
2
λ− α

)
, where α is given

by (2) and depends upon the size of the wires and their distance apart.
The other part of the expression for E2 is

C log

(
1− 2ε−

2πx
a cos

2πy

a
+ ε−

4πx
a

)
.

This is inappreciable at a distance from the grating 4 or 5 times the distance
between the wires, hence the reflection, at some distance from the grating,
is the same, except for the alteration in phase as from a continuous metallic
surface.

360.] If the electromotive intensity had been at right angles to the
wires the reflection would have been very small; thus a grating of this kind
will act like a polariscope, changing either by reflection or transmission an
unpolarized set of electrical vibrations into a polarized one. When used
to produce polarization by transmission we may regard it as the electrical
analogue of a plate of tourmaline crystal.

Scattering of Electromagnetic Waves by a Metallic Wire.

361.] The scattering produced when a train of plane electromagnetic
waves impinges on an infinitely long metal cylinder, whose axis is at right
angles to the direction of propagation of the waves and whose diameter is
small compared with the wave length, can easily be found as follows:—
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We shall begin with the case where the electromotive intensity in the
incident wave is parallel to the axis of the cylinder, which we take as the
axis of z; the axis of x being at right angles to the fronts of the incident
waves.

Let λ be the wave length, then E1, the electromotive intensity in the
incident waves, may be represented by the equation

E1 = ε
ι2π
λ

(V t+x),

where the real part of the right-hand side is to be taken. The positive
direction of x is opposite to that in which the waves are travelling. In the
neighbourhood of the cylinder x/λ is small, so that we may put

E1 = ε
ι2π
λ
V t

(
1 + ιx

2π

λ

)
approximately, or if r and θ are the polar coordinates of the point where
the intensity is E1,

E1 = ε
ι2π
λ
V t

(
1 + ι

2π

λ
r cos θ

)
.

Let E2 be the electromotive intensity due to the currents induced in
the cylinder, then E2 satisfies the differential equation

d2E2

dr2
+

1

r

dE2

dr
+

1

r2

d2E2

dθ2
=

1

V 2

d2E2

dt2

= −4π2

λ2
E2,

or if E2 varies as cosnθ,

d2E2

dr2
+

1

r

dE2

dr
+

(
4π2

λ2
− n2

r2

)
E2 = 0.

The solution of which outside the cylinder is

E2 = An cosnθKn

(
2π

λ
r

)
ε
ι2π
λ
V t,

where Kn represents the ‘external’ Bessel’s function of the nth order.
Thus

E2 =

{
A0K0

(
2π

λ
r

)
+ A1 cos θK1

(
2π

λ
r

)
+A2 cos 2θK2

(
2π

λ
r

)
+ . . .

}
ε
ι2π
λ
V t.
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Now since the cylinder is a good conductor, the total tangential elec-
tromotive intensity must vanish over its surface, see Arts. 300 and 301.
Hence if c is the radius of the cylinder, E1 +E2 = 0 when r = c; from this
condition we get

A0 = − 1

K0

(
2π

λ
c

) , A1 = − ι2πc

λK1

(
2π

λ
c

) , A2 = A3 = . . . = 0.

Thus

E2 =

−
K0

(
2π

λ
r

)
K0

(
2π

λ
c

) − ι2πc

λ
cos θ

K1

(
2π

λ
r

)
K1

(
2π

λ
c

)
 ε

ι2π
λ
V t.

362.] Let us first consider the effect of the cylinder on the lines of
magnetic force in its neighbourhood. If α, β are the components of the
magnetic force parallel to the axes of x and y respectively, E the total
electromotive intensity, then

dE

dx
=
dβ

dt
= ι

2π

λ
V β,

dE

dy
= −dα

dt
= −ι2π

λ
V α.

Thus the direction of the magnetic force will be tangential to the curves
over which E is constant, the equations to the lines of magnetic force in
the neighbourhood of the cylinder are therefore

1−
K0

(
2π

λ
r

)
K0

(
2π

λ
c

)
+ ι

2π

λ
cos θ

r − cK1

(
2π

λ
r

)
K1

(
2π

λ
c

)

 ε

ι2π
λ
V t = C,

where C is independent of r and θ.
Now 2πc/λ is by hypothesis very small, and when x is small then, by

Art. 261, the values of K0 and K1 are given approximately by the equations

K0(x) = log(2γ/x),

K1(x) = −K ′0(x) =
1

x
,

where γ is Euler’s constant and log γ is equal to .5772157.



362.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 430

In the neighbourhood of the cylinder r/λ is small as well as c/λ, so
that in this region the equations to the lines of magnetic force are, approx-
imately,

log (r/c)

log (γλ/πc)
cos

2π

λ
V t+

2π

λ
cos θ

(c2 − r2)

r
sin

2π

λ
V t = C.

In this expression the coefficient of cos(2πV t/λ) is very large compared
with that of sin(2πV t/λ), so that unless 2πV t/λ is an odd multiple of π/2,
that is, unless the intensity in the incident wave at the axis of the cylinder
vanishes, the equations to the lines of magnetic force are

log (c/r) = a constant,

so that these lines are circles concentric with the cylinders.
When 2πV t/λ is an odd multiple of π/2, the lines of magnetic force are

given by the equation

cos θ
(c2 − r2)

r
= C,

or in Cartesian coordinates

x
{
c2 − (x2 + y2)

}
= C(x2 + y2);

these curves are shown in Fig. 121.

Fig. 121.
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363.] Since the direction of motion of the Faraday tubes is at right
angles to themselves and to the magnetic force, when the lines of magnetic
force near the cylinder are circles, these tubes will, in the neighbourhood
of the cylinder, move radially, the positive tubes (i.e. those parallel to the
tubes in the incident wave) moving inwards, the negative ones outwards.
In the special case where the electromotive intensity vanishes at the axis
of the cylinder, the incident wave throws tubes of one sign into the half of
the cylinder in front, where x is positive, and tubes of opposite sign into
the half in the rear, where x is negative; in this case, if the positive tubes
in the neighbourhood of the cylinder are moving radially inwards in front,
they are moving radially outwards in the rear and vice versâ; there are in
this case but few tubes near the equatorial plane, and the motion of these
is no longer radial.

364.] When the distance from the cylinder is large compared with the
wave length, we have

K0

(
2π

λ
r

)
= 1

2
ι

1
2
ε−ι2πr/λ

(r/λ)
1
2

,

K1

(
2π

λ
r

)
= −1

2
ι

3
2
ε−ι2πr/λ

(r/λ)
1
2

.

Thus in the wave ‘scattered’ by the cylinder

E2 = −ε
−ι 2π

λ (r−V t−λ8 )

2(r/λ)
1
2

{
1

log(γπλ/c)
+

4π2c2

λ2
cos θ

}
.

Thus in this case, as we should expect, the part of the scattered wave
which is independent of the azimuth is very much larger than the part
which varies with θ, so that there is no direction in which the intensity of
the scattered light vanishes. In this respect the metal cylinder resembles
one made of a non-conductor, the effect of which on a train of waves has
been investigated by Lord Rayleigh (Phil. Mag. [5], 12, p. 98, 1881): there
are however some important differences between the two cases; in the first
place we see that since c occurs in the leading term only as a logarithm,
the amount of light scattered by the cylinder changes very slowly with the
dimensions of the cylinder, while in the light scattered from a dielectric
cylinder the electromotive intensity in the scattered wave is proportional
to the area of the cross-section of the cylinder. Again, when the cylinder is
a good conductor the electromotive intensity in the scattered wave, if we
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regard the logarithmic term as approximately constant, varies as λ
1
2 and

so increases with the wave length, while when the cylinder is an insulator
the electromotive intensity varies as λ−

3
2 , so that the scattering decreases

rapidly as the length of the wave increases. The most interesting case of
this kind is when the wave incident on the cylinder is a wave of light; in this
case the theory indicates that the light scattered by the metallic cylinder
would be slightly reddish, while that from the insulating cylinder would
be distinctly blue; the blue in the latter case would be much more decided
than the red of the previous one, since the variation of the intensity of the
scattered light with the wave length is much more rapid when the cylinder
is an insulator than when it is a good conductor.

365.] We shall now proceed to consider the case when the electromotive
intensity in the incident wave is at right angles to the axis of the cylinder.
This case is of more interest than the preceding because the general features
of the results obtained will apply to the scattering of light by particles
limited in every direction; it is thus representative of the scattering by
small particles in general, while the peculiarities of the case discussed in
the preceding article were due to the cylindrical shape of the obstacle. The
only case to which the results of this article would not be applicable without
further investigation is that in which the particles are highly magnetic, and
we shall find that even this case constitutes no exception since our results
do not involve the magnetic permeability of the cylinder.

As the electromotive intensity is at right angles to the axis of the cylin-
der, the magnetic force will be parallel to the axis.

Let the magnetic force H1 in the incident wave be expressed by the
equation

H1 = ε
ι2π
λ

(V t+x).

When x which is equal to r cos θ is small compared with λ, this is approx-
imately

H1 = ε
ι2π
λ
V t

{
1− π2

λ2
r2 +

ι2π

λ
r cos θ − π2

λ2
r2 cos 2θ

}
.

Since H, the magnetic force, satisfies the differential equation

d2H

dx2
+
d2H

dy2
=

1

V 2

d2H

dt2
,
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the magnetic force H2 due to the currents induced in the cylinder may be
expressed by the equation

H2 = ε
ι2π
λ
V t

{
A0K0

(
2π

λ
r

)
+ A1 cos θK1

(
2π

λ
r

)
+ A2 cos 2θK2

(
2π

λ
r

)}
,

where A0, A1 and A2 are arbitrary constants.
The condition to be satisfied at the boundary of the cylinder is that

the tangential electromotive intensity at its surface should vanish. In this
case we have, however,

d

dr
(H1 +H2) = 4π (intensity of current at right angles to r).

The current in the dielectric is a polarization current, and if E is the
tangential electromotive intensity, the intensity of this current at right
angles to r is

K

4π

dE

dt
,

which is equal to
K

4π

ι2π

λ
V E.

Thus the condition that E should vanish at the surface is equivalent to
the condition that

d

dr
(H1 +H2) = 0

when r = c, c being the radius of the cylinder.
From this condition we get

−2c
π2

λ2
+ A0

d

dc
K0

(
2π

λ
c

)
= 0,

ι2π

λ
+ A1

d

dc
K1

(
2π

λ
c

)
= 0,

−2c
π2

λ2
+ A2

d

dc
K2

(
2π

λ
c

)
= 0.
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Since 2πc/λ is very small and therefore approximately

K0

(
2π

λ
c

)
= log

(
2γ

/
2πc

λ

)
,

K1

(
2π

λ
c

)
=

λ

2πc
,

K2

(
2π

λ
c

)
=

λ2

2π2c2
,

we get

A0 = −2π2 c
2

λ2
,

A1 = ι4π2 c
2

λ2
,

A2 = −2π4 c
4

λ4
.

Thus the magnetic force due to the currents induced in the cylinder is
given by the equation

H2 = 2π2 c
2

λ2
ε
ι2π
λ
V t

{
−K0

(2π

λ
r
)

+ 2ι cos θK1

(2π

λ
r
)

− π2c2

λ2
cos 2θK2

(2π

λ
r
)}

.

366.] To draw the lines of electromotive intensity, we notice that if
ds is an element of a curve in the dielectric, d(H1 +H2)/ds is proportional
to the electromotive intensity at right angles to ds, so that the lines of
electromotive intensity will be the lines

H1 +H2 = a constant.

When r/λ is small, this condition leads to the equation

ε
ι2π
λ
V t

[
1− π2

λ2
r2 − 2π2c2

λ2
K0

(
2π

λ
r

)
+

2ιπ

λ
cos θ

{
r +

2π

λ
c2K1

(
2π

λ
r

)}
−π

2

λ2
cos 2θ

{
r2 +

2π2c4

λ2
K2

(
2π

λ
r

)}]
= C,

where C is a constant.
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Substituting the approximate values of K0, K1 and K2 this becomes

ε
ι2π
λ
V t

[
1− π2

λ2
r2 +

2π2c2

λ2
log(πr/γλ) +

2ιπ

λ
cos θ

(r2 + c2)

r

−π
2

λ2
cos 2θ

(
r2 +

c4

r2

)]
= C.

Except when ε
ι2π
λ
V t/λ is wholly real, i.e. except when the rate of variation of

the magnetic force in the incident wave at the axis of the cylinder vanishes,
by far the most important term is that which contains cos θ, so that the
equations to the lines of electromotive intensity are

c2 + r2

r
cos θ = a constant = C ′, say.

Fig. 122.

The lines of electromotive intensity are represented in Fig. 122.
At the times when ει2πV t/λ is wholly real, the lines are approximately

circles concentric with the cross-section of the cylinder, since in this case
the term involving the logarithm is the most important of the variable
terms.

367.] When r is large compared with λ, we find by introducing the
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values of the K functions when the argument is very large, viz.

K0(x) = ι
1
2

( π
2x

) 1
2
ε−ιx,

K1(x) = −ι
3
2

( π
2x

) 1
2
ε−ιx,

H2 = − π
2c2

r
1
2λ

3
2

ε
ι2π
λ (V t−r+λ

8 )(1 + 2 cos θ),

retaining only the lowest powers of c/λ.
Thus the magnetic force in the scattered wave vanishes when 2 cos θ =

−1, or in a direction making an angle of 120◦ with the incident ray. When
the wave is scattered by an insulating cylinder Lord Rayleigh (l.c.) found
that the magnetic intensity in the scattered ray was expressed by a similar
formula with the exception that the factor (1 + 2 cos θ) was replaced by
cos θ. Thus, if we take the case where the incident wave is a luminous one,
the scattered light will vanish in the direction of the electric displacement
when the particles are insulators, while it will vanish in a direction making
an angle of 30◦ with this direction if the particles are metallic. If the
incident light is not polarized, then with metallic particles the scattered
light will be completely polarized in a direction making 120◦ with the
direction of propagation of the incident light, while if the particles are
insulators the direction in which the polarization is complete is at right
angles to the direction of the incident light. The observations of Tyndall,
Brücke, Stokes, and Lord Rayleigh afford abundant proof of the truth of
the last statement: but no experiments seem to have been published on
the results of the reflection of light from small metallic particles.

368.] The preceding results have also an important application to the
consideration of the influence of the size of the reflector on the intensity of
reflected electromagnetic waves. When the electromotive intensity is paral-
lel to the axis of the cylinder, the most important term in the expression for
the reflected wave only involves the radius of the cylinder as a logarithm,
it will thus only vary slowly with the radius, so that in this case the size of
the cylinder is of comparatively little importance: hence we may conclude
that we shall get good reflection if the length of the reflector measured in
the direction of the electromotive intensity is considerable, whatever may
be the breadth of the reflector at right angles to the electromotive intensity.
On the other hand, when the electromotive intensity is at right angles to
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the axis of the cylinder, the electromotive intensity in the scattered wave
increases as the square of the radius of the cylinder, so that in this case
the size of the reflector is all important. These results are confirmed by
Trouton’s experiments on ‘The Influence the Size of the Reflector exerts in
Hertz’s Experiment,’ Phil. Mag. [5], 32, p. 80, 1891.

On the Scattering of Electric Waves by Metallic Spheres.

369.] We shall proceed to discuss in some detail the problem of the
incidence of a plane electric wave upon a metal sphere∗.

If α, β, γ; f , g, h are respectively the components of the magnetic force
and of the polarization in the dielectric which are radiated from the sphere,
then if ψ stands for any one of these quantities it satisfies a differential
equation of the form

d2ψ

dx2
+
d2ψ

dy2
+
d2ψ

dz2
=

1

V 2

d2ψ

dt2
, (1)

where V is the velocity with which electric action is propagated through the
dielectric surrounding the sphere. If λ is the wave length of the disturbance
incident upon the sphere, then the components of magnetic induction and
of electric polarization will all vary as ε

ι2π
λ
V t; thus V −2d2ψ/dt2 may be

replaced by −4π2ψ/λ2, so that writing k for 2π/λ, equation (1) may be
written

d2ψ

dx2
+
d2ψ

dy2
+
d2ψ

dz2
+ k2ψ = 0,

a solution of which is by Art. 308,

ψ = ειkV t
∑
fn(kr)Sn,

where r is the distance from the centre of the sphere. Since the waves of
magnetic force and dielectric polarization are radiating outwards from the
sphere

fn(kr) =

(
1

kr

d

d(kr)

)n
ε−ιkr

kr
,

∗The scattering by an insulating sphere is discussed by Lord Rayleigh (Phil. Mag. 12,
p. 98, 1881). The incidence of a plane wave on a sphere was the subject of a dissertation
sent in to Trinity College, Cambridge, by Professor Michell in 1890. I do not know of
any papers which discuss the special problem of the scattering by metal spheres.
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Sn is a solid spherical harmonic of degree n. It should be noted that fn(kr)
of this article is (kr)−nf(kr) of Article 308.

370.] We shall now prove a theorem due to Professor Lamb (Proc.
Lond. Math. Soc. 13, p. 189, 1881), that if α, β, γ satisfy equations of the
form (1), and if

dα

dx
+
dβ

dy
+
dγ

dz
= 0;

then the most general solution of these equations is given by

α =
∑{

(n+ 1)fn−1(kr)
dωn
dx
− nk2r2n+3fn+1(kr)

d

dx

ωn
r2n+1

}
+
∑
fn(kr)

(
y
d

dz
− z d

dy

)
ω′n,

β =
∑{

(n+ 1)fn−1(kr)
dωn
dy
− nk2r2n+3fn+1(kr)

d

dy

ωn
r2n+1

}
+
∑
fn(kr)

(
z
d

dx
− x d

dz

)
ω′n,

γ =
∑{

(n+ 1)fn−1(kr)
dωn
dz
− nk2r2n+3fn+1(kr)

d

dz

ωn
r2n+1

}
+
∑
fn(kr)

(
x
d

dy
− y d

dx

)
ω′n.



(2)

where ωn, ω′n represent arbitrary solid spherical harmonics of degree n.
Since

dωn
dx

,
d

dx

ωn
r2n+1

,

(
y
d

dz
− z d

dy

)
ω′n

are solid spherical harmonics of degrees (n − 1), −(n + 1), n respectively,
we see that the expression given for α satisfies the differential equation (1);
similarly this equation is satisfied by the values of β and γ.

Let us now find the value of dα/dx + dβ/dy + dγ/dz; we notice that
the terms involving ω′n vanish identically, and since

∇2(ωn) = 0, ∇2 ωn
r2n+1

= 0,
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we have

dα

dx
+
dβ

dy
+
dγ

dz
=
∑

(n+ 1)
k

r
f ′n−1(kr)

{
x
d

dx
+ y

d

dy
+ z

d

dz

}
ωn

−
∑

[nk3r2n+2f ′n+1(kr) + n(2n+ 3)k2r2n+1fn+1(kr)]×{
x
d

dx
+ y

d

dy
+ z

d

dz

}
ωn
r2n+1

=
∑
n . n+ 1 .

k

r
{f ′n−1(kr) + k2r2f ′n+1(kr) + (2n+ 3)krfn+1(kr)}ωn.

Now

fn(kr) =

(
1

kr

d

d(kr)

)n
ε−ιkr

kr
,

hence
f ′n−1(kr) = kr fn(kr). (3)

We have also

f ′′n(kr) +
2(n+ 1)

kr
f ′n(kr) + fn(kr) = 0,

which may be written as

d

d(kr)
{kr f ′n(kr) + (2n+ 1)fn(kr)} = −kr fn(kr)

= −f ′n−1(kr) by (3);

hence, since the constant of integration must vanish since all the f ’s in-
volve ε−ιkr,

kr f ′n(kr) + (2n+ 1)fn(kr) = −fn−1(kr), (4)

and by (101), Art. 309,

(2n+ 1)fn(kr) = −{fn−1(kr) + k2r2 fn+1(kr)}. (5)

Writing (n+ 1) for n in (4), we have

kr f ′n+1(kr) + (2n+ 3)fn+1(kr) = −fn(kr)

= −
f ′n−1(kr)

kr
. (6)

From this equation we see that

dα

dx
+
dβ

dy
+
dγ

dz
= 0.
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To prove that equation (2) gives the most general expressions for α, β, γ,
we notice that the values of α, β may be written

α =
∑
fn(kr)

[{
(n+ 2)

dωn+1

dx
− (n− 1)k2r2n+1 d

dx

ωn−1

r2n−1

}
+

(
y
d

dz
− z d

dy

)
ω′n

]
,

β =
∑
fn(kr)

[{
(n+ 2)

dωn+1

dy
− (n− 1)k2r2n+1 d

dy

ωn−1

r2n−1

}
+

(
z
d

dx
− x d

dz

)
ω′n

]
.


(7)

The most general expressions for α, β, when they represent radiation
outwards from the sphere, may however, Art. 308, be expressed in the form

α =
∑
fn(kr)Un,

β =
∑
fn(kr)Vn,

}
(8)

where Un, Vn are solid spherical harmonics of degree n. Since ωn and ω′n
are arbitrary, we may determine them so as to make the values of α and β
given by (7) agree with those given by (8). Thus (7) are sufficiently gen-
eral expressions for α, β, and when α and β are given γ follows from the
equation

dα

dx
+
dβ

dy
+
dγ

dz
= 0.

371.] If α, β, γ represent the components of the magnetic force, f , g, h
the components of the electric polarization are, in a dielectric, given by the
equations

4π
df

dt
=
dγ

dy
− dβ

dz
,

4π
dg

dt
=
dα

dz
− dγ

dx
,

4π
dh

dt
=
dβ

dx
− dα

dy
.

Taking the values of β and γ given in (2), we see that the term in
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4πdf/dt involving ωn is equal to{
(n+ 1)

k

r
f ′n−1(kr)− nk3rf ′n+1(kr)− n(2n+ 3)k2fn+1(kr)

}
×{

y
dωn
dz
− zdωn

dy

}
,

and this by equations (4) and (6) is equal to

(2n+ 1)k2fn(kr)

{
y
dωn
dz
− zdωn

dy

}
.

Let us now consider the term in 4πdf/dt involving ω′n; this equals

fn(kr)

{
−2

d

dx
−
(
x
d

dx
+ y

d

dy
+ z

d

dz

)
d

dx

}
ω′n

+ f ′n(kr)k

(
x
d

dr
− r d

dx

)
ω′n

= −(n+ 1)fn(kr)
dω′n
dx

+ rk f ′n(kr)
nx

r2
ω′n − kr f ′n(kr)

dω′n
dx

,

this by equations (4) and (6) equals

− n+ 1

2n+ 1

{(
k2r2fn+1(kr) + fn−1(kr)

)
− k2r2fn+1(kr)

} dω′n
dx

+ rk f ′n(kr)
nx

r2
ω′n

=
1

(2n+ 1)

{
(n+ 1)fn−1(kr)

dω′n
dx
− nk2r2n+3fn+1(kr)

d

dx

ω′n
r2n+1

}
.

Thus if α, β, γ are given by (2), then we have

4π
df

dt
=
∑ 1

2n+ 1

{
(n+ 1)fn−1(kr)

dω′n
dx
− nk2r2n+3fn+1(kr)

d

dx

ω′n
r2n+1

}
+
∑

(2n+ 1)k2fn(kr)

(
y
dωn
dz
− zdωn

dy

)
,

4π
dg

dt
=
∑ 1

2n+ 1

{
(n+ 1)fn−1(kr)

dω′n
dy
− nk2r2n+3fn+1(kr)

d

dy

ω′n
r2n+1

}
+
∑

(2n+ 1)k2fn(kr)

(
z
dωn
dx
− xdωn

dz

)
,
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4π
dh

dt
=
∑ 1

2n+ 1

{
(n+ 1)fn−1(kr)

dω′n
dz
− nk2r2n+3fn+1(kr)

d

dz

ω′n
r2n+1

}
+
∑

(2n+ 1)k2fn(kr)

(
x
dωn
dy
− ydωn

dx

)
.

372.] In the plane electrical wave incident on the sphere, let us suppose
that the electric polarization h0 in the wave front is parallel to z and
expressed by the equation

h0 = ε
ι2π
λ

(V t+x) = ειk(V t+x),

where the axis of x is at right angles to the wave front.
We have to expand h0 in the form

ειkV t
∑
AnQn,

where Qn is a zonal harmonic of degree n whose axis is the axis of x and
An is a function of r which we have to determine.

Since
ειkx =

∑
AnQn,

and since it satisfies the equation

d2ψ

dx2
+
d2ψ

dy2
+
d2ψ

dz2
+ k2ψ = 0,

and is finite when r = 0, we see by Art. 308 that

An = A′nSn(kr) = A′n(kr)n
{

1

kr

d

d(kr)

}n
sin kr

kr
,

where A′n is independent of r.

Since
sin kr

kr
= 1− k2r2

3!
+
k4r4

5!
− . . . ,

we see that when kr is very small

An = (−1)nA′n
(kr)n

(2n+ 1)(2n− 1) . . . 1
. (9)

But if x/r = µ, we have

ειkrµ =
∑
AnQn,

∴
∫ +1

−1

ειkrµQn dµ = An

∫ +1

−1

Q2
n dµ =

2An
2n+ 1

.
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The lowest power of kr on the left-hand side of this equation is the nth,
the coefficient of this is equal to

ιn

n

∫ +1

−1

µnQn dµ =
2ιn

(2n+ 1)(2n− 1)(2n− 3) . . . 1
;

hence when kr is small we have

2ιn(kr)n

(2n+ 1)(2n− 1) . . . 1
=

2An
2n+ 1

Comparing this equation with (9) we see that

A′n =
(2n+ 1)

ιn
,

An =
2n+ 1

ιn
Sn(kr),

so that ειkrµ =
∑ 2n+ 1

ιn
Sn(kr)Qn.

This expression is given by Lord Rayleigh (Theory of Sound, ii. p. 239).
By equation (101) of Art. 309 we have

An−1

2n− 1
− An+1

2n+ 3
=

1

ιkr
An. (10)

This can also be proved directly thus,

An−1

2n− 1
= 1

2

∫ +1

−1

ειkrµQn−1 dµ,

An+1

2n+ 3
= 1

2

∫ +1

−1

ειkrµQn+1 dµ,

An−1

2n− 1
− An+1

2n+ 3
=

[
1
2

ειkrµ

ιkr
(Qn−1 −Qn+1)

]+1

−1

− 1
2

1

ιkr

∫ +1

−1

ειkrµ
(
dQn−1

dµ
− dQn+1

dµ

)
dµ.

The terms within square brackets vanish, and since

dQn−1

dµ
− dQn+1

dµ
= −(2n+ 1)Qn,
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we have

An−1

2n− 1
− An+1

2n+ 3
=

1

2ιkr

∫ +1

−1

(2n+ 1)ειkrµQn dµ

=
An
ιkr

.

373.] It will be convenient to collect together the results we have ob-
tained.

In the incident wave,

f0 = 0, g0 = 0, h0 = ειkV t
∑ 2n+ 1

ιn
QnSn(kr),

and therefore by Art. 9,

α0 = 0, γ0 = 0, β0 = 4πh0V = 4πV ειkV t
∑ 2n+ 1

ιn
QnSn(kr).

For the wave scattered by the sphere, omitting the time factor, we have
since d/dt = ιkV

4πιkV f =
∑ 1

2n+ 1

{
(n+ 1)fn−1(kr)

dω′n
dx
− nk2r2n+3fn+1(kr)

d

dx

ω′n
r2n+1

}
+
∑

(2n+ 1)k2fn(kr)

(
y
dωn
dz
− zdωn

dy

)
,

4πιkV f =
∑ 1

2n+ 1

{
(n+ 1)fn−1(kr)

dω′n
dy
− nk2r2n+3fn+1(kr)

d

dy

ω′n
r2n+1

}
+
∑

(2n+ 1)k2fn(kr)

(
z
dωn
dx
− xdωn

dz

)
,

4πιkV f =
∑ 1

2n+ 1

{
(n+ 1)fn−1(kr)

dω′n
dz
− nk2r2n+3fn+1(kr)

d

dz

ω′n
r2n+1

}
+
∑

(2n+ 1)k2fn(kr)

(
x
dωn
dy
− ydωn

dx

)
.

α =
∑{

(n+ 1)fn−1(kr)
dωn
dx
− nk2r2n+3fn+1(kr)

d

dx

ωn
r2n+1

}
+
∑
fn(kr)

(
y
dω′n
dz
− zdω

′
n

dy

)
,
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β =
∑{

(n+ 1)fn−1(kr)
dωn
dy
− nk2r2n+3fn+1(kr)

d

dy

ωn
r2n+1

}
+
∑
fn(kr)

(
z
dω′n
dx
− xdω

′
n

dz

)
,

γ =
∑{

(n+ 1)fn−1(kr)
dωn
dz
− nk2r2n+3fn+1(kr)

d

dz

ωn
r2n+1

}
+
∑
fn(kr)

(
x
dω′n
dy
− ydω

′
n

dx

)
.

374.] To determine ωn, ω′n, we shall assume that the sphere is a perfect
conductor and therefore that the electromotive intensity, and therefore the
electric polarization, is at right angles to the sphere. This condition is
satisfied whatever the resistance of the sphere if the frequency is so great
that kV µa2/σ is large; a being the radius of the sphere, σ its specific resis-
tance, and µ its magnetic permeability. If R is the normal electromotive
polarization, Θ that along a tangent to a meridian, Φ that along a parallel
of latitude, then the condition

df

dx
+
dg

dy
+
dh

dz
= 0

is equivalent to

d

dr
(r2R) +

1

sin θ

d

dθ
(r sin θΘ) +

1

sin θ

d

dφ
(rΦ) = 0;

but since Θ and Φ vanish all over the sphere, this, if a is the radius of the
sphere, gives the condition

d

dr
(r2R) = 0 when r = a.

Now rR = x(f + f0) + y(g + g0) + z(h+ h0);

but

4πιkV (xf + yg + zh) =
∑ n . (n+ 1)

2n+ 1

(
fn−1(kr) + k2r2fn+1(kr)

)
ωn

= −
∑
n . n+ 1 . fn(kr)ω′n, by equation (6),

xf0 + yg0 + zh0 = z
∑
AnQn, omitting the time factor.
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But if r, θ, φ are the polar coordinates of the point whose Cartesian
coordinates are x, y, z,

z = r sin θ sinφ,

and Qn =
1

2n+ 1

{
dQn+1

dµ
− dQn−1

dµ

}
;

hence, if ω′n = rnY ′n where Y ′n is a surface harmonic of degree n, the condi-
tion

d

dr
(r2R) = 0 when r = a

becomes

1

4πιKV

∑
n . (n+ 1)Y ′n

d

da
(an+1fn(ka)) = sin θ sinφ

∑
Qn

d

da
(a2An)

= sin θ sinφ
∑ dQn

dµ

d

da

{
a2An−1

2n− 1
− a2An+1

2n+ 3

}
;

but sin θ sinφ
dQn

dµ
is a surface harmonic of degree n, hence

Y ′n =

sin θ sinφ
dQn

dµ

d

da

{
a2An−1

2n− 1
− a2An+1

2n+ 3

}
n . n+ 1

4πιkV
.
d

da

(
an+1fn(ka)

) ,

or by (10)

Y ′n = 4πV sin θ sinφ
dQn

dµ

d(aAn)

da

n . n+ 1 .
d

da

(
an+1fn(ka)

) ,
and ω′n = rnY ′n.

375.] We now proceed to find ωn. The line integral of the electromotive
intensity taken round any closed curve is equal to the rate of diminution of
the number of lines of magnetic induction passing through it: if we take as
our closed curve one drawn on the surface of the sphere, we see, since the
tangential electromotive intensity over the surface of the sphere vanishes,
that the rate of diminution of the normal magnetic induction also vanishes;
this condition, since the induction varies harmonically, is equivalent to the
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condition that the normal magnetic induction vanishes over the surface of
the surface; hence when r = a, we have

x(α + α0) + y(β + β0) + z(γ + γ0) = 0. (1)

But when r = a,

xα + yβ + zγ =
∑
n . (n+ 1)(2n+ 1)fn(ka)ωn,

xα0 + yβ0 + zγ0 = 4πV y
∑
AnQn

= 4πV a sin θ cosφ
∑(

An−1

2n− 1
− An+1

2n+ 3

)
dQn

dµ

=
4πV

ιk
sin θ cosφ

∑
An

dQn

dµ
.

Let ωn = rnYn, where Yn is a surface harmonic of degree n. Then we
have

Yn =
4πV a−n

n . n+ 1 . 2n+ 1 . ιk
sin θ cosφ

dQn

dµ

An
fn(ka)

.

376.] Substituting the values just found for ωn, ω′n, we find that the
values of f , g, h, α, β, γ in the wave scattered by the sphere are, omitting
the time factor, given by the equations

f =
∑ 1

n . n+ 1.
1
ιn

1
ιk

{
(n+ 1)fn−1(kr)

d

dx

(
rn sin θ sinφ

dQn
dµ

)

− nk2r2n+3fn+1(kr)
d

dx

( sin θ sinφ
dQn
dµ

rn+1

)} d

da

(
aSn(ka)

)
d

da

(
an+1fn(ka)

)
−
∑ 2n+ 1

ιnan . n . n+ 1.
· Sn(ka)
fn(ka)

fn(kr)
(
y
d

dz
− z d

dy

)(
rn sin θ cosφ

dQn
dµ

)
,

g =
∑ 1

n . n+ 1
· 1
ιn

1
ιk

{
(n+ 1)fn−1(kr)

d

dy

(
rn sin θ sinφ

dQn
dµ

)

− nk2r2n+3fn+1(kr)
d

dy

( sin θ sinφ
dQn
dµ

rn+1

)} d

da

(
aSn(ka)

)
d

da

(
an+1fn(ka)

)
−
∑ 2n+ 1

ιnan . n . n+ 1.
· Sn(ka)
fn(ka)

fn(kr)
(
z
d

dx
− x d

dz

)(
rn sin θ cosφ

dQn
dµ

)
,
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h =
∑ 1

n . n+ 1.
1
ιn

1
ιk

{
(n+ 1)fn−1(kr)

d

dz

(
rn sin θ sinφ

dQn
dµ

)

− nk2r2n+3fn+1(kr)
d

dz

( sin θ sinφ
dQn
dµ

rn+1

)} d

da

(
aSn(ka)

)
d

da

(
an+1fn(ka)

)
−
∑ 2n+ 1

ιnan . n . n+ 1.
· Sn(ka)
fn(ka)

fn(kr)
(
x
d

dy
− y d

dz

)(
rn sin θ cosφ

dQn
dµ

)
;

α = 4πV
∑ a−n

n . n+ 1.
1

ιnιk

Sn(ka)
fn(ka)

{
(n+ 1)fn−1(kr)

d

dx

(
rn sin θ cosφ

dQn
dµ

)

− nk2fn+1(kr)r2n+3 d

dx

( sin θ cosφ
dQn
dµ

rn+1

)}

+ 4πV
∑
· 2n+ 1
n . n+ 1.

· 1
ιn

d

da

(
aSn(ka)

)
d

da

(
an+1fn(ka)

)fn(kr)
(
y
d

dz
− z d

dy

)(
rn sin θ sinφ

dQn
dµ

)

β = 4πV
∑ a−n

n . n+ 1.
1

ιn . ιk

Sn(ka)
fn(ka)

{
(n+ 1)fn−1(kr)

d

dy

(
rn sin θ cosφ

dQn
dµ

)

− nk2fn+1(kr)r2n+3 d

dy

( sin θ cosφ
dQn
dµ

rn+1

)}

+ 4πV
∑
· 2n+ 1
n . n+ 1.

· 1
ιn

d

da

(
aSn(ka)

)
d

da

(
an+1fn(ka)

)fn(kr)
(
z
d

dx
− x d

dz

)(
rn sin θ sinφ

dQn
dµ

)
,

γ = 4πV
∑ a−n

n . n+ 1
1

ιnιk

Sn(ka)
fn(ka)

{
(n+ 1)fn−1(kr)

d

dz

(
rn sin θ cosφ

dQn
dµ

)

− nk2fn+1(kr)r2n+3 d

dz

( sin θ cosφ
dQn
dµ

rn+1

)}

+ 4πV
∑ 2n+ 1

n . n+ 1
· 1
ιn

d

da

(
aSn(ka)

)
d

da

(
an+1fn(ka)

)fn(kr)
(
x
d

dy
− y d

dx

)(
rn sin θ sinφ

dQn
dµ

)
.

377.] These expressions give the solution of the problem of the scat-
tering of a plane wave by a sphere of any size. The particular case when
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the radius of the sphere is very small compared with the wave length of
the incident wave is of great importance. In this case ka is very small, and
the approximate values of Sn(ka), fn(ka) are, Art. 308, expressed by the
equations

Sn(ka) =
(−1)n(ka)n

2n+ 1 . 2n− 1 . . . 1
,

fn(ka) = (−1)n2n− 1 . 2n− 3 . . . 1
ε−ιka

(ka)2n+1
.

Substituting these values in the preceding equations and retaining only
the lowest powers of ka, we find, omitting the time factor,

f = k5a3 ειkaf2(kr)xz +
1

2ι
k4a3 ειkaf1(kr)z,

g = k5a3 ειkaf2(kr)yz,

h = 1
3
k3a3 ειka{2f0(kr) + k2(3z2 − r2)f2(kr)} − 1

2ι
k4a3 ειkaf1(kr)x;

α = −4πV 1
2
k5a3 ειkaf2(kr)xy + 4πV ιk4a3 ειkaf1(kr)y.

β = −4πV
1

6
k3a3 ειka{2f0(kr) + k2(3y2 − r2)f2(kr)}

−4πV ιk4a3 ειkaf1(kr)x,

γ = −4πV
1

2
k5a3 ειkaf2(kr)yz.


At a distance from the sphere, which is large compared with the wave
length, kr is very large; we then have approximately

f2(kr) = −ε
−ιkr

k3r3
, f1(kr) = −ι ε

−ιkr

k2r2
, f0(kr) =

ε−ιkr

kr
.

Substituting their value and introducing the time factor, we get

f = −ειk
(
V t−(r−a)

)
k2a3

r

(xz
r2

+ 1
2

z

r

)
,

g = −ειk
(
V t−(r−a)

)
k2a3

r

yz

r2
,

h = ειk
(
V t−(r−a)

)
k2a3

r

(
1− z2

r2
+ 1

2

x

r

)
;
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α = 4πV ειk
(
V t−(r−a)

)
k2a3

r

{
1
2

xy

r2
+
y

r

}
,

β = 4πV ειk
(
V t−(r−a)

)
k2a3

r

{
y2 − r2

2r2
− x

r

}
,

γ = 4πV ειk
(
V t−(r−a)

)
k2a3

r
1
2
yz.


From these expressions we see that

xf + yg + zh = 0, xα + xβ + zγ = 0;

so that both the electric polarization and the magnetic induction are at
right angles to the radius. We have also

fα + gβ + hγ = 0,

so that the electric polarization is at right angles to the magnetic induction.
Taking the real part of the preceding expressions, we find

f 2 + g2 + h2 = cos2 k
(
V t− (r − a)

)k4a6

r2

{(x
r

+ 1
2

)2

+ 3
4

y2

r2

}
,

α2 + β2 + γ2 = (4πV )2 cos2 k
(
V t− (r − a)

)k4a6

r2

{(x
r

+ 1
2

)2

+ 3
4

y2

r2

}
.

Thus we see that the resultant magnetic induction is equal to 4πV times
the resultant electric displacement. We could have deduced this result
directly from Art. 9, since the Faraday tubes are moving outwards at right
angles to themselves with the velocity V .

378.] We see from the expressions for the resultant electric polarization
and the magnetic force that at the places where the scattered wave vanishes

x/r = −1
2
, y = 0.

Thus the scattered light produced by the incidence of a plane polarized
wave vanishes in the plane through the centre at right angles to the mag-
netic induction in the incident wave along a line, making an angle of 120◦

with the radius to the point at which the wave first strikes the sphere, and
it does not vanish in any direction other than this. Thus if non-polarized
waves of light or of electric displacement are incident upon a sphere, whose
radius is small compared with the wave length of the incident vibration,
the direction in which the scattered light is plane polarized will be inclined
at an angle of 120◦ to the direction of the incident light. The scattering of
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light by small metallic spheres thus follows laws which are quite different
from those which hold when the scattering is produced by non-conducting
particles. In the latter case (see Lord Rayleigh, Phil. Mag. [5], 12, p. 81,
1881), when a ray of plane polarized light falls upon a small sphere, the
scattered light vanishes at all points in the plane normal to the magnetic
induction, where the radius vector makes an angle of 90◦, and not 120◦,
with the direction of the incident light. Thus, when non-polarized light falls
upon a small non-conducting sphere, the scattered light will be completely
polarized at any point in a plane through the centre of the sphere at right
angles to the direction of the incident light. When the light is scattered by
a conducting sphere, the points at which the light is completely polarized
are on the surface of a cone whose axis is the direction of propagation of
the incident light and whose semi-vertical angle is 120◦. The Faraday tubes
given off by the conducting sphere form two sets of closed curves, which are
separated by the surface of this cone. The momentum of these tubes being
at right angles both to the magnetic induction and the electric polarization
is radial, so that the energy emitted by the conducting sphere is, when we
are considering a point whose distance from the centre is a large number
of wave lengths, travelling radially outwards from the sphere.

At a point close to the sphere kr is very small, so that we have approx-
imately

f0(kr) =
ε−ιkr

kr
, f1(kr) = −ε

−ιkr

k3r3
, f2(kr) =

3ε−ιkr

k5r5
.

Substituting these values in the expressions in Art. 377, we find that
the components of the total electric polarization and magnetic induction,
i.e. the polarization and induction scattered from the sphere plus that due
to the incident wave, are given approximately by the equations

f =
3a3

r5
xz cos kV t,

g =
3a3

r5
yz cos kV t,

h =

{
a3

r5
(3z2 − r2) + 1

}
cos kV t;
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α = −6πV
a3

r5
xy cos kV t,

β = −2πV

{
a3

r5
(3y2 − r2)− 2

}
cos kV t,

γ = −6πV
a3

r5
yz cos kV t.

Thus when r = a,

f =
3xz

a2
cos kV t, g =

3yz

a2
cos kV t, h =

3z2

a2
cos kV t;

α = −6πV
xy

a2
cos kV t, β = 6πV

(x2 + z2)

a2
cos kV t,

γ = −6πV
yz

a2
cos kV t.

Thus at the surface of the sphere the resultant electric polarization is radial
and proportional to z; there is thus a distribution of electricity over the
sphere whose surface density varies as the distance of the point on the
sphere from a plane through its centre parallel to the plane of polarization
of the incident wave,—the plane of polarization being the plane at right
angles to the electric polarization.

The magnetic induction at the surface of the sphere is tangential to the
sphere and equal to

6πV
1

a
{x2 + z2}

1
2 cos kV t;

it is thus proportional to the distance of a point on the surface of the
sphere from the diameter of the sphere parallel to the magnetic force in
the incident wave. The lines of magnetic force on the sphere are great
circles all passing through this diameter.

Since the electric polarization is radial and the magnetic induction is
tangential, the momentum due to the Faraday tubes which is at right angles
to each of these quantities is tangential. The direction of the momentum is
tangential to a series of small circles on the sphere whose planes are at right
angles to the diameter of the sphere parallel to the magnetic induction in
the incident wave.

Waves along Wires.

379.] If the electric potential at one end of a wire be made to vary
harmonically so as at any time to be represented by cos pt, the electromo-
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tive intensity, as we proceed along the wire, will be a harmonic function of
the distance from the end of the wire; if the wave length of this harmonic
distribution is λ, the velocity of propagation of the disturbance along the
wire is defined to be λp/2π. This velocity ought, if Maxwell’s theory is
true, to be equal to V , the velocity with which electrodynamic distur-
bances are propagated through air (see Art. 267). Indeed on this theory
the effects observed do in reality travel through the air even though the
wire is present, so that the introduction of the wire does not materially
alter the physical conditions. The electrical vibrations considered in this
chapter are all of very high frequency, being produced by the discharge of
condensers through short discharging circuits. In this case (see Art. 269)
the electromotive intensity in the region around the wire is at right angles
to it, and we may suppose that the phenomena near the wire are due to
radial Faraday tubes, with their ends on the wire travelling along it with
the velocity of light.

380.] Considerable interest attaches to some experiments made by
Hertz, which seemed to indicate that the velocity along the wire was con-
siderably less than that through the air; and though later experiments have
shown that this conclusion is erroneous, and that, as Maxwell’s theory in-
dicates, the two velocities are identical, Hertz’s experiments are of great
interest both from the methods used and the points they illustrate.

Fig. 123.

In these experiments Hertz (Wied. Ann. 34, p. 551, 1888) used the
vibrator described in Art. 325. This was placed in a vertical plane; behind
and parallel to one of the metal plates A, and insulated from it, was a metal
plate B of equal area (see Fig. 123). A long wire was soldered to B and bent
round so as to come in front of the vibrator and lie in the vertical plane of
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symmetry of the vibrator about a foot above the base line. The wire, which
was above sixty metres long, was taken through a window, and was kept
as far as possible from walls, &c., so as to avoid disturbances arising from
reflected waves. In the first set of experiments the free end of the wire was
insulated. The resonator used was the circular coil of wire 35 cm. in radius
previously described. When the plane of the resonator was at right angles
to the axis of the vibrator, the electromotive intensity due to the vibrator
(apart from the action of the wire) did not (Art. 331) produce any tendency
to spark in the resonator, so that the sparks in this position of the resonator
must have been entirely due to the disturbance produced by the wire. To
observe the effects due to the wire, the resonator was turned round in its
own plane until the air gap was at the highest point, and therefore parallel
to the wire. When the resonator was moved along the wire the following
effects were observed. At the free end of the wire (which was insulated) the
sparks in the resonator were extremely small, as the resonator was moved
towards the vibrator the sparks increased and attained a maximum; they
then decreased again until they almost vanished. If we call such a place a
node, then, as the resonator moved along the wire, such nodes were found
to occur at approximately equal intervals.

381.] Similar periodic effects were observed when the plane of the
resonator was at right angles to the wire, the air gap being vertical; in
such a position there would have been no sparks unless the wire had been
present. On moving the resonator along the wire the brightness of the
sparks changed in a periodic way: the positions however in which the sparks
were brightest with the resonator in this position were those in which they
had been dullest when the resonator was in its previous position.

This result is what we should expect from theoretical considerations.
For when the resonator is in the first position, with its plane passing
through the wire, the air gap is placed parallel to the wire. Now the
Faraday tubes travelling along the wire are, as we saw Art. 269, at right
angles to it and therefore to the air gap: thus the tubes which fall directly
on the air gap do not tend to produce a spark; the sparks must be due to
the tubes collected by the resonator and thrown by it into the air gap. The
tubes which travel with their ends on the wire will be reflected from the
insulated extremity of it, so that there will be tubes travelling in opposite
directions along the wire; incident tubes travelling from the vibrator to the
free end of the wire, and reflected tubes travelling back from the free end



381.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 455

to the vibrator.
Let us now consider what will happen when the vibrator is in such a

position as that represented in Fig. 124. The tube thrown into the air gap
by a positive tube, such as CD proceeding from the vibrator, will be of op-
posite sign to that thrown by a positive tube, such as AB proceeding from
the free end: thus in this position of the vibrator the positive tubes mov-
ing in opposite directions will neutralize each other’s effects in producing
sparks, though they increase the resultant electromotive intensity: thus, in
this case, at the places where the electromotive intensity is greatest there
will be no sparks in the resonator, for this maximum intensity will be due
to two sets of tubes of the same sign, one set moving in one direction, the
other in the opposite.

Fig. 124.

Since the free end of the wire has little or no capacity, no electricity
can accumulate there, so that when one set of positive tubes arrives at the
free end from the vibrator an equal number of positive tubes must start
from the free end and move towards the vibrator; thus at the free end we
have equal numbers of positive (or negative) tubes travelling in opposite
directions. We should expect therefore that no sparks would be produced
when the resonator was placed close to the free end; this, as we have seen,
was found by Hertz to be the case.

When however the resonator is placed in the second position, with its
plane at right angles to the wire, the conditions are very different; for the
tubes which though they strike the resonator yet miss the air gap, are not
hampered by the resonator in their passage through it; thus the resonator
does not in this case collect tubes and throw them into the air gap. The
sparks are now entirely due to the tubes which strike the air gap itself, and
thus will be brightest at those points on the wire where the electromotive
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intensity is a maximum, while at such places, as we have seen, the sparks
vanish when the resonator is in the former position.

382.] Hertz found that when the wire was cut at a node the nodes in
the portion of the wire which remained were not altered in position, but
that they were displaced when the wire was cut at any place other than a
node.

Hertz also found that the distance between the nodes was independent
of the diameter of the wire and of the material of which it was made,
and that in particular the positions of the nodes were not affected by
substituting an iron wire for a copper one.

The distance between the nodes is half the wave length along the wire;
thus, if we know the period of the electrical vibrations of the system we
can determine the velocity of propagation along the wire. Hertz, by using
the formula 2π

√
LC for the wave length of the vibrations emitted by a con-

denser of capacity C, whose plates are connected by a discharging circuit
whose coefficient of self-induction is L, came to the conclusion that the
velocity of propagation along the wire was only about 2/3 of that through
the dielectric; there are however many difficulties and doubtful points in
the theoretical calculation of the period of vibration of such a system as
Hertz’s.

383.] Before discussing these we shall consider another method which
Hertz used to compare directly the velocity of propagation along a wire
with that through the air.

In this method interference was produced in the following way between
the waves travelling out from the vibrator through the air and those trav-
elling along the wire. The free end of the wire was put to earth so as to
get rid of reflected waves along the wire, and as there were no metallic
reflectors in the way of the waves proceeding directly through the air from
the vibrator, the only reflected waves of this kind must have come from the
floors or walls of the room; we shall assume for the present that there were
no reflected air waves. The resonator was placed so that the air gap was at
the highest point and vertically under the wire, and the plane of the res-
onator could rotate about a vertical axis passing through the middle of the
air gap. When the plane of the resonator was at right angles to the wire,
the waves proceeding along the latter had no tendency to produce a spark;
any sparks that passed across the resonator must have been entirely due to
the waves travelling from the vibrator through the air independently of the
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wire. In Hertz’s experiments when the resonator was in this position the
sparks were about 2 mm. long. On the other hand, when the resonator was
twisted about the axis so that its plane passed through the wire and was
at right angles to the axis of the vibrator, the direct waves through the air
from the vibrator would have no tendency to produce sparks; which in this
case must have been entirely due to the waves travelling along the wire.
In Hertz’s experiments when the resonator was in this position the sparks
were again about 2 mm. long. When the resonator was in a position inter-
mediate between these two, the sparks were due to the combined action of
the waves travelling along the wire and those coming directly through the
air. In such a case the brightness of the sparks would, in general, change
when the plane of the vibrator was twisted through a considerable angle.
If now the fronts of the two sets of waves were parallel and moving forward
with the same velocity, then the effect of turning the plane of the vibrator
through a definite angle in a definite direction would be the same at all
points on the wire: if however the two waves were travelling at different
rates the effect of turning the resonator would vary as it is moved from
place to place along the wire.

384.] To prove this, let the electromotive intensity in the air gap due
to the wave travelling along the wire be

A cos
2π

λ
(V t− z),

when the plane of the resonator passes through the wire; here the wire is
taken as the axis of z, and λ is the wave length of the waves travelling along
it. Then, when the plane of the resonator is twisted through an angle φ
from this position, the electromotive intensity in the air gap due to the
wire waves will be

A cosφ cos
2π

λ
(V t− z),

since the electromotive intensity is approximately proportional to the pro-
jection of the resonator on the plane through the wire and the base line of
the vibrator.

Let the electromotive intensity in the air gap due to the waves coming
from the vibrator independently of the wire be, when the plane of the
resonator is at right angles to the wire,

B cos
2π

λ′
(
V ′t− (z − α)

)
,
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where λ′ is the wave length and V ′ the velocity of the air waves; then, if the
plane of the resonator is turned until it makes an angle φ with the plane
through the wire and the base line, the electromotive intensity resolved
parallel to the air gap is equal to

B sinφ cos
2π

λ′
(
V ′t− (z − α)

)
.

Thus, considering both the air waves and those along the wire, the elec-
tromotive intensity when the resonator is in this position is equal to

A cosφ cos
2π

λ
(V t− z) +B sinφ cos

2π

λ′
(
V ′t− (z − α)

)
,

which may, since V/λ is equal to V ′/λ′, be written as

R cos

{
2π

λ
V (t+ ε)

}
,

where

R2 = A2 cos2 φ+B2 sin2 φ

+ 2AB cosφ sinφ cos

{(
2π

λ
− 2π

λ′

)
z +

2π

λ′
α

}
.

Now R is the maximum electromotive intensity acting on the air gap,
and will be measured by the brightness of the spark. We see from the
preceding expression that if λ = λ′, that is, if the velocity of the waves
along the wire is the same as that of the air waves which are not affected
by the wire, the last term in the expression for R2 will cease to be a periodic
function of z, so that in this case there will be no periodic change in the
effect produced by a given rotation as we move the resonator along the
wire. When however λ is not equal to λ′, the effect on the spark length
of a given rotation of the resonator will vary harmonically along the wire.
Since in Hertz’s experiments the sparks were about equally long in the
two extreme positions, φ = 0 and φ = π/2, we may in discussing these
experiments put A = B, and therefore

R2 = A2

(
1 + 2 cosφ sinφ cos

{(
2π

λ
− 2π

λ′

)
z +

2π

λ′
α

})
;

thus, if the resonator is rotated so that φ changes from +β to −β, R2 is
diminished by

2A2 sin 2β cos

{(
2π

λ
− 2π

λ′

)
z +

2π

λ′
α

}
.
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Thus when (
2π

λ
− 2π

λ′

)
z +

2π

λ′
α = (2n+ 1)

π

2
,

that is, at places separated by the intervals

1
2

/{
1

λ
− 1

λ′

}
along the wire the rotation of the resonator will produce no effect upon
the sparks, while on one side of one of these positions it will increase,
on the other side diminish the brightness of the sparks. If λ′ were very
large compared with λ, that is, if the velocity of the waves travelling freely
through the air were very much greater than that of those travelling along
the wire, the distance between the places where rotation produces no effect
would be 1

2
λ, which is the distance between the nodes observed in the

experiments described in Art. 380. Hertz, however, came to the conclusion
that the places where rotation produced no effect were separated by a much
greater interval than the nodes. These he had determined to be about
2.8 metres apart, whereas the places where rotation produced no effect
seemed to be separated by about 7.5 metres. Assuming these numbers we
have

λ = 5.6,

1
2

/(
1

λ
− 1

λ′

)
= 7.5;

hence λ′ = 8.94. Thus from these experiments the velocity of the free
air waves would appear to be greater than those along the wire in the
proportion of 8.94 to 5.6 or 1.6 to 1; or the velocity of the air waves is
about half as large again as that of the wire waves.

We have, however, in the preceding investigations made several assump-
tions which it would be difficult to realise in practice; we have assumed, for
example, that in the neighbourhood of the resonator the front of the air
waves was at right angles to the wire. Since the resonator was close to the
axis of the vibrator this assumption would be justifiable if there had been
no reflection of the air waves from the walls or floors of the room. Since
the thickness of the walls was small compared with the wave length it is
not likely, unless they were very damp, that there would be much reflection
from them; the case of the floor is however very different, and it is difficult
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to see how reflection from it could have been entirely avoided. Reflection
from the floor would however introduce waves, the normals to whose fronts
would make a finite angle with the wire. The electromotive intensity in
the spark gap due to such waves would no longer be represented by a term
of the form

cos
(
2π(V ′t− z)/λ′

)
,

but by one of the form

cos
(
2π(V ′t− z cos θ)/λ′

)
,

where θ is the angle between the normal to the wave front and the wire.
Thus in the preceding investigation we must, for such waves, replace λ′

by λ′ sec θ, and their apparent wave length along the wire would be λ′ sec θ
and not λ′, so that the reflection would have the effect of increasing the
apparent wave length of the air waves. The result then of Hertz’s experi-
ments that the wave length of the air waves, measured parallel to the wire,
was greater than that of the wire waves, may perhaps be explained by the
reflection of the waves from the floor of the room, without supposing that
the velocity of the free air waves is different from that of those guided by
the wire.

Fig. 125.

385.] The experiments of Sarasin and De la Rive (Archives des Sciences
Physiques et Naturelles Genève, 1890, t. xxiii, p. 113) on the distance
between the nodes (1) along a wire, (2) when produced by interference
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between direct air waves and waves reflected from a large metallic plate,
seem to prove conclusively that the velocity of the waves guided by a wire
is the same as that of free air waves. The experiments on the air waves have
already been described in Art. 339; those on the wire waves were made in
a slightly different way from Hertz’s experiments.

Fig. 126.

The method used by Sarasin and De la Rive is indicated in Fig. 125.
Two metallic plates placed in front of the plates of the vibrator have parallel
wires F , F soldered to them, the wires being of equal length and insulated.
The plane of the resonator is at right angles to the wires, and the air gap is
at the highest point, so that the air gap is parallel to the shortest distance
between the wires. The resonator is mounted on a wagon by means of
which it can be moved to and fro along the wires, while a scale on the
bench along which the wagon slides enables the position of the latter to
be determined. The resonator with its mounting is shown in Fig. 126.
Sarasin and De la Rive found that as long as the same resonator was used
the distance between the nodes as determined by this apparatus was the
same as when the nodes were produced by the interference of direct air
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waves and those reflected from a metallic plate. The relative distances are
given in the table in Art. 340, where ‘λ for wire’ indicates twice the distance
between the nodes measured along the wire. They found with the wires, as
later on they found for the air waves, that the distance between the nodes
depended entirely upon the size of the resonator and not upon that of the
vibrator; in fact the distance between the nodes was directly proportional
to the diameter of the resonator; while it did not seem to depend to any
appreciable extent upon the size of the vibrator. These peculiarities can
be explained in the same way as the corresponding ones for the air waves,
see Art. 341.

When the extremities of the wires remote from the vibrator are attached
to large metallic plates, instead of being free, the electromotive intensity
parallel to the plates at the ends must vanish; hence, whenever a bundle
of positive Faraday tubes from the vibrator arrives at a plate an equal
number of negative tubes must start from the plate and travel towards the
vibrator, while, when the end of the wire is free, the tubes starting from
the end of the wire in response to those coming from the vibrator are of
the same sign as those arriving. Thus, when the end is free, the current
vanishes and the electromotive intensity is a maximum, while when the
end is attached to a large plate the electromotive intensity vanishes and
the current is a maximum. Since the sparks in the resonator, when used
as in Sarasin and De la Rive’s experiments, are due to the tubes falling
directly on the air gap, the sparks will be brightest when the electromotive
intensity is a maximum, and will vanish when it vanishes; thus the loops
when the ends are free will coincide with the nodes when the wires are
attached to large plates. This was found by Sarasin and De la Rive to be
the case.

A similar point arises in connection with the experiments with wires to
that which was mentioned in Art. 342 in connection with the experiments
on the air waves. The distance between the nodes, which is half the wave
length of the vibration of the resonator, is, as is seen from the table in
Art. 340, very approximately four times the diameter; if the resonator
were a straight wire the half wave length would be equal to the length of
the wire, and we should expect that bending the wire into a circle would
tend to shorten the period, we should therefore have expected the distance
between the nodes to have been a little less than the circumference of the
resonator. Sarasin and De la Rive’s experiments show however that it was
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80 per cent. greater than this: it is remarkable however that the distance
of the first node from the end of the wire, which is a loop, was always equal
to half the circumference of the resonator, which is the value it would have
had if the wave length of the vibration emitted by the resonator had been
equal to twice its circumference.

386.] The experiments of Sarasin and De la Rive show that when vi-
brators of the kind shown in Fig. 113 are used, the oscillations which are
detected by a circular resonator are those in the resonator rather than the
vibrator.

Rubens, Paalzow, Ritter, and Arons (Wied. Ann. 37, p. 529, 1889; 40,
p. 55, 1890; 42, pp. 154, 581, 1891) have used another method of measuring
wave lengths, which though it certainly requires great care and labour, yet
when used in a particular way would seem to give very accurate results. The
method depends upon the change which takes place in the resistance of a
wire when it is heated by the passage of a current through it. Rubens finds
that the rapidly alternating currents induced by the vibrator can produce
heat sufficient to increase the resistance of a fine wire by an amount which
can be made to cause a considerable deflection in a delicate galvanometer.

Fig. 127.

387.] Rubens’ apparatus, which is really a bolometer, is arranged as
follows. Rapidly alternating currents pass through a very fine iron wire L.
This wire forms one of the arms of a Wheatstone’s Bridge provided with
a battery and a galvanometer. When the rapidly alternating currents do
not pass through L this bridge is balanced, and there is no deflection of
the galvanometer. When however a rapidly alternating discharge passes
through the fine wire it heats it and so alters its resistance, and as the
Bridge is no longer balanced the galvanometer is deflected. This arrange-
ment is so sensitive that it is not necessary to place L in series with the
wires connected with the plates of the vibrating system. Rubens found
if a wire in series with L encircled, without touching, one of the wires



388.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 464

EJ , DH in the experiment figured in Fig. 127 (Rubens, Wied. Ann. 42,
p. 154, 1871), the deflection of the galvanometer was large enough to be
easily measured. The apparatus was so delicate that a rise in temperature
of 1/10, 000 of a degree in the wire produced a deflection of a millimetre
on the galvanometer scale. In one of his experiments the wire joined in
series with L was bent round two pieces of glass tubing through which the
wires EJ , DH passed, the plane of the turns round the glass tube being
at right angles to the wires. In this case each turn of the wire and the wire
it surrounds acted like a little Leyden jar, and the electricity which flowed
through the wire L and disturbed the balance in the Bridge was due to the
charging and discharging of these jars.

Fig. 128.

The pieces of glass tube were attached to a frame work, see Fig. 128,
which was moved along the wire, and the deflection of the galvanometer
observed as it moved along the wire. The relation between the galvanome-
ter deflection and the position of the tubes is shown in Fig. 129, where
the ordinates represent the deflection of the galvanometer and the abscis-
sae, the distance of the turns in the bolometer circuit from the point F
in the wire. The curve shows very clearly the harmonic character of the
disturbance along the wire.

388.] The results however of experiments of this kind were not very
accordant, and in the majority of his experiments Rubens used another
method which had previously been used by Lecher, who instead of a
bolometer employed the brightness of the discharge through an exhausted
tube as a measure of the intensity of the waves.

In these experiments the turns l, m (Fig. 128) in the bolometer circuit
were kept at the ends J and H of the main wire (Fig. 127), while a metallic
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wire forming a bridge between the two parallel wires was moved along from
one end of the wires to the other. The deflection of the bolometer depended
on the position of the bridge, in the manner represented in Fig. 130, where
the ordinates represent the deflection of the galvanometer, the abscissae
the position of the bridge.

Fig. 129.

Rubens found that the positions of the bridge, in which the deflection
of the galvanometer was a maximum, were independent of the length of
the wire connecting the plates of the vibrator to the balls between which
the sparks passed, and therefore of the period of vibration of the vibrator.
This result shows that the vibrations in the wires which are detected by the
bolometer cannot be ‘forced’ by the vibrator; for though, if this were the
case, the deflection of the bolometer would vary with the position of the
bridge, the places where the bridge produced a maximum deflection would
depend upon the period of the vibrator. We can see this in the following
way, if the bridge was at a place where the electromotive intensity at right
angles to the wire vanished—which, if there were no capacity at the ends J ,
H, would be an odd number of quarter wave lengths from these ends—the
introduction of the bridge would, since no current would flow through it,
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produce no diminution in the electromotive intensity at the ends J , H; in
other positions of the bridge some of the current, which in its absence would
go to the ends, would be diverted by the bridge, so that the electromotive
intensity at the ends would be weakened. Thus, when the deflection of the
bolometer was a maximum, the distances of the bridge from the ends J , H
would be an odd multiple of a quarter of the wave length of the vibration
travelling along the wire; thus, if these vibrations were ‘forced’ by the
vibrator, the positions of the bridge which give a maximum deflection in
the bolometer would depend upon the period of the vibrator. Rubens’
experiments show that this was not the case.

Fig. 130.

We may therefore, as the result of these experiments, assume that the
effect of the sparks in the vibrator is to give an electrical impulse to the
wires and start the ‘free’ vibrations proper to them. The capacity of the
plates at the ends of the wire makes the investigation of the free periods
troublesome; we may however avail ourselves of the results of some ex-
periments of Lecher’s (Wied. Ann. 41, p. 850, 1890), who found that the
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addition of capacity to the ends might be represented by supposing the
wires prolonged to an extent depending upon this additional capacity.

389.] Let AB, CD, Fig. 131, be the original wires, Aα, Bβ, Cγ, Dδ the
amount by which they have to be prolonged to represent the capacity at
the ends, we shall call the wires αβ, γδ the ‘equivalent’ wires. Let PQ
represent the position of the bridge.

Fig. 131.

The electrical disturbance produced by the coil may start several sys-
tems of currents in the wires αβ, γδ. Then there may be a system of
longitudinal currents along αβ, γδ determined by the condition that the
currents must vanish at α, β, and at γ, δ. Another system might flow
round αPQγ, their wave length being determined by the condition that
the currents along the wire must vanish at α and γ, and that by symmetry
the electrification at these points must be equal and opposite. A third sys-
tem of currents might flow round βPQδ, the flow vanishing at β and δ. If
the bridge PQ were near the ends α, γ, we might expect, a priori, that the
current in the circuit αPQγ would be the most intense. Since the currents
induced in the wires by the coil would tend to distribute themselves so
that their self-induction should be as small as possible they would there-
fore tend to take the shortest course, i.e. that round the circuit αPQγ:
these currents would induce currents round the circuit βPQδ. Lecher’s ex-
periments (Wied. Ann. 41, p. 850, 1890) show that the currents circulating
round αPQγ, βPQδ are much more efficacious in producing the electrical
disturbance at the ends than the longitudinal ones along αβ, γδ. As a
test of the magnitude of the disturbance at the ends, Lecher used an ex-
hausted tube containing nitrogen and a little turpentine vapour; this was
placed across the wires at the ends, and the brilliancy of the luminosity
in the tube served as an indication of the magnitude of the electromotive
intensity across βδ. In one of his experiments Lecher used a bridge formed
of two wires, PQ, P ′Q′ in parallel, and moved this about until the lumi-
nosity in the tube was a maximum; he then cut the wires αβ, γδ between
PQ and P ′Q′, so that the two circuits αPQγ, βP ′Q′δ were no longer in
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metallic connection. Lecher found that this division of the circuit pro-
duced very little diminution in the brilliancy of the luminosity in the tube,
though the longitudinal flow of the currents from α to β and from γ to δ
must have been almost entirely destroyed by it. Lecher also found that the
position of the bridge in which the luminosity of the tube was a maximum
depended upon the length of the bridge; if the bridge were lengthened it
had to be pushed towards, and if shortened away from the coil, to main-
tain the luminosity of the tube at its maximum value. He also found that,
as might be expected, if the bridge were very short the tube at the end
remained dark wherever the bridge was placed, while if the bridge were
very long the tube was always bright whatever the position of the bridge.
These experiments show that it is the currents round the circuits αPQγ,
βPQδ which chiefly cause the luminosity in the tube. Since the currents
in the circuit βPQδ are induced by those in the circuit αPQγ, they will
be greatest when the time of the electrical vibration of the system αPQγ
is the same as that of βPQδ. The periods of vibration of these circuits
are determined by the conditions that the current must vanish at their
extremities and that these must be in opposite electrical conditions; these
conditions entail that the wave lengths must be odd submultiples of the
lengths of the circuit. If the two circuits are in unison the wave lengths
must be the same, hence the ratio of the lengths of the two circuits must
be of the form (2n− 1)/(2m− 1), where n and m are integers.

This conclusion is verified in a remarkable way by Rubens’ experiments
with the bolometer. The relation between the deflections of the bolometer
(the ordinates) and the distances of the bridge from G in Fig. 127 (the
abscissae) is represented in Fig. 130. The length of the bridge in these
experiments was 14 cm., that of the curved piece of the wire EG was
83 cm., and that of the straight portion GJ was 570 cm. The lengths
Aα, Bβ which had to be added to the wires to represent the effects of
the capacity at the ends were assumed to be 55 cm. for the end of the
wire next the coil, and 60 cm. for the end next the bolometer. These
two lengths were chosen so as best to fit in with the observations, and were
thus really determined by the measurements given in the following table; in
spite of this, so many maxima were observed that the observations furnish
satisfactory evidence of the truth of the theory just described.
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m. n. 2m− 1. 2n− 1.

Distance of point of
maximum deflection

from G.
Corresponding point

in Fig. 130.

Calculated. Observed.
2 1 3 1 51 50 A
4 2 7 3 89 86 B
3 2 5 3 148 143 C
4 3 7 5 181 182 D
2 2 3 3 246 245 E
3 4 5 7 311 305 F
2 3 3 5 343 334 G
2 4 3 7 402 386 H
1 2 1 3 441 443 J
1 3 1 5 506 503 K
1 4 1 7 529 523 L

Specific Inductive Capacity of Dielectrics in rapidly alternating Electric
Fields.

390.] Methods analogous to those we have just described have been
applied to determine the specific inductive capacities of dielectrics when
transmitting electrical waves a few metres long.

One of the most striking results of Maxwell’s Electromagnetic Theory
of Light is the connection which it entails between the specific inductive
capacity and the refractive index of a transparent body. On this theory the
refractive index for infinitely long waves is (Maxwell’s Electricity and Mag-
netism, vol. ii, Art. 786) equal to the square root of the specific inductive
capacity of the dielectric under a steady electric field.

391.] Some determinations of K, the specific inductive capacity of
various dielectrics in slowly varying fields, are given in the following table,
which also contains the value of µ2, the square of the refractive index for
such dielectrics as are transparent. The letter following the value of µ2

denotes the Fraunhofer line for which the refractive index is measured;
when ∞ is affixed to the value of µ2 the number denotes the square of the
refractive index for infinitely long waves deduced from Cauchy’s formula.

When µ is given by the observer of the specific inductive capacity this
value has been used, in other cases µ has been taken from Landolt’s and
Börnstein’s ‘Physicalisch-Chemische Tabellen.’
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Substance. Observer. K. Tempera-
ture.

µ2.

Glass, very light flint . . . Hopkinson1 6.57 . . . 2.375 D
,, light flint . . . . . ,, 6.85 . . . 2.478 D
,, dense flint . . . . ,, 7.4 . . . 2.631 D
,, extra dense flint . . ,, 10.1 . . . 2.924 D
,, hard crown . . . . ,, 6.96
,, plate . . . . . . ,, 8.45

Paraffin . . . . . . . . ,, 2.29 . . . 2.022 ∞
Sulphur, along greatest axis Boltzmann2 4.73 . . . 4.89 B

,, ,, mean axis . ,, 3.970 . . . 4.154 B
,, ,, least axis . ,, 3.811 . . . 3.748 B
,, non-crystalline . ,, 3.84

Calcite, perpendicular to axis Romich & Nowak3 7.7 . . . 2.734 A
,, along axis . . . ,, ,, 7.5 . . . 2.197 A

Fluor Spar . . . . . . . ,, ,, 6.7 . . . 2.050 B
Mica . . . . . . . . . Klemenčič4 6.64 . . . 2.526 D
Ebonite . . . . . . . . Boltzmann2 3.15
Resin . . . . . . . . . ,, 2.55
Quartz along optic axis . . Curie5 4.55 . . . 2.41 D

,, perpendicular to axis ,, 4.49 . . . 2.38 D
Tourmaline along axis . . ,, 6.05 . . . 2.63 D

,, perpendicular to
axis . . . ,, 7.10 . . . 2.70 D

Beryl along axis . . . . . ,, 6.24 . . . 2.48 D
,, perpendicular to axis ,, 7.58 . . . 2.50 D

Topaz . . . . . . . . . ,, 6.56 . . . 2.61 D
Gypsum . . . . . . . . ,, 6.33 . . . 2.32 D
Alum . . . . . . . . . ,, 6.4 . . . 2.2 D
Rock Salt . . . . . . . ,, 5.85 . . . 2.36 D

Petroleum Spirit . . . . Hopkinson1 1.92 . . . 1.922 ∞
Petroleum Oil, Field’s . . ,, 2.07 . . . 2.075 ∞

,, ,, Common . ,, 2.10 . . . 2.078 ∞
Ozokerite . . . . . . . ,, 2.13 . . . 2.086 ∞
Turpentine, commercial . ,, 2.23 . . . 2.128 ∞
Castor Oil . . . . . . . ,, 4.78 . . . 2.153 ∞
Sperm Oil . . . . . . . ,, 3.02 . . . 2.135 ∞
Olive Oil . . . . . . . ,, 3.16 . . . 2.131 ∞
Neat’s-foot Oil . . . . . ,, 3.07 . . . 2.125 ∞
Benzene C6H6 . . . . . Hopkinson6 2.38 . . . 2.2614 D

,, ,, Negreano7 2.2988 25 2.2434 D
,, ,, ,, 2.2921 14 2.2686 D

Toluene C7H8 . . . . . ,, 2.242 27 2.224 D
,, ,, ,, 2.3013 14 2.245 D
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Substance. Observer. K. Tempera-
ture.

µ2.

Toluene . . . . . . . . Hopkinson6 2.42 . . . 2.2470 D
Xylene C8H10 . . . . . ,, 2.39 . . . 2.2238 D

,, ,, Negreano7 2.2679 27 2.219 D
Metaxylene C8H10 . . . . ,, 2.3781 12 2.243 D
Pseudocumene C9H12 . . ,, 2.4310 14 2.201 D
Cymene C10H14 . . . . . ,, 2.4706 19 2.201 D

,, ,, Hopkinson6 2.25 . . . 2.2254 D
Terebenthine C10H16 . . . Negreano7 2.2618 20 2.168 D
Carbon bisulphide . . . . Hopkinson6 2.67 . . . 2.673 D

(at 10◦)
Ether . . . . . . . . . ,, 4.75 . . . 1.8055 ∞
Amylene . . . . . . . . ,, 2.05 . . . 1.9044 D
Distilled Water . . . . . Cohn and Arons8 76. 15◦? 1.779 D

,, ,, Rosa9 75.7 25◦

Ethyl alcohol (98%) . . . Cohn and Arons8 26.5 . . . 1.831 ∞
Amyl alcohol . . . . . . ,, ,, 15. . . . 1.951 ∞
Mixture of Xylene and Ethyl

alcohol containing x parts
of alcohol in unit volume
x = .00 ,, ,, 2.36

= .09 ,, ,, 3.08
= .17 ,, ,, 3.98
= .30 ,, ,, 7.08
= .40 ,, ,, 9.53
= .50 ,, ,, 13.0
= 1. ,, ,, 26.5

The values of K for the following gases at the pressure of 760 mm. of
mercury are expressed in terms of that for a vacuum. In deducing them it
has been assumed that for air at different pressures the changes in K are
proportional to the changes in the pressure.

1Hopkinson, Phil. Trans. 1878, Part I, p. 17, and Phil. Trans. 1881, Part II, p. 355.
2Boltzmann, Wien. Berichte 70, 2nd abth. p. 342, 1874.
3Romich and Nowak, Wien. Berichte 70, 2nd abth. p. 380, 1874.
4Klemenčič, Wien. Berichte 96, 2nd abth. p. 807, 1887.
5Curie, Annales de Chimie et de Physique, 6, 17, p. 385, 1889.
6Hopkinson, Proc. Roy. Soc. 43, p. 161, 1887.
7Negreano, Compt. rend. 104, p. 425, 1887.
8Cohn and Arons, Wied. Ann. 33, p. 13, 1888.
9Rosa, Phil. Mag. [5], 31, p. 188, 1891.
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Gas. Observer. K. Tempera-
ture.

µ2.

Air . . . . . . Boltzmann1 1.000590 0◦ 1.000588 D
,, Klemenčič2 1.000586 0◦

Hydrogen . . . Boltzmann1 1.000264 0◦ 1.000278 D
,, Klemenčič2 1.000264 0◦

Carbonic acid . Boltzmann1 1.000946 0◦ 1.000908 D
,, ,, Klemenčič2 1.000984 0◦

Carbonic oxide . Boltzmann1 1.00069 0◦ 1.00067 D
,, ,, Klemenčič2 1.000694 0◦

Nitrous oxide . Boltzmann1 1.000994 0◦ 1.001032 D
,, ,, Klemenčič2 1.001158 0◦

Olefiant gas . . Boltzmann1 1.001312 0◦ 1.001356 D
Marsh gas . . . Boltzmann1 1.000944 0◦ 1.000886
Methyl alcohol . Lebedew3 1.0057 100◦

Ethyl alcohol . . ,, 1.001745 D
1.0065 100◦ (at 0◦)

Methyl formate . ,, 1.0069 100◦

Ethyl formate . ,, 1.0083 100◦

Methyl acetate . ,, 1.0073 100◦

Ethyl ether . . ,, 1.0045 100◦

,, ,, Klemenčič2 1.0074 0◦ 1.003048 D
Carbon bisulphide ,, 1.0029 0◦ 1.00296 D
Toluene . . . . Lebedew3 1.0043 126◦

Benzene . . . . ,, 1.0027 100◦

Ayrton and Perry (Practical Electricity, p. 310) found that the specific
inductive capacity of a vacuum in which they estimated the pressure to
be .001 mm. was about .994. This would make K for air referred to this
vacuum as the unit about 1.006, while µ2 from a vacuum to air is about
1.000588, there is thus a serious discrepancy between these values.

392.] We see from the above table that for some substances, such as sul-
phur, paraffin, liquid hydrocarbons, and the permanent gases, the relation
K = µ2 is very approximately fulfilled; while for most other substances the
divergence between K and µ2 is considerable. When, however, we remem-
ber (1) that even when µ is estimated for infinitely long waves this is done
by Cauchy’s formula, and that the values so deduced would be completely
invalidated if there were any anomalous dispersion below the visible rays,

1Boltzmann, Pogg. Ann. 155, p. 403, 1875.
2Klemenčič, Wien. Berichte 91, 2nd abth. p. 712, 1885.
3Lebedew, Wied. Ann. 44, p. 288, 1891.
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(2) that Maxwell’s equations do not profess to contain any terms which
would account for dispersion, the marvel is not that there should be sub-
stances for which the relation K = µ2 does not hold, but that there should
be any for which it does. To give the theory a fair trial we ought to measure
the specific inductive capacity for electrical waves whose wave length is the
same as the luminous waves we use to determine the refractive index.

393.] Though we are as yet unable to construct an electrical system
which emits electrical waves whose lengths approach those of the luminous
rays, it is still interesting to measure the values of the specific inductive
capacity for the shortest electrical waves we can produce.

We can do this by a method used by von Bezold (Pogg. Ann. 140,
p. 541, 1870) twenty years ago to prove that the velocity with which an
electric pulse travels along a wire is independent of the material of wire, it
was also used by Hertz in his experiments on electric waves.

Fig. 132.

This method is as follows. Let ABCD be a
rectangle of wires with an air space at EF in the
middle of CD; this rectangle is connected to one of
the poles of an induction coil by a wire attached
to a point K in AB, then if K is at the middle
of AB the pulse coming along the wire from the
induction coil will divide at K and will travel to
E and F , reaching these points simultaneously;
thus E and F will be in similar electric states and
there will be no tendency to spark across the air
gap EF . If now we move K to a position which
is not symmetrical with respect to E and F , then,
when a pulse travels along the rectangle, it will
reach one of these points before the other; their
electric states will therefore be different and there
will be a tendency to spark.

Suppose that with K at the middle point
of AB, we insert BC into a dielectric through which electromagnetic distur-
bances travel more slowly than they do through air, then the pulse which
goes round AD will arrive at E before the pulse which goes round BC
arrives at F ; thus E and F will not be in the same electrical state and
sparks will therefore pass across the air space. To get rid of the sparks
we must either move K towards B or else keep K fixed and, as the waves
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travel more slowly through the dielectric than through air, lengthen the
side AD of the figure. If we do this until the sparks disappear we may
conclude that E and F are in similar electric states, and therefore that the
time taken by the pulse to travel round one arm of the circuit is the same
as that round the other. By seeing how much the length of the one arm
exceeds that of the other we can compare the velocity of electromagnetic
action through the dielectric in which BC is immersed with that through
air.

394.] I have used (Phil. Mag. [5], 30, p. 129, 1890) this method to deter-
mine the velocity of propagation of electromagnetic action through paraffin
and sulphur. This was done by leading one of the wires, say BC, through
a long metal tube filled with either paraffin or sulphur, the wire being in-
sulated from the tube which was connected to earth. By measuring the
length of wire it was necessary to insert in AD to stop the sparks, I found
that the velocities with which electromagnetic action travels through sul-
phur and paraffin are respectively 1/1.7 and 1/1.35 of the velocity through
air. The corresponding values of the specific inductive capacities would be
about 2.9 and 1.8.

395.] Rubens and Arons (Wied. Ann. 42, p. 581; 44, p. 206), while
employing a method based on the same principles, have made it very much
more sensitive by using a bolometer instead of observing the sparks and
by using two quadrilaterals instead of one. The arrangement they used is
represented in Fig. 133 (Wied. Ann. 42, p. 584).

The poles P and Q of an induction coil are connected to the balls of
a spark gap S, to each of these balls a metal plate, 40 cm. square, was
attached by vertical brass rods 15 cm. long.

Two small tin plates x, y, 8 cm. square, were placed at a distance of
between 3 and 4 cm. from the large plates. Then wires connected to these
plates made sliding contacts at u and v with the wire rectangles ABCD,
EFGH .230 cm. by 35 cm. One of these rectangles was placed vertically
over the other, the distance between them being 8 cm. The points u, v were
connected with each other by a vertical wooden rod, ending in a pointer
which moved over a millimetre scale. The direct action of the coil on the
rectangles was screened off by interposing a wire grating through which
the wires u x, v y were led. The wires CD, GH were cut in the middle
and the free ends were attached to small metal plates 5.5 cm. square;
metal pieces attached to these plates went between the plates of the little
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Fig. 133.

condensers J , K, L, M , the plates of these condensers were attached cross-
wise to each other as in the figure. The two wires connecting the plates were
attached to a bolometer circuit similar to that described in Art. 387. By
means of a sliding coil attached to the bolometer circuit, Arons and Rubens
investigated the electrical condition of the circuits uADJ , uBCK, &c.,
and found that approximately there was a node in the middle and a loop
at each end; these circuits then may be regarded as executing electrical
vibrations whose wave lengths are twice the lengths of the circuits. If the
times of vibrations of the circuits on the left of u, v are the same as those
on the right, the plates J and K will be in similar electrical states, as will
also L and M , and there will be no deflection of the galvanometer in the
bolometer circuit. When the wires are surrounded by air this will be when
u, v are at the middle points of AB, EF . In practice Arons and Rubens
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found that the deflection of the galvanometer never actually vanished, but
attained a very decided minimum when u, v were in the middle, and that
the effect produced by sliding u, v through 1 cm. could easily be detected.

To determine the velocity of propagation of electromagnetic action
through different dielectrics, one of the short sides of the rectangles was
made so that the wires passed through a zinc box, 18 cm. long, 13 cm.
broad, and 14 cm. high; the wires were carefully insulated from the box;
the wires outside the box were straight, but the part inside was sometimes
straight and sometimes zigzag. This box could be filled with the dielectric
under observation, and the velocity of propagation of the electromagnetic
action through the dielectric was deduced from the alteration made in the
null position (i.e. the position in which the deflection of the galvanometer
in the bolometer circuit was a minimum) of uv by filling the box with the
dielectric.

Let p1 and p2 be the readings of the pointer attached to uv when a
straight wire of length Dg and a zigzag of length Dk are respectively in-
serted in the box, the box in this case being empty. Then since in each case
the lengths of the circuits on the right and left of uv must be the same, the
difference in the lengths of the circuits on the left, when the straight wire
and the zigzag respectively are inserted, must be equal to the difference in
the lengths of the circuits on the right. The length of the circuit on the
left when the zigzag is in exceeds that when the straight wire is in by

(Dk − p2)− (Dg − p1),

while the difference in the length of the circuits on the right is

p2 − p1;

hence Dk −Dg − (p2 − p1) = p2 − p1,

or Dk −Dg = 2(p2 − P1).

When the wires are surrounded by the dielectric, Arons and Rubens
regard them as equivalent to wires in air, whose lengths are nDg and nDk,
where n is the ratio of the velocity of transmission of electromagnetic action
through air to that through the dielectric; for the time taken by a pulse
to travel over a wire of length nDg in air, is the same as that required for
the pulse to travel over the length Dg in the dielectric. We shall return to
this point after describing the results of these experiments. If p3 and p4
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are the readings for the null positions of uv when the box is filled with the
dielectric, then we have, on Arons and Rubens’ hypothesis,

n(Dk −Dg) = 2(p4 − p3);

or, eliminating Dk −Dg,

n =
p4 − p3

p2 − p1

;

hence, if p1, p2, p3, p4 are determined, the value of n follows immediately.
In this way Arons and Rubens found as the values of n for the following

substances:—

n.
√
K.

Castor Oil . . . 2.05 2.16
Olive Oil . . . . 1.71 1.75
Xylol . . . . . 1.50 1.53
Petroleum . . . 1.40 1.44

The values of K, the specific inductive capacity in a slowly varying field,
were determined by Arons and Rubens for the same samples as they used
in their bolometer experiments.

396.] The method used by Arons and Rubens to reduce their obser-
vations leads to values of the specific inductive capacity which are in ac-
cordance with those found by other methods. It is however very difficult
to see, using any theory of the action of the divided rectangle that has
been suggested, why the values of the specific inductive capacity should
be accurately deduced from the observations by this method, except in the
particular case when the wires outside the box are very short compared
with the wave length of the electrical vibrations.

Considering the case of the single divided rectangle, there seem to be
three ways in which it might be supposed to act. We may suppose that
a single electrical impulse comes to K (Fig. 132), and there splits up into
two equal parts, one travelling round AD to E, the other round BC to F .
If these impulses arrived at E and F simultaneously they would, if they
were of equal intensity, cause the electric states of E and F to be similar,
so that there would be no tendency to spark across the gap EF . Thus,
if the pulses arrived at E and F undiminished in intensity, the condition
for there to be no spark would be that the time taken by a pulse to travel
from K to E should be equal to that from K to F . This reasoning is
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not applicable however when the pulse in its way round one side of the
circuit passes through regions in which its velocity is not the same as when
passing through air, because in this case the pulse will be partly reflected
as it passes from one medium to another, and will therefore proceed with
diminished intensity. Thus, though this pulse may arrive at the air gap at
the same time as the pulse which has travelled round the other side of the
rectangle, it will not have the same intensity as that pulse; the electrical
conditions of the knobs will therefore be different, and there will therefore
be a tendency to spark. When the pulse has to travel through media of
high specific inductive capacity the reflection must be very considerable,
and the inequality in the pulses on the two sides of the air gap so great that
we should not expect to get under any circumstances such a diminution
in the intensity of the sparks as we know from experience actually takes
place. We conclude therefore that this method of regarding the action of
the rectangle is not tenable.

397.] Another method of regarding the action is to look on the rectangle
as the seat of vibrations, whose period is determined by the electrical
system with which it is connected. Thus we may regard the potential at K
as expressed by φ0 cos pt; then the condition that there should be no sparks
is that the potentials at E and F should be the same. We can deduce the
expressions for the potentials at E and F from that at K when E and F
are nodes or loops. Let us consider the case when the capacity of the knobs
E and F is so small that the current at E and F vanishes. Then we can
easily show by the method of Art. 298 that if there is no discontinuity in the
current along the wire, and if the self-induction per unit length of the wire
is the same at all points in KADE, and if the portions AK, DF are in air
while AD is immersed in a dielectric in which the velocity of propagation of
electromagnetic action is V ′, that through air being V , then if the potential
at K is φ0 cos pt, that at F is equal to

φ0 cos pt

∆
,

where ∆ = cos
( p
V ′
AD
)

cos
p

V
(KA+DF )− sin

( p
V ′
AD
)
×{

µ sin
( p
V
DF

)
cos
( p
V
KA

)
+

1

µ
sin
( p
V
KA

)
cos
( p
V
DF

)}
,

and µ = V/V ′.
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The potential at E is
φ0 cos pt

cos
p

V
KE

if KE represents the total length KB + BC + CE, the whole of which is
supposed to be surrounded by air. Hence, if the potentials at E and F are
the same, we have

cos
( p
V ′
AD
)

cos
p

V
(KA+DF )− sin

( p
V ′
AD
)
×{

µ sin
( p
V
DF

)
cos
( p
V
KA

)
+

1

µ
sin
( p
V
KA

)
cos
( p
V
DF

)}
= cos

p

V
KE. (1)

To make the interpretation of this equation as simple as possible, sup-
pose KA = DF , equation (1) then becomes

cos
( p
V ′
AD
)

cos

(
2p

V
KA

)
−
(
µ+

1

µ

)
1
2

sin
( p
V ′
AD
)

sin

(
2p

V
KA

)
= cos

( p
V
KE

)
. (2)

Let us now consider one or two special cases of this equation. Let us

suppose that AD is so small that

(
µ+

1

µ

)
sin
( p
V ′
AD
)

is a small quantity,

then equation (2) may be written approximately

cos

{
2p

V
KA+ 1

2

(
µ+

1

µ

)
p

V ′
AD

}
= cos

( p
V
KE

)
;

hence 2KA+ 1
2
(µ2 + 1)AD = KE,

therefore
δKE

δAD
= 1

2
(µ2 + 1),

so that in this case the process which Arons and Rubens applied to their
measurements would give (µ2 + 1)/2 and not µ.

If, on the other hand, KA is so small that

(
µ+

1

µ

)
sin

2p

V
KA is small,

equation (2) may be written approximately

cos

{
p

V ′
AD +

(
µ+

1

µ

)
p

V
KA

}
= cos

( p
V
KE

)
,
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or µAD +

(
µ+

1

µ

)
KA = KE,

so that
δKE

δAD
= µ,

and in this case Arons and Rubens’ process gives the correct result.
398.] A third view of the action of the rectangle, which seems to be that

taken by Arons and Rubens, is that the vibrations are not forced, but that
each side of the rectangle executes its natural vibrations independently of
the other. If the extremities are to keep in the same electrical states, then
the times of vibration of the two sides must be equal.

Arons and Rubens’ measurements with the bolometer show that there
is a loop at K and nodes at E and F .

Now if 2π/p is the time of vibration of a wire such as KADF with
a node at F and a loop at K, surrounded by air along KA, DF , and
along AD by a medium through which electromagnetic action travels with
the velocity V ′, then we can show by a process similar to that in Art. 298
that p is given by the equation

1

µ
cot
( p
V ′
AD
)
− 1

µ
cot
( p
V ′
AD
)

cot
( p
V
KA

)
cot
( p
V
DF

)
+

1

µ2
cot
( p
V
KA

)
cot
( p
V
DF

)
= 0. (3)

Let us take the case when KA = DF , then this equation becomes

cot
( p
V ′
AD
)

=

(
µ+

1

µ

) cot
( p
V
KA

)
cot2

( p
V
KA

)
− 1

= 1
2

(
µ+

1

µ

)
tan

(
2p

V
KA

)
,

or cot

(
2p

V
KA

)
= 1

2

(
µ+

1

µ

)
tan

p

V ′
AD. (4)

Let us consider the special case when p . AD/V ′ is small, the solution
of (4) is then

2p

V
KA =

π

2
− 1

2

(
µ+

1

µ

)
p

V ′
AD,
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or
p

V

{
2KA+

µ2 + 1

2
AD

}
=
π

2
.

If p′ is the time of vibration of KBCE with a loop at K and a node
at E, this wire being entirely surrounded by air, then

p′

V
(KE) =

π

2
;

hence if p′ = p,

2KA+
µ2 + 1

2
AD = KE,

so that
δKE

δAD
=
µ2 + 1

2
.

Arons and Rubens when reducing their observations took the ratio
δKE/δAD to be always equal to µ. The above investigation shows that
this is not the case when pAD/V ′ is small. We might show that δKE/δAD
is equal to µ when KA/AD is small.

The results given on the third view of the electrical vibrations of the
compound wire seem parallel to those which hold for vibrating strings and
bars. Thus if we have three strings of different materials stretched in series
between two points, the time of longitudinal vibration of this system is not
proportional to the sum of the times a pulse would take to travel over the
strings separately (see Routh’s Advanced Rigid Dynamics, p. 397), but is
given by an equation somewhat resembling (3).

399.] The discrepancy between the results of the preceding theory of
the action of the divided rectangle and the method employed by Arons and
Rubens to reduce their observations, may perhaps explain to some extent
the difference between the values of the specific inductive capacity of glass
in rapidly alternating electric fields obtained by these observers and those
obtained by M. Blondlot and myself for the same quantity.

Arons and Rubens (Wied. Ann. 44, p. 206, 1891) determined the ratio of
the velocity of electromagnetic action through air to that through glass by
filling with glass blocks a box through which the wires on one side of their
rectangle passed. Employing the same method of reduction as for liquid
dielectrics, they found µ (the ratio of the velocities) to be 2.33, whence
K = µ2 is 5.43; while the value of K for the same glass, in slowly varying
fields, was 5.37, which is practically identical with the preceding value. If,
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however, we adopted the method of reduction indicated by the preceding
theory we should get a considerably smaller value of K. In order to see
what kind of diminution we might expect, let us suppose that the circuit
through the glass is so short that the relation expressed by (4) holds. This
gives the same value for (K + 1)/2 as Arons and Rubens get for µ; hence
we find K = 3.66, a value considerably less than under steady fields.

Fig. 134.

400.] Arons and Rubens checked their
method by finding by means of it the specific
inductive capacity of paraffin. This sub-
stance happens to be one for which either
method of reduction leads to very much the
same result. For example, for fluid paraffin
their method of reduction gave µ =

√
K =

1.47, K = 2.16; if we suppose that we
ought to have (K + 1)/2 instead of µ we get
K = 1.94, while the value in slowly varying
fields is 1.98; so that the result for this sub-
stance is not decisive between the methods
of reduction.

Both M. Blondlot and myself found that
the specific inductive capacity of glass was
smaller under rapidly changing fields than
in steady ones. The following is the method
used by M. Blondlot (Comptes Rendus,
May 11, 1891, p. 1058; Phil. Mag. [5], 32,
p. 230, 1891). A large rectangular plate
of copper AA′, Fig. 134, is fixed vertically,
and a second parallel and smaller plate BB′

forms a condenser with the first. This con-
denser discharges itself by means of the
knobs a, b; a is connected with the gas pipes,
b with one pole of an induction-coil, the other pole of which is connected
to the gas pipes. When the coil is working, electrical oscillations take place
in the condenser, the period of which is of the order 1/25, 000, 000 of a sec-
ond. There is thus on the side of AA′ a periodic electric field which has xx
as the plane of symmetry. Two square plates, CD, C ′D′, are placed in
this field parallel to AA′ and symmetrical with respect to xx; two wires
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terminating in EE ′ are soldered at DD′ to the middle points of the sides
of these plates. The wires are connected at EE ′ to two carbon points kept
facing each other at a very small distance apart.

When the coil is working no sparks are observed between E and E ′, this
is due to the symmetry of the apparatus. When, however, a glass plate is
placed between AA′ and CD sparks immediately pass between E and E ′;
these are caused by the induction received by CD differing from that re-
ceived by C ′D′. By interposing between AA′ and C ′D′ a sheet of sulphur
of suitable thickness the sparks can be made to disappear again. We can
thus find the relative thicknesses of plates of glass and sulphur which pro-
duce the same effect on the electromagnetic waves passing through them,
and we can therefore compare the specific inductive capacity of glass and
sulphur under similar electrical conditions. M. Blondlot found the specific
inductive capacity of the sulphur he employed by Curie’s method (Annales
de Chimie et de Physique, [6], 17, p. 385, 1889), and assuming that its
inductive capacity was the same in rapidly alternating fields as in steady
ones, he found the specific inductive capacity of the glass to be 2.84, which
is considerably less than its value in steady fields.

401.] I had previously (Proc. Roy. Soc. 46, p. 292) arrived at the same
conclusion by measuring the lengths of the electrical waves emitted by
a parallel plate condenser, (1) when the plates were separated by air,
(2) when they were separated by glass. The period of vibration of the
condenser depends upon its capacity, and this again upon the dielectric
between the plates, so that the determination of the periods gives us the
means of determining the specific inductive capacity of the glass. The
parallel plate condenser loses its energy by radiation slowly, and will thus
force the vibration of its own period upon any electrical system under its
influence. It differs in this respect from the condenser in Fig. 113, which
radiates its energy away so rapidly that its action on neighbouring electri-
cal conductors approximates to an impulse which starts the free vibrations
of such systems.

The wave lengths in those observations were determined by observations
on sparks. This is not comparable in delicacy with the bolometric method
of Arons and Rubens; the method was however sufficiently sensitive to show
a considerable falling off in the specific inductive capacity of the glass, for
which I obtained the value 2.7, almost coincident with that obtained by
M. Blondlot. Sulphur and ebonite on the other hand, when tested in the
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same way, showed no appreciable change in their specific inductive capacity.

The Effects produced by a Magnetic Field on Light.

402.] The connection between optical and electromagnetic phenomena
is illustrated by the effects produced by a magnetic field on light passing
through it. Faraday was the first to discover the action of magnetism on
light; he found (Experimental Researches, vol. 3, p. 1) that when plane
polarized light passes through certain substances, such as bisulphide of
carbon or heavy glass, placed in a magnetic field where the lines of force
are parallel to the direction of propagation of the light, the plane of po-
larization is twisted round the direction of the magnetic force. The laws
of this phenomenon are described in Maxwell’s Electricity and Magnetism,
Chapter XXI.

403.] Subsequent investigations have shown that a magnetic field pro-
duces other effects upon light, which, though they probably have their
origin in the same cause as that which produces the rotation of the plane
of polarization in the magnetic field, manifest themselves in a different way.

Thus Kerr (Phil. Mag. [5], 3, p. 321, 1877), whose experiments have
been verified and extended by Righi (Annales de Chimie et de Physique,
[6], 4, p. 433, 1885; 9, p. 65, 1886; 10, p. 200, 1887), Kundt (Wied. Ann. 23,
p. 228, 1884), Du Bois (Wied. Ann. 39, p. 25, 1890), and Sissingh (Wied.
Ann. 42, p. 115, 1891) found that when plane polarized light is incident on
the pole of an electromagnet, polished so as to act like a mirror, the plane
of polarization of the reflected light is not the same when the magnet is
‘on’ as when it is ‘off.’

The simplest case is when the incident plane polarized light falls nor-
mally on the pole of an electromagnet. In this case, when the magnet
is not excited, the reflected ray is plane polarized, and can be completely
stopped by an analyser placed in a suitable position. If the analyser is kept
in this position and the electromagnet excited, the field, as seen through
the analyser, is no longer quite dark, but becomes so, or very nearly so,
when the analyser is turned through a small angle, showing that the plane
of polarization has been twisted through a small angle by reflection from
the magnetized iron. Righi (l.c.) has shown that the reflected light is not
quite plane polarized, but that it is elliptically polarized, the axes of the
ellipse being of very unequal magnitude. These axes are not respectively
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in and at right angles to the plane of incidence. If we regard for a moment
the reflected elliptically polarized light as approximately plane polarized,
the plane of polarization being that through the major axis of the ellipse,
the direction of rotation of the plane of polarization depends upon whether
the pole from which the light is reflected is a north or south pole. Kerr
found that the direction of rotation was opposite to that of the currents
exciting the pole from which the light was reflected.

The rotation produced is small. Kerr, who used a small electromagnet,
had to concentrate the lines of magnetic force in the neighbourhood of the
mirror by placing near to this a large mass of soft iron, before he could get
any appreciable effects. By the use of more powerful magnets Gordon and
Righi have succeeded in getting a difference of about half a degree between
the positions of the analyser for maximum darkness with the magnetizing
current flowing first in one direction and then in the opposite.

A piece of gold-leaf placed over the pole entirely stops the magnetic
rotation, thus proving that the rotation of the plane of polarization is not
produced in the air.

Hall (Phil. Mag. [5], 12, p. 157, 1881) found that the rotation takes
place when the light is reflected from nickel or cobalt, instead of from iron,
and is in the same direction as for iron.

Righi (l.c.) showed that the amount of rotation depends on the nature
of the light; the longer the wave length the greater (at least within the
limits of the luminous spectrum) the rotation.

Oblique Incidence on a Magnetic Pole.

404.] When the light is incident obliquely and not normally on the
polished pole of an electromagnet it is necessary, in order to be able to
measure the rotation, that the incident light should be polarized either in
or at right angles to the plane of incidence, since it is only in these two cases
that plane polarized light remains plane polarized after reflection from a
metallic surface, even though this is not in a magnetic field. When light
polarized in either of these planes is incident on the polished pole of an
electromagnet, the light, when the magnet is on, is elliptically polarized
after reflection, and the major and minor axes of the ellipse are not respec-
tively in and at right angles to the plane of incidence. The ellipticity of
the reflected light is very small. If we regard the light as consisting of two
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plane polarized waves of unequal amplitudes and complementary phases,
then the rotation from the plane of polarization of the incident wave to
that of the plane in which the amplitude of the reflected wave is greatest
is in the direction opposite to that of the currents which circulate round
the poles of the electromagnet.

According to Righi the amount of this rotation when the incident light is
polarized in a plane perpendicular to that of incidence reaches a maximum
when the angle of incidence is between 44◦ and 68◦; while when the light
is polarized in the plane of incidence the rotation steadily decreases as the
angle of incidence is increased. The rotation when the light is polarized
in the plane of incidence is always less than when it is polarized at right
angles to that plane, except when the incidence is normal, when of course
the two rotations are equal.

These results of Righi’s differ in some respects from those of some pre-
ceding investigations by Kundt, who, when the light was polarized at right
angles to the plane of incidence, obtained a reversal of the sign of the
rotation of the plane of polarization near grazing incidence.

Reflection from Tangentially Magnetized Iron.

405.] In the preceding experiments the lines of magnetic force were at
right angles to the reflecting surface; somewhat similar effects are however
produced when the mirror is magnetized tangentially. In this case Kerr
(Phil. Mag. [5], 5, p. 161, 1878) found:—

1. That when the plane of incidence is perpendicular to the lines of
magnetic force no change is produced by the magnetization on the reflected
light.

2. No change is produced at normal incidence.
3. When the incidence is oblique, the lines of magnetic force being

in the plane of incidence, the reflected light is elliptically polarized after
reflection from the magnetized surface, and the axes of the ellipse are not
in and at right angles to the plane of incidence. When the light is polarized
in the plane of incidence, the rotation of the plane of polarization (that is
the rotation from the original plane to the plane through the major axis
of the ellipse) is for all angles of incidence in the opposite direction to
that of currents which would produce a magnetic field of the same sign
as the magnet. When the light is polarized at right angles to the plane
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of incidence, the rotation is in the same direction as these currents when
the angle of incidence is between 0◦ and 75◦ according to Kerr, between
0◦ and 80◦ according to Kundt, and between 0◦ and 78◦ 54′ according to
Righi. When the incidence is more oblique than this, the rotation of the
plane of polarization is in the opposite direction to the electric currents
which would produce a magnetic field of the same sign.

406.] Kerr’s experiments were confined to the case of light reflected
from metallic surfaces. Kundt (Phil. Mag. [5], 18, p. 308, 1884) has made
a most interesting series of observations of the effect of thin plates of the
magnetic metals iron, nickel and cobalt, on the plane of polarization of light
passing through these plates in a strong magnetic field where the lines of
force are at right angles to the surface of the plates.

Kundt found that in these circumstances the magnetic metals possess
to an extraordinary degree the power of rotating the plane of polarization
of the light. The rotation due to an iron plate is for the mean rays of
the spectrum more than 30, 000 times that of a glass plate of the same
thickness in the same magnetic field, and nearly 1, 500 times the natural
rotation (i.e. the rotation independent of magnetic force) due to a plate
of quartz of the same thickness. The rotation of the plane of polarization
is with all three substances in the direction of the currents which would
produce a magnetic field of the same sign as the one producing the rotation.
The rotation under similar circumstances is nearly the same for iron and
cobalt, while for nickel it is decidedly weaker. The rotation is greater for
the red rays than for the blue.

407.] The phenomena discovered by Kerr show that when the rapidly
alternating currents which accompany light waves are flowing through iron,
nickel, or cobalt in a magnetic field, electromotive intensities are produced
which are at right angles both to the current and the magnetic force. Let
us take, for example, the simple case when light is incident normally on the
pole of an electromagnet. Let us suppose that the incident light is polarized
in the plane of zx, where z = 0 is the equation to the reflecting surface, so
that in the incident wave the electromotive intensities and the currents are
at right angles to this plane; Kerr found, however, that the reflected wave
had a component polarized in the plane of yz; thus after reflection there are
electromotive intensities and currents parallel to x, that is at right angles
to both the direction of the external magnetic field which is parallel to z
and to the intensities in the incident wave which are parallel to y.
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The Hall Effect.

408.] In the Philosophical Magazine for November, 1880, Hall published
an account of some experiments, which show that when a steady current is
flowing in a steady magnetic field electromotive intensities are developed
which are at right angles both to the magnetic force and to the current, and
are proportional to the product of the intensity of the current, the magnetic
force and the sine of the angle between the directions of these quantities.

Fig. 135.

The nature of the experiments by
which this effect was demonstrated
was as follows: A thin film of metal
was deposited on a glass plate; this
plate was placed over the pole of
an electromagnet and a steady cur-
rent sent through the film from two
electrodes. The distribution of the
current was indicated by finding two
places in the film which were at the
same potential; this was done by finding two points such that if they were
placed in electrical connection with the terminals of a delicate galvanome-
ter (G) they produced no current through it when the electromagnet was
‘off.’ If now the current was sent through an electromagnet a deflection
of the galvanometer (G) was produced, and this continued as long as the
electromagnet was ‘on,’ showing that the distribution of current in the film
was altered by the magnetic field. The method used by Hall to measure
this effect is described in the following extract taken from one of his papers
on this subject (Phil. Mag. [5], 19, p. 419, 1885). ‘In most cases, when pos-
sible, the metal was used in the form of a thin strip about 1.1 centim. wide
and about 3 centim. long between the two pieces of brass B, B (Fig. 135),
which, soldered to the ends of the strip, served as electrodes for the en-
trance and escape of the main current. To the arms a, a, about 2 millim.
wide and perhaps 7 millim. long, were soldered the wires w, w, which led
to a Thomson galvanometer. The notches c, c show how adjustment was
secured. The strip thus prepared was fastened to a plate of glass by means
of a cement of beeswax and rosin, all the parts shown in the figure being
imbedded in and covered by this cement, which was so hard and stiff as to
be quite brittle at the ordinary temperature of the air.
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Fig. 136.

‘The plate of glass bearing the strip
of metal so embedded was, when about
to be tested, placed with B, B verti-
cal in the narrow part of a tank whose
horizontal section is shown in Fig. 136.
This tank, TT , containing the plate of
glass with the metal strip was placed
between the poles PP of the electro-
magnet. The tank was filled with water
which was sometimes at rest and some-
times flowing. By this means the tem-
perature of the strip of metal was under
tolerable control, and the inconvenience
from thermoelectric effects at a and a
considerably lessened. The diameter of the plane circular ends of the pole
pieces PP were about 3.7 centim.’

By means of experiments of this kind Hall arrived at the conclusion
that if α, β, γ; u, v, w denote respectively the components of the magnetic
force and the intensity of the current, electromotive intensities are set up
whose components parallel to the axes of x, y, z are respectively

C(βw − γv), C(γu− αw), C(αv − βu).

The values of C in electromagnetic units for some metals at 20◦C, as
determined by Hall (Phil. Mag. [5], 19, p. 419, 1885), are given in the
following table (l.c. p. 436):—

Metal. C × 1015.

Copper . . . . . . . . . . . −520
Zinc . . . . . . . . . . . . . +820
Iron . . . . . . . . . . . . +7850
Steel, soft . . . . . . . . . +12060

,, tempered . . . . . . . +33000
Cobalt . . . . . . . . . . . +2460
Nickel . . . . . . . . . . . −14740
Bismuth . . . . . . . . . −8580000
Antimony . . . . . . . . +114000
Gold . . . . . . . . . . . . −660
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With regard to the magnetic metals, it is not certain that the quantity
primarily involved in the Hall effect is the magnetic force rather than the
magnetic induction, or the intensity of magnetization. Hall’s experiments
with nickel seem to point to its being the last of these three, as he found,
using strong magnetic fields, that the effect ceased to be proportional to
the external magnetic field, and fell off in a way similar to that in which
the magnetization falls off when the field is increased. We must remember,
if we use Hall’s value of C for iron and the other magnetic metals, to use
in the expression for the electromotive intensities the magnetic induction
instead of the magnetic force. For in Hall’s experiments the magnetic force
measured was the normal magnetic force outside the iron. Since the plate
was very thin the normal magnetic force outside the iron would be large
compared with that inside; the normal magnetic induction inside would
however be equal to the normal magnetic force outside, so that Hall in this
case measured the relation between the electromotive intensity produced
and the magnetic induction producing it.

Hall has thus established for steady currents the existence of an effect
of the same nature as that which Kerr’s experiments proved (assuming the
electromagnetic theory of light) to exist for the rapidly alternating currents
which constitute light. Here however the resemblance ends; the values of
the coefficient C deduced by Hall from his experiments on steady currents
do not apply to rapidly alternating light currents. Thus Hall found that
for steady currents the sign of C was positive for iron, negative for nickel;
the magneto-optical properties of these bodies are however quite similar.
Again, both Hall and Righi found that the C for bismuth was enormously
larger than that for iron or nickel. Righi, however, was unable to find any
traces of magneto-optical effects in bismuth.

The optical experiments previously described show that there is an elec-
tromotive intensity at right angles both to the magnetic force and to the
electromotive intensity; they do not however show without further inves-
tigation on what function of the electromotive intensity the magnitude of
the transverse intensity depends. Thus, for example, the complete cur-
rent in the metal is the sum of the polarization and conduction currents.
Thus, if the electromotive intensity is X, the total current u is given by
the equation

u =

(
K ′

4π

d

dt
+

1

σ

)
X,
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or if the effects are periodic and proportional to ειpt,

u =

(
K ′

4π
ιp+

1

σ

)
X,

where K ′ is the specific inductive capacity of the metal and σ its specific
resistance.

We do not know from the experiments, without further discussion,
whether the transverse electromotive intensity is proportional to u, the
total current, or only to K ′ιpX/4π, the polarization part of it, or to X/σ,
the conduction current.

We shall assume that the components of the transverse electromotive
intensity are given by the expressions

k(bw − cv),

k(cu− aw),

k(av − bu);

where a, b, c are the components of the magnetic induction, u, v, w those
of the total current.

This form, if k is a real constant, makes the transverse intensity pro-
portional to the total current; the form is however sufficiently general an-
alytically to cover the cases where the transverse intensity is proportional
to the polarization current alone or to the conduction one. Thus, if we put

k =

(
K ′ιp/4π

K ′ιp/4π + 1/σ

)
k′,

where k′ is a real constant, the transverse intensity will be proportional to
the displacement current; while if we put

k =
k′′

K ′ιp/4π + 1/σ
,

where k′′ is a real constant, the transverse intensity will be proportional to
the conduction current. We shall now proceed to investigate which, if any,
of these hypotheses will explain the results observed by Kerr.

409.] Let P , Q, R be the components of the electromotive intensity in
a conductor, P ′, Q′, R′ the parts of these which arise from electromagnetic
induction, a, b, c the components of the magnetic induction, α, β, γ those
of the magnetic force, u, v, w the components of the current. K ′, µ′, σ
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are respectively the specific inductive capacity, the magnetic permeability,
and the specific resistance of the metal.

Then we have in the metal

P = P ′ + k(bw − cv),

Q = Q′ + k(cu− aw),

R = R′ + k(av − bu),

where k is a coefficient which bears the same relation to rapidly alternating
currents as C (Art. 408) does to steady currents. If the external field is
very strong, we may without appreciable error substitute for a, b, c, in the
terms multiplied by k, a0, b0, c0, the components of the external field. We
shall suppose that this field is uniform, so that a0, b0, c0 are independent
of x, y, z.

By equation (2) of Art. 256

da

dt
=
dQ′

dz
− dR′

dy

=
dQ

dz
− dR

dy
− k

(
a0

d

dx
+ b0

d

dy
+ c0

d

dz

)
u, (1)

since
du

dx
+
dv

dy
+
dw

dz
= 0 on Maxwell’s hypothesis that all the currents are

closed. Now since u is the component of the total current parallel to x, it
is equal to the sum of the components of the polarization and conduction
currents in that direction. The polarization current is equal to

K ′

4π

dP

dt
,

the conduction current to P/σ, hence

4πu = K ′
dP

dt
+

4π

σ
P.

We shall confine our attention to periodic currents and suppose that the
variables are proportional to ειpt; in this case the preceding equation be-
comes

4πu = (K ′ιp+ 4π/σ)P,

but 4πu =
dγ

dy
− dβ

dz
;
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hence we have

(K ′ιp+ 4π/σ)P =
dγ

dy
− dβ

dz
;

similarly (K ′ιp+ 4π/σ)Q =
dα

dz
− dγ

dx
,

(K ′ιp+ 4π/σ)R =
dβ

dx
− dα

dy
;

and therefore since

dα

dx
+
dβ

dy
+
dγ

dz
= 0,

(K ′ιp+ 4π/σ)

(
dQ

dz
− dR

dy

)
=
d2α

dx2
+
d2α

dy2
+
d2α

dz2
;

and hence equation (1) becomes

(K ′ιp+ 4π/σ)µ′
dα

dt
=
d2α

dx2
+
d2α

dy2
+
d2α

dz2

− k

4π
(K ′ιp+ 4π/σ)

(
a0

d

dx
+ b0

d

dy
+ c0

d

dz

)(
dγ

dy
− dβ

dz

)
.

Similarly we have

(K ′ιp+ 4π/σ)µ′
dβ

dt
=
d2β

dx2
+
d2β

dy2
+
d2β

dz2

− k

4π
(K ′ιp+ 4π/σ)

(
a0

d

dx
+ b0

d

dy
+ c0

d

dz

)(
dα

dz
− dγ

dx

)
,

(K ′ιp+ 4π/σ)µ′
dγ

dt
=
d2γ

dx2
+
d2γ

dy2
+
d2γ

dz2

− k

4π
(K ′ιp+ 4π/σ)

(
a0

d

dx
+ b0

d

dy
+ c0

d

dz

)(
dβ

dx
− dα

dy

)
.


(2)

We are now in a position to discuss the reflection of waves of light from
a plane metallic surface. Let us take the plane separating the metal from
the air as the plane of xy, the plane of incidence as the plane of xz; the
positive direction along z is from the metal to the air.

Let us suppose that waves of magnetic force are incidence on the metal,
these incident waves may be expressed by equations of the form



409.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 494

α = A0 ε
ι(lx+mz+pt),

β = B0 ε
ι(lx+mz+pt);

and since
dα

dx
+
dβ

dy
+
dγ

dz
= 0,

γ = − l

m
A0 ε

ι(lx+mz+pt),

where l2 +m2 =
p2

V 2
,

and A0 and B0 are constants.
V is the velocity of propagation of electromagnetic action through the

air and so is equal to 1/K, where K is the electromagnetic measure of
the specific inductive capacity of the air, whose magnetic permeability is
taken as unity. Waves will be reflected from the surface of the metal, and
the amplitudes of these waves will be proportional to ει(lx−mz+pt) , so that
α, β, γ, the components of the total magnetic force in the air, will, since
it is due to both the incident and reflected waves, be represented by the
equations

α = A0 ε
ι(lx+mz+pt) + Aει(lx−mz+pt),

β = B0 ε
ι(lx+mz+pt) +B ει(lx−mz+pt),

γ = − l

m
A0 ε

ι(lx+mz+pt) +
l

m
A ει(lx−mz+pt),

where A and B are constants.
We shall suppose that the metal is so thick that there is no reflection

except from the face z = 0; in this case the waves in the metal will travel
in the negative direction of z.

Thus in the metal we may put

α = A′ ει(lx+m′z+pt),

β = B′ ει(lx+m′z+pt),

γ = − l

m′
A′ ει(lx+m′z+pt),

where if m′ is complex the real part must be positive in order that the
equations should represent a wave travelling in the negative direction of z;
the imaginary part of m′ must be negative, otherwise the amplitude of the
wave of magnetic force would increase indefinitely as the wave travelled
along.
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Substituting these values of α, β, γ in equations (2), we get

A′(−p2µ′K ′ + 4πµ′ιp/σ + l2 +m′2)

= − k

4π
(K ′ιp+ 4π/σ)m′(la0 +m′c0)B′, (3)

B′(−p2µ′K ′ + 4πµ′ιp/σ + l2 +m′2)

=
k

4π
(K ′ιp+ 4π/σ)

l2 +m′2

m′
(la0 +m′c0)A′. (4)

Eliminating A′ and B′ from these equations, we get

− p2µ′K ′ + 4πµ′ιp/σ + l2 +m′2

= ± ιk
4π

(K ′ιp+ 4π/σ)(l2 +m′2)
1
2 (la0 +m′c0). (5)

There are only two values of m′ which satisfy this equation and which
have their real parts positive and their imaginary parts negative. We shall
denote these two roots by m1, m2; m1 being the root when the plus sign
is taken in the ambiguity in sign in equation (4), m2 the root when the
minus sign is taken.

We have from equation (3), if A1 and B1 are the values of A′ and B′

corresponding to the root m1,

A1ι(l
2 +m2

1)
1
2 = −B1m1;

or if l2 +m2
1 = ω2

1,

A1ιω1 = −B1m1.

If A2 and B2 are the values of A′ and B′ corresponding to the root m2, we
have

A2ιω2 = B2m2,

where l2 +m2
2 = ω2

2.

Thus in the metal we have

α = A1 ε
ι(lx+m1z+pt) + A2 ε

ι(lx+m2z+pt),

β = −ιω1

m1

A1 ε
ι(lx+m1z+pt) +

ιω2

m2

A2 ε
ι(lx+m2z+pt),

γ = − l

m1

A1 ε
ι(lx+m1z+pt) − l

m2

A2 ε
ι(lx+m2z+pt).
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We thus see that the original plane wave is in the metal split up into
two plane waves travelling with the velocities p/ω1, p/ω2 respectively. We
also see from the equations for α, β, γ that the waves are two circularly
polarized ones travelling with different velocities. Starting from this result
Prof. G. F. Fitzgerald (Phil. Trans. 1880, p. 691) has calculated the rotation
of the plane of polarization produced by reflection from the surface of a
transparent medium which under the action of magnetic force splits up a
plane wave into two circularly polarized ones; some of the results which he
has arrived at are not in accordance with the results of Kerr’s and Righi’s
experiments on the reflection from metallic surfaces placed in a magnetic
field, proving that in them we must take into account the opacity of the
medium if we wish to completely explain the results of these experiments.

410.] In order to determine the reflected and transmitted waves we
must introduce the boundary conditions. We assume (1) that α and β,
the tangential components of the magnetic force, are continuous; (2) that
the normal magnetic induction is continuous; and (3) that the part of
the tangential electromotive intensity which is due to magnetic induction
is continuous. It should be noticed that condition (3) makes the total
tangential electromotive intensity discontinuous, for the total electromotive
intensity is made up of two parts, one due to electromagnetic induction,
the other due to the causes which produce the Hall effect; it is only the
first of these parts which we assume to be continuous.

If P is the component parallel to x of the total electromotive intensity,
P ′ the part of it due to electromagnetic induction, then

P = P ′ + k(b0w − c0v);

but P =
1

K ′ιp+ 4π/σ

(dγ
dy
− dβ

dz

)
= − 1

K ′ιp+ 4π/σ

dβ

dz
,

since in the present case γ does not depend upon y.
Hence, substituting the values of w and v in terms of the magnetic

force, the condition that P ′ is continuous is equivalent to that of

− 1

K ′ιp+ 4π/σ

dβ

dz
− k

4π

(
b0
dβ

dx
− c0

(dα
dz
− dγ

dx

))
being continuous.
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We shall suppose that in the air k = 0.
The condition that α is continuous gives

A0 + A = A1 + A2; (6)

the condition that β is continuous gives

B0 +B = −ιω1

m1

A1 +
ιω2

m2

A2; (7)

the condition that the normal magnetic induction is continuous gives

− l

m
(A0 − A) = −µ′

(
l

m1

A1 +
l

m2

A2

)
,

or dividing by l,

− 1

m
(A0 − A) = −µ′

(
1

m1

A1 +
1

m2

A2

)
. (8)

We can easily prove independently that this equation is true when l = 0,
though in that case it cannot be legitimately deduced from the preceding
equation.

The condition that P ′ is continuous gives, since k = 0 and σ = ∞ for
air,

− m

Kιp
(B0 −B) =

ι(ω1A1 − ω2A2)

K ′ιp+ 4π/σ

− k

4π

{
b0l

(
−ιω1

m1

A1 +
ιω2

m2

A2

)
− c0

(
ω2

1

m1

A1 +
ω2

2

m2

A2

)}
. (9)

The equations (6), (7), (8), and (9) are sufficient to determine the four
quantities A, A1, A2, B, and thus to determine the amplitudes and phases
of the reflected and transmitted waves.

411.] We shall now proceed to apply these equations to the case of
reflection from a tangentially magnetized reflecting surface, as the pecu-
liar reversal of the direction of rotation of the plane of polarization which
(Art. 405) Kerr found to take place when the angle of incidence passes
through 75◦ seems to indicate that this case is the one which is best fitted
to distinguish between rival hypotheses.

Since in this case the magnetic force is tangential c0 = 0; hence, re-
ferring to equation (5), we see that there will only be one value of m′ if
la0 vanishes, i.e. if l = 0, in which case the incidence is normal, or if a0 = 0,



411.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 498

in which case the magnetic force is at right angles to the plane of incidence;
hence, since there is only one value of m′, there will not be any rotation
of the plane of polarization in either of these cases; this agrees with Kerr’s
experiments (see Art. 405).

Let us suppose that the light is polarized perpendicularly to the plane of
incidence and that the mirror is magnetized in that plane. In the incident
wave the magnetic force is at right angles to the plane of incidence, so that
the A0 of equations (6), (7), (8), and (9) vanishes. Putting

A0 = 0, b0 = 0, c0 = 0,

we get from these equations

A = A1 + A2,

B0 +B = −ι
(
ω1

m1

A1 −
ω2

m2

A2

)
,

A = −µ′m
(

1

m1

A1 +
1

m2

A2

)
− m

Kιp
(B0 −B) =

ι(ω1A1 − ω2A2)

K ′ιp+ 4π/σ
.

Since (K ′ιp + 4π/σ)/Kιp =
1

µ′
R2ε2ια, see Art. 353, the last equation

may be written

−(B0 −B) =
ιµ′

R2ε2ιαm
(ω1A1 − ω2A2).

The rotation observed is small, we shall therefore neglect the squares
and higher powers of (m1 − m2); doing this we find from the preceding
equations that

A

B
=

ιµ′m

(
1

m1

− 1

m2

)
ω

(
µ′

R2ε2ιαm
− 1

M

)(
1 + µ′

m

M

) , (10)

where M is the value of m1 or m2, when k = 0, and ω2 = l2 +M2.
From equation (5) we have, when c0 = 0,

−p2µ′K ′ + 4πµ′ιp/σ + l2 +m2
1 =

ιk

4π
(K ′ιp+ 4π/σ)(l2 +m2

1)
1
2 la0,

−p2µ′K ′ + 4πµ′ιp/σ + l2 +m2
2 = − ιk

4π
(K ′ιp+ 4π/σ)(l2 +m2

2)
1
2 la0.
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Hence, when m1 −m2 is small, we have approximately

(m1 −m2)M =
ιk

4π
(K ′ιp+ 4π/σ)ωla0

=
ιk

4πµ′
R2ε2ιαιpV −2

0 ωla0,

where V0 denotes the velocity of propagation of electromagnetic action
through air. Substituting this value of m1 −m2 in equation (10) we get

A

B
=
ιkp

4π

R2ε2ιαlmV −2
0 a0ω

M

(
µ′M

R2ε2ιαm
− 1

)
(M + µ′m)

. (11)

If
A

B
= θ + ιφ,

where θ and φ are real quantities, then if the reflected light polarized
perpendicularly to the plane of incidence is represented by

β = cos(pt+ lx−mz),

the reflected light polarized in the plane of incidence will be represented
by

α = θ cos(pt+ lx−mz)− φ sin(pt+ lx−mz);

thus, unless φ vanishes, the reflected light will be elliptically polarized. If
however θ and φ are small, then the angle between the major axis of the
ellipse for the reflected light and that of the incident light (regarding this
which is plane polarized as the limit of elliptically polarized light when
the minor axis of the ellipse vanishes) will be approximately θ. Hence if
the analysing prism is set so as to extinguish the light reflected from the
mirror when it is not magnetized, the field after magnetization will be
darkest when the analyser is turned through an angle θ, though even in
this case it will not be absolutely dark. We proceed now to find θ from
equation (11).

We have by Art. 353

l2 +M2 = R2ε2ια(l2 +m2),

or M2 = (R2ε2ια − 1)l2 +R2ε2ιαm2.
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Now for metals the modulus of R2ε2ια is large, the table in Art. 355
showing that for steel it is about 17; hence we have approximately

M2 = R2ε2ια(l2 +m2)

= R2ε2ια
p2

V 2
0

.

We shall put µ′ = 1 in the denominator of the right-hand side of equa-
tion (11), since there is no evidence that iron and steel retain their magnetic
properties for magnetic forces alternating as rapidly as those in the light
waves. Making this substitution and putting m = (p/V0) cos i, where i is
the angle of incidence, we find(

M

R2ε2ιαm
− 1

)
(M +m) =

p

V0

(
1

cos i
−Rεια +

1

Rεια
− cos i

)
=

p

V0 cos i
(1− cos2 i−Rεια cos i)

approximately, since the modulus of Rεια is large.
Hence we see

A

B
=
ιk

4π

pa0V
−2

0 Rεια sin i cos2 i

sin2 i−Rεια cos i
,

so that if k is real,

θ = − k

4π

pa0V
−2

0 sin3 i cos2 iR sinα

sin4 i− 2 sin2 i cos iR cosα +R2 cos2 i
.

This does not change sign for any value of i between 0 and π/2; this
result is therefore inconsistent with Kerr’s and Kundt’s experiments, and
we may conclude that the hypothesis on which it is founded—that the
transverse intensity is proportional to the total current—is erroneous.

As Kerr’s and Kundt’s experiments were made with magnetic metals
it seems desirable to consider the results of supposing these metals to re-
tain their magnetic properties. When µ′ is not put equal to unity, θ is
proportional to

cos2 i sin i sinα

(
µ′ sin2 i+

2µ′2

R
− cosα cos i

)
;

this does not change sign for any value of i between 0 and π/2, so that the
preceding hypothesis cannot be made to agree with the facts by supposing
the metals to retain their magnetic properties.
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412.] Let us now consider the consequence of supposing that the trans-
verse electromotive intensity is proportional not to the total current but
to the polarization current; we can do this by putting

k =
K ′ιp/4π

K ′ιp/4π + 1/σ
k′,

where k′ is a real quantity.
This equation may be written

k =
K ′V 2

0

R2ε2ια
k′.

Substituting this value of k in equation (11) we find

A

B
=
ιk′K ′pa0

4πRεια
sin i cos2 i

sin2 i−Rεια cos i
.

If we write this in the form

A

B
= θ′ + ιφ′,

where θ′ and φ′ are real, we find

θ′ =
k′K ′pa0

4πR

sin i cos2 i(sinα sin2 i−R sin 2α cos i)

sin4 i− 2R sin2 i cos i cosα +R2 cos2 i
. (12)

The angle through which the analyser has to be twisted in order to
produce the greatest darkness is, as we have seen, equal to θ′ the real part
of A/B. Equation (12) shows that this changes sign when i passes through
the value given by the equation

sinα sin2 i−R sin 2α cos i = 0,

or sin2 i = 2R cosα cos i;

with the notation of the table in Art. 355 this is

sin2 i = 2n cos i.

If µ′ is not equal to unity the corresponding equation may easily be
shown to be

µ′ sin2 i = 2n cos i.

From the table in Art. 355 we see that for steel n = 2.41, the cor-
responding value of i when µ′ = 1 is about 78◦, which agrees well with
the results of Kerr’s experiments. Hence we see that the consequences of



412.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 502

the hypotheses, that the transverse electromotive intensity is proportional
to the polarization current, and that µ′ = 1, agree with the results of
experiments.

We shall now consider the consequences of supposing that the transverse
electromotive intensity is proportional to the conduction current. We can
do this by putting

k =
k′′

K ′ιp/4π + 1/σ
,

where k′′ is a constant real quantity.
This equation may be written

k =
4πk′′V 2

0

ιpR2ε2ια
.

Substituting this value of k in equation (11) we find

A

B
=

k′′ sin i cos2 i

R εια(sin2 i−R εια cos i)
,

the real part of which is

k′′ sin i cos2 i

R

(cosα sin2 i−R cos 2α cos i)

sin4 i− 2 sin2 i cos iR cosα +R2 cos2 i
.

This is the angle through which the analyser must be twisted in order to
quench the reflected light as much as possible. The rotation of the analyser
will change sign when i passes through the value given by the equation

cosα sin2 i = R cos 2α cos i,

or R cosα sin2 i = R2 cos 2α cos i.

With the notation of Art. 355 this may be written

n sin2 ι = n2(1− k2) cos ι.

From the table in Art. 355 we see that 1 − k2 is negative, hence, since
n is positive there is no real value of i less than π/2 which satisfies this
equation, so that if this hypothesis were correct there would be no reversal
of the direction of rotation of the analyser.

Hence of the three hypotheses, (1) that the transverse electromotive
intensity concerned in these magnetic optical effects is proportional to the
total current, (2) that it is proportional to the polarization current, (3) that
it is proportional to the conduction current, we see that (1) and (3) are
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inconsistent with Kerr’s experiments on the reflection from tangentially
magnetized mirrors, while (2) is completely in accordance with them.

413.] The transverse electromotive intensity indicated by hypothesis (2)
is of a totally different character from that discovered by Hall. In Hall’s ex-
periments the electromotive intensities, and therefore the currents through
the metallic plates, were constant; when however this is the case the ‘polar-
ization’ current vanishes. Thus in Hall’s experiments there could have been
no electromotive intensity of the kind assumed in hypothesis (2); there is
therefore no reason to expect that the order of the metals with respect to
Kerr’s effect should be the same as that with respect to Hall’s.

It is worth noting that reflection from a transparent body placed in
a magnetic field can be deduced from the preceding equations by putting
α = 0, since this makes the refractive index real. In this case we see, by
equation (12), that the real part of A/B vanishes, so that the reflected
light is elliptically polarized, with the major axis of the ellipse in the plane
of incidence; any small rotation of the analyser would therefore in this case
increase the brightness of the field.

414.] We now proceed to consider the case of reflection from a nor-
mally magnetized mirror. We shall confine ourselves to the case of normal
incidence.

If the incident light is plane polarized we may (using the notation of
Art. 409) put B0 = 0; we have also l = 0, ω1 = m1, ω2 = m2, and since the
mirror is magnetized normally, a0 = 0, b0 = 0. Making these substitutions,
equations (6), (7), (8); and (9) of Art. 410 become, putting µ′ = 1,

A0 + A = A1 + A2, (13)

B = −ι(A1 − A2), (14)

A0 − A = m

(
A1

m1

+
A2

m2

)
, (15)

m

Kιp
B =

ι(m1A1 −m2A2)

K ′ιp+ 4π/σ
+

k

4π
c0(m1A1 +m2A2), (16)

where K is the specific inductive capacity of air. The last equation by
means of (5) reduces to

m

Kιp
B = p

(
A1

m1

− A2

m2

)
,



414.] EXPERIMENTS ON ELECTROMAGNETIC WAVES. 504

or since Kp2 = m2,

B = ιm

(
A1

m1

− A2

m2

)
. (17)

Solving these equations we find

B

A
= −ιm(m1 −m2)

m1m2 −m2
.

Now m1 − m2 is small, and we may therefore, if we neglect the squares
of small quantities, in the denominator of the expression for B/A, put M
for either m1 or m2, where M is the value of these quantities when the
magnetic field vanishes.

We have by equation (5)

−p2µ′K ′ + 4πµ′ιp/σ +m2
1 =

ιk

4π
(K ′ιp+ 4π/σ)m2

1c0,

−p2µ′K ′ + 4πµ′ιp/σ +m2
2 = − ιk

4π
(K ′ιp+ 4π/σ)m2

2c0;

hence m1 −m2 =
ιk

4π
(K ′ιp+ 4π/σ)Mc0

approximately.
Since the transverse electromotive intensity is proportional to the po-

larization current we have

k =
K ′ιp/4π

K ′ιp/4π + 1/σ
k′,

where k′ is a real quantity. Substituting this value of k in the expression
for m1 −m2 , we get

m1 −m2 = −pK
′k′Mc0

4π
;

but M = Rειαm, so that

B

A
=

ιpK ′k′Rειαc0

4π(R2ε2ια − 1)
,

or, since the modulus of R2ε2ια is large compared with unity,

B

A
=
ιpK ′k′ε−ια

4πR
c0

=
pK ′k′

4πR
c0(sinα + ι cosα)
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approximately.
Hence, if the magnetic force in the reflected wave, which is polarized in

the same plane as the incident wave, is represented by

cos(pt+mz),

the magnetic force in the reflected wave polarized in the plane at right
angles to this will be represented by

pK ′k′

4πR
c0 sinα cos(pt+mz)− pK ′k′

4πR
c0 cosα sin(pt+mz).

Thus in the expression for the light polarized in this plane one term
represents a component in the same phase as the constituent in the original
plane, while the phase of the component represented by the other term
differs from this by quarter of a wave length. The resultant reflected light
will thus be slightly elliptically polarized. As in Art. 411 however, we may
show that the field can be darkened by twisting the analyser through a
small angle from the position in which it completely quenched the light
when the mirror was not magnetized. The angle for which the darkening
is as great as possible is equal to the real term in the expression for B/A,
i.e. to

pK ′k′

4πR
c0 sinα.

Thus though the reflected light cannot be completely quenched by ro-
tating the analyser, its intensity can be very considerably reduced; this
agrees with the results of Righi’s experiments, see Art. 403.

We can deduce from this case that of reflection from a transparent
substance by putting α = 0, as this assumption makes the refractive index
wholly real; in this case the reflected light is elliptically polarized, but as
the axes of the ellipse are respectively in and at right angles to the plane
of the original polarization any small rotation of the analyser will increase
the brightness of the field.

We can solve by similar means the case of oblique reflection from a
normally magnetized mirror; the results agree with Kerr’s experiments;
want of space compels us however to pass on to apply the same principles
to the case where light, as in Kundt’s experiments Art. 406, passes through
thin metallic films placed in a magnetic field.
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On the Effect produced by a thin Magnetized Plate on Light passing
through it.

415.] We shall assume that the plate is bounded by the planes z = 0,
z = −h, the incident light falling normally on the plane z = 0. The
external magnetic field is supposed to be parallel to the axis of z.

Let the incident light be plane polarized, the magnetic force in it being
parallel to the axis of x. The reflected light will consist of two portions,
one polarized in the same plane as the incident light, the other polarized
in the plane at right angles to this: the magnetic force in the latter part of
the light will therefore be parallel to the axis of y.

If α, β are the components of the magnetic force parallel to the axes of
x and y respectively, then in the region for which z is positive we have

α = A0ε
ι(mz+pt) + Aει(−mz+pt),

β = Bει(−mz+pt),

where A0ε
ι(mz+pt) represents the magnetic force in the incident wave and

A and B are constants.
In the plate we have

α = A1ε
ι(m1z+pt) + A′1ε

ι(−m1z+pt) + A2ε
ι(m2z+pt) + A′2ε

ι(−m2z+pt),

and therefore, as in Art. 409, as l = 0,

β = −ιA1ε
ι(m1z+pt) − ιA′1ει(−m1z+pt) + ιA2ε

ι(m2z+pt) + ιA′2ε
ι(−m2z+pt),

wherem1,m2 are the roots of equation (5) andA1,A′1, A2,A′2 are constants.
After the light has passed through the plate, the components of the

magnetic force will be given by equations of the form

α = Cει(mz+pt),

β = Dει(mz+pt).

The four boundary conditions at the surface z = 0 give, if µ′ = 1,

A0 + A = A1 + A′1 + A2 + A′2,

A0 − A = m

(
A1

m1

− A′1
m1

+
A2

m2

− A′2
m2

)
;

 (18)

B = −ι(A1 + A′1 − A2 − A′2),

B = ιm

(
A1

m1

− A′1
m1

− A2

m2

+
A′2
m2

)
.

 (19)
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The boundary conditions when z = −h give, writing θ and φ for −ιm1h,
−ιm2h respectively,

Cε−ιmh = A1ε
θ + A′1ε

−θ + A2ε
φ + A′2ε

−φ,

Cε−ιmh = m

(
A1ε

θ

m1

− A′1ε
−θ

m1

+
A2ε

φ

m2

− A′2ε
−φ

m2

)
;

 (20)

Dε−ιmh = −ι(A1ε
θ + A′1ε

−θ − A2ε
φ − A′2ε−φ),

Dε−ιmh = ιm

(
A1ε

θ

m1

− A′1ε
−θ

m1

− A2ε
φ

m2

+
A′2ε

−φ

m2

)
.

 (21)

From equations (19), (20), and (21) we get

A1ε
θ
(
1− m

m1

)
+ A′1ε

−θ(1 +
m

m1

)
+ A2ε

φ
(
1− m

m2

)
+ A′2ε

−φ(1 +
m

m2

)
= 0,

A1ε
θ
(
1 +

m

m1

)
+ A′1ε

−θ(1− m

m1

)
− A2ε

φ
(
1 +

m

m2

)
− A′2ε−φ

(
1− m

m2

)
= 0,

A1

(
1 +

m

m1

)
+ A′1

(
1− m

m1

)
− A2

(
1 +

m

m2

)
− A′2

(
1− m

m2

)
= 0,

The solution of these equations may be expressed in the form

∆ =
A1ε

θ

εφ
(

1− m

m2

)(
1 +

m2

m1m2

)
− ε−φ

(
1 +

m

m2

)(
1− m2

m1m2

)
+ 2εθ

(
1− m

m1

) m
m2

,

=
−A′1ε−θ

εφ
(

1− m

m2

)(
1− m2

m1m2

)
− ε−φ

(
1 +

m

m2

)(
1 +

m2

m1m2

)
+ 2ε−θ

(
1 +

m

m1

) m
m2

,

=
A2ε

φ

εθ
(

1− m

m1

)(
1 +

m2

m1m2

)
− ε−θ

(
1 +

m

m1

)(
1− m2

m1m2

)
+ 2εφ

(
1− m

m2

) m
m1

,

=
−A′2ε−φ

εθ
(

1− m

m1

)(
1− m2

m1m2

)
− ε−θ

(
1 +

m

m1

)(
1 +

m2

m1m2

)
+ 2ε−φ

(
1 +

m

m2

) m
m1

.

Now by equations (20) and (21) we have

D

C
= −ι(A1ε

θ + A′1ε
−θ − A2ε

φ − A′2ε−φ)

A1εθ + A′1ε
−θ + A2εφ + A′2ε

−φ .
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Substituting the ratios of A1, A′1, A2, A′2 just found, we get

−D
C

=

ι

{
1
m2

(
1 +

m2

m2
1

)
(εθ − ε−θ)− 1

m1

(
1 +

m2

m2
2

)
(εφ − ε−φ) +

2m
m1m2

(εφ + ε−φ − εθ − ε−θ)
}

1
m2

(
1− m2

m2
1

)
(εθ − ε−θ) +

1
m1

(
1− m2

m2
2

)
(εφ − ε−φ)

We notice that the numerator vanishes when m1 = m2, in which case
θ = φ: it therefore contains the factor m1 −m2; hence, if we neglect the
squares and higher powers of (m1 −m2), we may in the denominator put
m1 = m2 = M and φ = θ.

If the thickness of the film is so small that θ and φ are small quantities,
then neglecting powers of h higher than the second, we find

D

C
= 1

2

m2
2 −m2

1

M2 −m2
(ι−mh).

Substituting the value of m2
2−m2

1 from equation (5), and putting M =
Rειαm, we see that

D

C
=
pK ′k′c0

4π

(ι−mh)

1− ε−2ια

R2

.

Since R2 is large for metals we may, as a first approximation, put

D

C
=
pK ′k′c0

4π
(ι−mh).

The angle through which the plane of polarization is twisted is equal
to the real part of D/C, and is therefore equal to

−pK ′k′c0mh/4π;

it is thus to our order of approximation independent of the opacity of the
plate. We see from Art. 414 that when light is incident normally on a
magnetized mirror the rotation of the plane of polarization of the reflected
light is proportional to sinα, and thus depends primarily on the opacity of
the mirror, vanishing when the mirror is transparent.

The imaginary part of D/C remains finite though h is made indefinitely
small, we therefore infer that the transmitted light is elliptically polarized,
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and that the ratio of the axes of the ellipse is approximately independent
of the thickness of the plate.

Let us now consider the light reflected from the plate. We have by
equations (18) and (19)

B

2A
= − ι(A1 + A′1 − A2 − A′2)

A1

(
1− m

m1

)
+ A′1

(
1 +

m

m1

)
+ A2

(
1− m

m2

)
+ A′2

(
1 +

m

m2

) .
Substituting the values of A1, A′1, A2, A′2 previously given, we find, ne-
glecting squares and higher powers of m1 −m2,

− B

2A
=

ι

{
(εθ−φ − ε−(θ−φ))

2m
M

(
1 +

m2

M2

)
+
(
ε−(θ+φ) − εθ+φ

)
m
( 1
m1
− 1
m2

)(
1− m2

M2

)}
2
(

1− m2

M2

)2

{2− (ε2θ + ε−2θ)}
.

If the plate is so thin that θ and φ are small, we have approximately

B

A
=

(m1 −m2)
m

M

{
1 +

m2

M2
+

(
1− m2

M2

)}
(

1− m2

M2

)2

M2h

= (m1 −m2)
2m

M3h

(
1− m2

M2

)2

=
2(m1 −m2)m

M3h
,

since m/M is small for metals.
Substituting the value of m1 − m2 from equation (5) we get, putting

M = Rειαm,
B

A
= −pK

′k′c0

2π

1

mR2ε2ιαh
;

the rotation of the plane of polarization is equal to the real part of B/A,
and hence to

−K
′k′c0

2π

p

mh

cos 2α

R2
.
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Since this is proportional to 1/h we see that the rotation increases as
the thickness of the plate diminishes. The explanation of this is that while
the intensities of the two components reflected light, viz. the component
polarized in the same plane as the incident wave and the component po-
larized in the plane at right angles to this, both diminish as the thickness
of the plate diminishes; the first component diminishes much more rapidly
than the second; thus the ratio of the second component to the first and
therefore the angle of rotation of the plane of polarization increases as the
thickness of the plate diminishes.

416.] The effect of a magnetic field in producing rotation of the plane
of polarization thus seems to afford strong evidence of the existence of a
transverse electromotive intensity in a conductor placed in a magnetic field,
this intensity being quite distinct from that discovered by Hall, inasmuch
as the former is proportional to the rate of variation of the electromotive
intensity, whereas the Hall effect is proportional to the electromotive inten-
sity itself. We shall now endeavour to form some estimate of the magnitude
of this transverse intensity revealed to us by optical phenomena.

Kundt (Wied. Ann. 23, p. 238, 1884) found from his experiments that
if φ, the rotation of the plane of polarization produced by the passage of
light of wave length λ through a magnetized plate of thickness h, is given
by an equation of the form

φ =
πh

λ
(n− n′),

then φ = 1◦.48′ when

λ = 5.8× 10−5, and h = 5.5× 10−6,

thus n− n′ = .1.

But we have seen that the rotation in this case is equal to

pK ′k′c0

2π

πh

λ
;

hence, comparing this with Kundt’s result, we find

pK ′k′c0

2π
= .1,

but if λ = 5.8× 10−5, p = 2π × 3× 1010 × 105/5.8 = 3.2× 1015.
Substituting these values, we find

K ′k′

2π
c0 = 3.1× 10−17.
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Now if f is the electric polarization parallel to x, the transverse elec-
tromotive intensity is equal to

k′c0
df

dt
= k′ιpc0f

= k′
K ′

4π
ιpc0X,

where X is the electromotive intensity parallel to x. Hence k′K ′pc0/4π the
ratio of the magnitude of the transverse intensity to that producing the
current; this ratio is for iron therefore equal to

1.6× 10−17p

for magnetic fields of the strength used by Kundt. The factor multiplying p
is so small as to make it probable that the effects of this transverse force
are insensible except when the electromotive intensity is changing with a
rapidity comparable with the rate of change in light waves, in other words,
that it is only in optical phenomena that this transverse electromotive
intensity produces any measurable effect.



CHAPTER VI.

THE DISTRIBUTION OF RAPIDLY ALTERNATING CURRENTS.

417.] Problems concerning alternating currents have become in re-
cent years of much greater importance than they were at the time when
Maxwell’s Treatise was published; this is due to the extensive use of such
currents for electric lighting, and to the important part which the much
more rapidly oscillating currents produced by the discharge of Leyden jars
now play in electrical researches. It is therefore desirable to consider more
fully than is done in the Electricity and Magnetism the application of
Maxwell’s principles to such currents. In doing this we shall follow the
methods used by Lord Rayleigh in his papers on ‘The Reaction upon the
Driving-Point of a System executing Forced Harmonic Oscillations of var-
ious Periods, with Applications to Electricity,’ Phil. Mag. [5], 21, p. 369,
1886, and on ‘The Sensitiveness of the Bridge Method in its Application
to Periodic Electric Currents,’ Proc. Roy. Soc. 49, p. 203, 1891.

418.] When the currents are steady their distribution among a net-
work of conductors is determined by the condition that the rate of heat
production must be a minimum, see Maxwell’s Electricity and Magnetism,
vol. i. p. 408. Thus, if F is the Dissipation Function (Electricity and Mag-
netism, vol. i. p. 408), ẋ1, ẋ2, ẋ3 . . . the currents flowing through the cir-
cuits, these variables being chosen so that they are sufficient but not more
than sufficient to determine the currents flowing through each branch of
the net-work, then ẋ1, ẋ2, &c. are determined by the equations

dF

dẋ1

=
dF

dẋ2

=
dF

dẋ3

= . . . = 0.

When, however, the currents are variable these equations are no longer
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true; we have instead of them the equations

d

dt

dT

dẋ1

+
dF

dẋ1

− dV

dx1

= 0,

. . . . . . . . .

where T is the Kinetic Energy due to the Self and Mutual induction of the
circuits, F as before is the Dissipation Function, and V is the Potential
Energy arising from the charges that may be in any condensers in the
system.

If the currents are periodic and proportional to ειpt, the preceding equa-
tion may be written as

ιp
dT

dẋ1

+
dF

dẋ1

− dV

dx1

= 0

and thus when p increases indefinitely the preceding equation approximates
to

dT

dẋ1

= 0;

we have similarly
dT

dẋ2

=
dT

dẋ3

= . . . = 0.

Thus in this case the distribution of currents is independent of the resis-
tances, and is determined by the condition that the Kinetic Energy and
not the Dissipation Function is a minimum.

419.] We have already considered several instances of this effect. Thus,
when a rapidly alternating current travels along a wire, the currents fly
to the outside of the wire, since by doing this the mean distance between
the parts of the current is a maximum and the Kinetic Energy therefore a
minimum. Again, when two currents in opposite directions flow through
two parallel plates the currents congregate on the adjacent surfaces of the
plates, since by so doing the average distance between the opposite cur-
rents, and therefore the Kinetic Energy, is a minimum.

Fig. 137.



420.] THE DISTRIBUTION OF RAPIDLY ALTERNATING CURRENTS. 514

Fig. 138.

Mr. G. F. C. Searle has devised an experiment which shows this ten-
dency of the currents in a very striking way. AB, Fig. 123, is an exhausted
tube through which the periodic currents produced by the discharge of a
Leyden jar are sent. When none of the wires leading from the jar to the
tube passes parallel to it in its neighbourhood, the glow produced by the
currents fills the tube uniformly. When however one of the leads is bent,
as in Fig. 137, so as to pass near the tube in such a way that the current
through the lead is in the opposite direction to that through the tube,
the glow no longer fills the tube but concentrates itself on the side of the
tube next the wire, thus getting as near as possible to the current in the
opposite direction through the wire. When however the wire is bent, as in
Fig. 138, so that the current through the lead is in the same direction as
that through the tube, the glow flies to the part of the tube most remote
from the wire.

Fig. 139.

420.] We shall now proceed to consider the distribution of alternat-
ing currents among various systems of conductors. The first case we shall
consider is the distribution of an alternating current between two con-
ductors ACB, ADB in parallel. Let the resistance and self-induction in
the arm ACB be respectively R, L, the corresponding quantities in the
arm ADB being denoted by S, N , and let M be the coefficient of mutual
induction between the circuits ACB, ADB. We shall suppose that the rate
of alternation of the current is not so rapid as to produce any appreciable
variation in the intensity of the current from one end of ACB or ADB
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to the other, in other words, that the wave length corresponding to the
rate of alternation of the current is large compared with the length ACB
or ADB; the case when this wave length is comparable with the length of
the circuit is considered separately in Art. 298. Let the current flowing in
along OA and out along BP be denoted by ẋ; we shall assume that ẋ varies
as ειpt. Let the current in ACB be ẏ, that in ADB will be ẋ− ẏ. Then T ,
the Kinetic Energy in the branch ACDB of the circuit, is expressed by the
equation

T = 1
2
{Lẏ2 + 2M(ẋ− ẏ)ẏ +N(ẋ− ẏ)2}.

The dissipation function F is given by

F = 1
2
{Rẏ2 + S(ẋ− ẏ)2},

and we have
d

dt

dT

dẏ
+
dF

dẏ
= 0,

or

(L+N − 2M)
dẏ

dt
+ (R + S)ẏ − (N −M)

dẋ

dt
− Sẋ = 0.

Let ẋ = ειpt, then from this equation we have

ẏ =
(N −M)ιp+ S

(L+N − 2M)ιp+ (R + S)
ειpt,

or, taking the real part of this, corresponding to the current cos pt along
OA, we find

ẏ =

{S(R+ S) + (L+N − 2M)(N −M)p2} cos pt− p{R(N −M)− S(L−M)} sin pt
(L+N − 2M)2p2 + (R+ S)2

, (1)

ẋ− ẏ =

{R(S +R) + (L+N − 2M)(L−M)p2} cos pt+ p{R(N −M)− S(L−M)} sin pt
(L+N − 2M)2p2 + (R+ S)2

. (2)

These expressions may be written in the forms

ẏ =
{ S2 + (N −M)2p2

(L+N − 2M)2p2 + (R + S)2

} 1
2

cos(pt+ ε) = A cos(pt+ ε), say,

ẋ− ẏ =

{
R2 + (L−M)2p2

(L+N − 2M)2p2 + (R + S)2

} 1
2

cos(pt+ ε′) = B cos(pt+ ε′),
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where tan ε =
p{R(N −M)− S(L−M)}

S(R + S) + (L+N − 2M)(N −M)p2
,

and tan ε′ = − p{R(N −M)− S(L−M)}
R(R + S) + (L+N − 2M)(L−M)p2

.

The maximum currents through ACB, ADB are proportional to A and
B, and we see from the preceding equations that

A

{S2 + (N −M)2p2} 1
2

=
B

{R2 + (L−M)2p2} 1
2

.

When p is very large, this equation becomes

A

N −M
=

B

L−M
,

so that in this case the distribution of the currents is governed entirely by
the induction in the circuits, and not at all by their resistances. Referring
to equations (1) and (2) we see that when p is infinite

ẏ =
N −M

L+N − 2M
cos pt, (3)

ẋ− ẏ =
L−M

L+N − 2M
cos pt. (4)

An inspection of these equations leads to the interesting result that
when the alternations are very rapid the maximum current in one or both
of the branches may be greater than that in the leads. Consider the case
when the two circuits ACB, ADB are wound close together. Suppose, for
example, that they are parts of a circular coil, and that there are m turns
in the circuit ACB, and n turns in ADB, then if the coils are close together
we may put

L = Km2, M = Knm, N = Kn2,

where K is a constant.
Substituting these values for L, M , N in equations (3) and (4) we find

ẏ =
n2 − nm
(n−m)2

cos pt =
n

n−m
cos pt, (5)

ẋ− ẏ =
m2 − nm
(n−m)2

= − m

n−m
cos pt. (6)

Thus the currents are of opposite signs in the two coils, the current
in the coil with the smallest number of turns flows in the same direction
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as the current in the leads. When n − m is very small both currents
become large, being now much greater than the current in the leads whose
maximum value was taken as unity; thus by introducing an alternating
current of small intensity into a divided circuit, we can produce in the
arms of this circuit currents of very much greater intensity. The reason of
this becomes clear when we consider the energy in the loop, when the rate
of alternation is exceedingly rapid. The effects of the inertia of the system
become all important, and the distribution of currents is that which would
result if we considered merely the Kinetic Energy of the system. In this
case, in accordance with dynamical principles, the actual solution is that
which makes the Kinetic Energy as small as possible consistent with the
condition that the algebraical sum of the currents in ACB, ADB shall be
equal to ẋ.

Thus, as the Kinetic Energy is to be as small as possible, and this
energy is in the field around the loop and proportional at each place to
the square of the magnetic force, the currents will distribute themselves
in the wires so as to neutralize as much as possible each other’s magnetic
effect. Thus if the wires are wound close together the currents will flow in
opposite directions, the branch having the smallest number of turns having
the largest current, so as to be on equal terms as far as magnetic force is
concerned with the branch with the larger number of turns. In fact we
see from equations (5) and (6) that the current in each branch is inversely
proportional to the number of turns. If the two branches are exactly equal
in all respects the current in each will be in the same direction, but this
distribution will be unstable, the slightest difference of the coefficients of
induction in the two branches being sufficient to make the current in the
branch of least inductance flow in the direction of that in the leads, and
the current in the other branch in the opposite direction, the intensity in
either branch at the same time increasing largely.

When the currents are distributed in accordance with equations (3) and
(4), the Kinetic Energy in the loop is

1
2

LN −M2

L+N − 2M
p2 cos2 pt.

We notice that (LN −M2)/(L+N − 2M) is always less than L or N .
L+N−2M is always positive, since it is proportional to the Kinetic Energy
in the loop when the currents are equal and opposite.
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We see from equations (1) and (2) that when

R(N −M) = S(L−M),

ẏ =
S

R + S
cos pt,

ẋ− ẏ =
R

R + S
cos pt.

So that in this case the distribution of alternating currents of any frequency
is the same as when the currents are steady.

421.] We shall now consider the self-induction and resistance of the
two wires in parallel. Let L0 and r be respectively the self-induction and
resistance of the leads, and suppose that there is no mutual induction
between the leads and the branches ACB, ADB.

Then we have

(L0 +N)
dẋ

dt
− (N −M)

dẏ

dt
+ (r + S)ẋ− Sẏ

= external electromotive force tending to increase x.

Substituting in this expression the value of ẏ in terms of ẋ previously
obtained in Art. 420, we find

(L0 +N)
dẋ

dt
− (N −M)ιp+ S2

(L+N − 2M)ιp+R + S
ẋ+ (r + S)ẋ

= external electromotive force tending to increase x.

Remembering that ιpẋ = dẋ/dt, we see that the left-hand side of this
equation may be written{

L0 +
NR2 + LS2 + 2MRS + p2(LN −M2)(L+N − 2M)

(R + S)2 + p2(L+N − 2M)2

}
dẋ

dt

+

{
r +

RS(R + S) + p2R(N −M)2 + S(L−M)2

(R + S)2 + p2(L+N − 2M)2

}
ẋ.

From the form of this equation we see that the self-induction of the two
wires in parallel is

NR2 + LS2 + 2MRS + p2(LN −M2)(L+N − 2M)

(R + S)2 + p2(L+N − 2M)2
,
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which may be written as

NR2 + LS2 + 2MRS

(R + S)2

− p2(L+N − 2M)

(R + S)2 + p2(L+N − 2M)2
{R(N −M)− S(L−M)}2.

The impedance of the loop is

RS(R + S) + p2{R(N −M)2 + S(L−M)2}
(R + S)2 + p2(L+N − 2M)2

,

which is equal to

RS

R + S
+

p2{R(N −M)− S(L−M)}2

(R + S){(R + S)2 + p2(L+N − 2M)2}
.

We see from the expression for the self-induction of the loop that it is
greatest when p = 0, when its value is

NR2 + 2MRS + LS2

(R + S)2
,

and least when p is infinite when it is equal to

LN −M2

L+N − 2M
.

If R(N −M) = S(L−M),

the self-induction of the loop is independent of the period.
From the expression for the impedance of the loop we see that it is least

when p = 0 when its value is
RS

R + S

and greatest when p is infinite when it is equal to

R(N −M)2 + S(L−M)2

(L+N − 2M)2
;

and if R(N −M) = S(L−M),

the impedance is independent of the period. Thus in this case the self-
induction and the impedance are unaltered, whatever the frequency of the
currents. In all other cases the self-induction diminishes and the impedance
increases as the frequency of the currents increases.
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422.] We shall now proceed to investigate the general case when there
are any number of wires in parallel. Let ẋ0 be the current in the leads,
ẋ1, ẋ2, . . . ẋn the currents in the n wires in parallel; we shall assume, as
before, that there is no induction between these wires and the leads. Let
arr be the self-induction and rr the resistance of the wire through which
the current is ẋr, ars the coefficient of mutual induction between this wire
and the wire through which the current is ẋs. Let a0 be the self-induction,
r0 the resistance of the leads, E0 the electromotive force in the external
circuit; we shall suppose that this varies as ειpt. The current through the
leads and those through the wires in parallel are connected by the relation

ẋ0 − (ẋ1 + ẋ2 + . . . ẋn) = 0;

we shall denote this by
φ = 0.

Then T being the Kinetic Energy, F the Dissipation function, and λ an
arbitrary multiplier, the equations determining the currents are of the form

d

dt

dT

dẋs
+
dF

dẋs
+ λ

dφ

dẋs
= external electromotive force tending to increase ẋs.

From these equations we get

(a0ιp+ r0)ẋ0 + λ = E0, (7)

(a11ιp+ r1)ẋ1 + a12ιpẋ2 + . . .− λ = 0,

a12ιpẋ1 + (a22ιp+ r2)ẋ2 + . . .− λ = 0,

. . . . . . . . . . . . .

a1nιpẋ1 + a2nιpẋ2 + . . . − λ = 0.

 (8)

Solving equations (8) we find

ẋ1

A11 + A12 + . . . A1n

=
ẋ2

A12 + A22 + . . . A2n

=
ẋn

A1n + A2n + . . . Ann
=
λ

∆
, (9)

where

∆ =

∣∣∣∣∣∣∣∣
a11ιp+ r1, a12ιp , . . . a1nιp
a12ιp , a22ιp+ r2, . . . a2nιp
. . . . . . . . . . . . . .
a1nιp , a2nιp , . . . annιp+ rn

∣∣∣∣∣∣∣∣ ,
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and Apq denotes the minor of ∆ corresponding to the constituent apqιp.

Since ẋ0 = ẋ1 + ẋ2 + . . . ,

we have from the above equations

ẋ0

A11 + A22 + . . . Ann + 2A12 + 2A13 + 2A23 + . . .
=
λ

∆
.

Substituting this value of λ in equation (7) we find(
a0ιp+ r0 +

∆

S

)
ẋ0 = E0, (10)

where S is written for

A11 + A22 + . . . Ann + 2A12 + 2A13 + 2A23 + . . . .

The self-induction and impedance of the leads can be deduced from
(10); the expressions for them are however in general very complicated,
but they take comparatively simple forms when ιp is either very large or
very small.

When ιp is very large,

∆

S
= ιp

D

S ′
+
r1(A′11 + A′12 + . . . A′1n)2 + r2(A′12 + A′22 + . . . A′2n)2 + . . .

S ′2
,

where

D =

∣∣∣∣∣∣∣∣
a11, a12, a1n

a12, a22, a2n

. . . . .
a1n, a2n, ann

∣∣∣∣∣∣∣∣ ,
and A′pq is the minor of D corresponding to the constituent apq, while

S ′ = A′11 + A′22 + . . . A′nn + 2A′12 + 2A′13 + 2A′23 + . . . .

Thus the self-induction of the wires in parallel is in this case

D

S ′
,

while the impedance is

{r1(A′11 + A′12 + . . . A′1n)2 + r2(A′12 + A′22 + . . . A′2n)2 + . . .}/S ′2.
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When ιp is very small,

∆

S
= ιp

(
a11

r2
1

+
a22

r2
2

+ . . .+
2a12

r1r2

+
2a13

r1r3

+ . . .

)
(

1

r1

+
1

r2

+ . . .
1

rn

)2 +
1

1

r1

+
1

r2

+ . . .
1

rn

.

So that in this case the self-induction of the wires in parallel is

a11

r2
1

+
a22

r2
2

+ . . .+
2a12

r1r2

+
2a13

r1r3

+ . . .(
1

r1

+
1

r2

+ . . .
1

rn

)2

and the resistance is
1

1

r1

+
1

r2

+ . . .
1

rn

.

When there is no induction between the wires in parallel, a12, a13,
a23, &c. all vanish; hence, when ιp is infinite, the self-induction is

1
1

a11

+
1

a22

+ . . .
1

ann

,

and the impedance
r1

a2
11

+
r2

a2
22

+ . . .(
1

a11

+
1

a22

+ . . .

)2 .

423.] We shall now consider the case of any number of circuits; the
investigation will apply whether the circuits are arranged so as to form
separate circuits or whether some or all of them are metallically connected
so as to form a net-work of conductors.

Let ẋ1, ẋ2, . . . ẋn be the variables required to fix the distribution of cur-
rents through the circuits; let T , the Kinetic Energy due to these currents,
be expressed by the equation

T = 1
2
{a11ẋ2

1 + a22ẋ2
2 + . . .+ 2a12ẋ1ẋ2 + . . .},

while the Dissipation Function F is given by

F = 1
2
{r11ẋ2

1 + r22ẋ2
2 + . . .+ 2r12ẋ1ẋ2 + . . .}.
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Let us suppose that there are no external forces of types ẋ2, ẋ3, &c.,
and that X1, the external force of type x1, is proportional to ειpt.

The equations giving the currents are

(a11ιp+ r11)ẋ1 + (a12ιp+ r12)ẋ2 + . . . = X,

(a12ιp+ r12)ẋ1 + (a22ιp+ r22)ẋ2 + . . . = 0,

(a13ιp+ r13)ẋ1 + (a23ιp+ r23)ẋ2 + . . . = 0,

. . . . . . . . . . . . . .

From the last (n− 1) of these equations we have

ẋ1

B11

=
ẋ2

B12

=
ẋ3

B13

= . . . , (11)

where Bpq denotes the minor of the determinant∣∣∣∣∣∣
a11ιp+ r11, a12ιp+ r12, . . .
a12ιp+ r12, a22ιp+ r22, . . .
. . . . . . . . .

∣∣∣∣∣∣
corresponding to the constituent apqιp + rpq; we shall denote the determi-
nant by ∆.

Substituting the values of ẋ2, ẋ3, . . . in the first equation, we have

(a11ιp+ r11)ẋ1 +
1

B11

{(a12ιp+ r12)B12 + (a13ιp+ r13)B13 + . . . }ẋ1 = X1,

which may be written
∆

B11

ẋ1 = X1. (12)

If ∆/B11 be written in the form Lιp + R, where L and R are real
quantities, then L is the effective self-induction of the circuit and R the
impedance.

By equation (11) we have

∆

B12

ẋ2 = X1.

If an electromotive force X2 of the same period as X1 acted on the
second circuit, then the current ẋ1 induced in the first circuit would be
given by

∆

B12

ẋ1 = X2.
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Comparing these results we get Lord Rayleigh’s theorem, that when
a periodic electromotive force F acts on a circuit A the current induced
in another circuit B is the same in amplitude and phase as the current
induced in A when an electromotive force equal in amplitude and phase
to F acts on the circuit B.

When there are only two circuits in the field,

∆

B11

= a11ιp+ r11 −
(a12ιp+ r12)2

a22ιp+ r22

;

if the circuits are not in metallic connection r12 = 0, and we have

∆

B11

=

(
a11 −

p2a22a
2
12

a2
22p

2 + r2
22

)
ιp+ r11 +

p2r22a
2
12

a2
22p

2 + r2
22

.

Thus the presence of the second circuit diminishes the self-induction of
the first by

p2a22a
2
12

a2
22p

2 + r2
22

,

while it increases the impedance by

p2r22a
2
12

a2
22p

2 + r2
22

.

These results were given by Maxwell in his paper ‘A Dynamical Theory
of the Electromagnetic Field’ (Phil. Trans. 155, p. 459, 1865). We see
from these expressions that the diminution in the self-induction and the
increase in the impedance increase continuously as the frequency of the
electromotive force increases.

424.] Lord Rayleigh has shown that this result is true whatever may
be the number of circuits. We have by (12)

∆

B11

ẋ1 = X1.

Now while keeping ẋ1 the same we can choose ẋ2, ẋ3, &c., so that the
two quadratic expressions

a22ẋ
2
2 + a33ẋ

2
3 + . . . 2a23ẋ2ẋ3 + . . . ,

r22ẋ
2
2 + r33ẋ

2
3 + . . . 2r23ẋ2ẋ3 + . . . ,
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i.e. the expressions got by putting ẋ1 = 0 in 2T and 2F respectively, reduce
to the sums of squares of ẋ2, ẋ3, &c.; when ẋ2, ẋ3, &c. are chosen in this
way,

a23 = a24 = apq = 0,

when p is not equal to q and both are greater than unity.
In this case

∆ =

∣∣∣∣∣∣∣∣∣∣
a11ιp+ r11, a12ιp+ r12, a13ιp+ r13, . . . a1nιp+ r1n

a12ιp+ r12, a22ιp+ r22, 0 , . . . 0
a13ιp+ r13, 0 , a33ιp+ r33, . . . 0
. . . . . . . . . . . . . . . . . . .
a1nιp+ r1n, 0 , 0 , . . . annιp+ rnn

∣∣∣∣∣∣∣∣∣∣
= (a11ιp+ r11)(a22ιp+ r22) . . . (annιp+ rnn)×{

1− (a12ιp+ r12)2

(a11ιp+ r11)(a22ιp+ r22)
− (a13ιp+ r13)2

(a11ιp+ r11)(a33ιp+ r33)

− . . .− (a1nιp+ r1n)2

(a11ιp+ r11)(annιp+ rnn)

}
,

B11 = (a22ιp+ r22)2 . . . (annιp+ rnn).

Hence

∆

B11

= a11ιp+ r11 −
(a12ιp+ r12)2

a22ιp+ r22

− (a13ιp+ r13)2

a33ιp+ r33

− . . .− (a1nιp+ r1n)2

annιp+ rnn

=
{
a11 +

∑(annr2
1n − 2a1nr1nrnn

r2
nn

)
−
∑(annp2(a1nrnn − annr1n)2

r2
nn(a2

nnp
2 + r2

nn)

)}
ιp

+ r11 −
∑ r2

1n

rnn
+
∑(p2(a1nrnn − annr1n)2

rnn(a2
nnp

2 + r2
nn)

)
.

The coefficient of ιp in the first line is the coefficient of self-induction
of the first circuit,—we see that it is diminished by any increase in p; the
second line is the impedance, and we see that this is increased by any
increase in p.

425.] We shall now return to the general case. The reduction of ∆/B11

to the form Lιp+R without any limitation as to the value of p would usually
lead to very complicated expressions; we can, however, obtain without
difficulty the values of L and R, (1) when p is very large, (2) when it is
very small.
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When ιp is very large we see that

L =
D

A11

,

where D =

∣∣∣∣∣∣∣∣
a11, a12 . . . a1n

a12, a22 . . . a2n

. . . . . . . . . . . . . . . [6]
a1n, a12 . . . ann

∣∣∣∣∣∣∣∣ ,
and A11 is the minor of D corresponding to the constituent a11. If Apq de-
notes the minor of D corresponding to the constituent apq, then we have
by (11)

ẋ1

A11

=
ẋ2

A12

= . . . =
ẋn
A1n

. (13)

Substituting these values of ẋ2, ẋ3, &c. in terms of ẋ1, in the Dissipation
Function, we find that

R =
1

A2
11

{r11A
2
11 + r22A

2
12 + . . . rnnA

2
1n + 2r12A11A12 + 2rpqA1pA1q + . . .};

we might of course have deduced this value directly from that of ∆/B11.
When ιp is very small, we see by putting ιp = 0 in ∆/B11 that

R =
C

R11

,

where C =

∣∣∣∣∣∣∣∣
r11, r12 . . . r1n

r12, r22 . . . r2n

. . . . . . . . . . . . . . . [6]
r1n, r2n . . . rnn

∣∣∣∣∣∣∣∣ ,
and R11 is the minor of C corresponding to the constituent r11; if Rpq de-
notes the minor of C corresponding to the constituent rpq, then we have
by (11)

ẋ1

R11

=
ẋ2

R12

= . . . =
ẋn
R1n

.

Substituting these values of ẋ1, ẋ2, ẋ3, . . . in the expression for the Ki-
netic Energy, we see that

L =
1

R2
11

{a11R
2
11 + a22R

2
12 + . . . 2apqR1pR1q + . . .}.

426.] Suppose we have a series of circuits arranged so that each cir-
cuit acts by induction only on the two adjacent ones; this is expressed by
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the condition that a12 is finite but that a1p vanishes when p > 2; again,
a12, a23 are finite, but a2p vanishes if p differs from 2 by more than unity.
Substituting these values of a1p, a2p, a3p . . ., we easily find

A12 = −a12
dA11

da22

,

A13 = a12a23
d2A11

da22 da33

,

A14 = −a12a23a34
d3A11

da22 da33 da44

,

. . . . . . .

A1n = (−1)n−1a12a23a34 . . . an−1n.

Now T , the Kinetic Energy, is always positive, but the condition for
this is (Maxwell’s Electricity and Magnetism, vol. i. p. 111) that

D, A11,
dA11

da22

,
d2A11

da22 da33

. . .

should all be positive; hence we see if we take a12, a23 . . ., &c. all positive,
A11, A12, A13 will be alternately plus and minus, but when the frequency
of the electromotive force is very great, ẋ1, ẋ2, . . . are by (13) respectively
proportional to A11, A12 . . .; hence we see that in this case the adjacent
currents are flowing in opposite directions: a result given by Lord Rayleigh.
Another way of stating this result is to say that the direction of the currents
is such that all the terms involving the product of two currents in the
expression for the Kinetic Energy of the system of currents are negative,
and in this form we recognise it as a consequence of the principle that the
distribution of the currents must be such as to make the Kinetic Energy a
minimum.

427.] We shall now apply these results to the case when the circuits
are a series of m co-axial right circular solenoids of equal length, which act
inductively on each other but which are not in metallic connection. We
shall suppose that a is the radius of the first solenoid, b that of the second,
c that of the third, and so on, a, b, c being in ascending order of magnitude;
and that n1, n2, n3 . . . are the numbers of turns of wire per unit length of
the first, second, and third circuits. Then if l is the length of the solenoids,
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we have

a11 = 4π2n2
1la

2, a22 = 4π2n2
2lb

2, a33 = 4π2n2
3lc

2,

a12 = 4π2n1n2la
2, a23 = 4π2n2n3lb

2, a34 = 4π2n3n4lc
2,

a13 = 4π2n1n3la
2, a24 = 4π2n2n4lb

2, . . . . . .

. . . . . . . . . . . .

Hence

D =

∣∣∣∣∣∣∣∣
a11, a12, a13 . . .
a12, a22, a23 . . .
a13, a23, a33 . . .
. . . . . . .

∣∣∣∣∣∣∣∣
= (4π2l)mn2

1n
2
2n

2
3 . . . a

2(b2 − a2)(c2 − b2)(d2 − c2) . . . ,

and A11 =
dD

da11

= (4π2l)m−1n2
2n

2
3 . . . b

2(c2 − b2)(d2 − c2) . . . .

Now the coefficient of self-induction of the first circuit for very rapidly
alternating current is

D

A11

.

Substituting the preceding expressions for D and A11 we find that the
self-induction equals

4π2ln2
1a

2

(
1− a2

b2

)
.

Thus the only one of the circuits which affects the self-induction of the
first is the one immediately adjacent to it. We can at once see the reason
for this if we notice that

a12

a22

=
a13

a23

=
a14

a24

= . . . ,

and therefore A13 = A14 = A15 = . . . = 0.

Now when the rate of alternation is very rapid, ẋ3, ẋ4, ẋ5 . . ., the cur-
rents in the third, fourth, and fifth circuits, &c. are by equation (13)
Art. 425 proportional to A13, A14, A15 . . .; hence we see that in this case



428.] THE DISTRIBUTION OF RAPIDLY ALTERNATING CURRENTS. 529

these currents all vanish, in other words the second solenoid forms a per-
fect electric screen, and screens off all induction from the solenoids outside
it.

428.] Let us consider the case of three solenoids each of length l when
the frequency is not infinitely rapid; we shall suppose that the primary
coil is inside and has a radius a, number of turns per unit length n1,
resistance r; next to this is the secondary, radius b, turns per unit length n2,
resistance s; and outside this is the tertiary, radius c, turns per unit length
n3, resistance t. Since the circuits are not in metallic connection r12 =
r13 = r23 = 0. If X1, the electromotive force acting on the primary, is
proportional to ειpt, then we have by equations (11) and (12)

x3 = − n1n3a
2sιp

n2
1n

2
2n

2
3(4π2l)2

X1∣∣∣∣∣∣∣∣∣∣
a2ιp+

r

4π2ln2
1

, a2ιp , a2ιp

a2ιp , b2ιp+
s

4π2ln2
2

, b2ιp

a2ιp , b2ιp , c2ιp+
t

4π2ln2
3

∣∣∣∣∣∣∣∣∣∣

.

We see from this expression that as long as the radius and length of the
secondary remain the same, the effect produced by it on the current in the
tertiary circuit depends on the ratio s/n2

2, since s and n2 only enter into the
expression for ẋ3 as constituents of the factor s/n2

2. Thus all secondaries of
radius b and length l will produce the same effect if s/n2

2 remains constant.
We can apply this result to compare resistances in the following

way: take two similar systems A and B each consisting of three co-axial
solenoids, the primaries of A and B being exactly equal, as are also the two
tertiaries, while the two secondaries are of the same size but differ as to the
materials of which they are made. Let us use A and B as a Hughes’ Induc-
tion Balance, putting the two primaries in series and connecting the ter-
tiaries so that the currents generated in them by their respective primaries
tend to circulate in opposite directions; then if, by altering if necessary the
resistance in one of the secondaries, we make the resultant current in the
combined tertiaries vanish, we know that s/n2

2 is the same for A and B.
Suppose that the secondary in B is a thin tube of thickness τ and specific
resistance σ, then considering the tube as a solenoid wound with wire of
square section α packed close together, we see that for the tube

s = 2πbln2
σ

α
= 2πbln2

2

σ

τ
.
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Now s/n2
2 for the tube is equal to s/n2

2 for the secondary of A, which
may be an ordinary solenoid. We thus have

s

n2
2

= 2πblσ/τ,

a relation by which we can deduce σ.
In order that this method should be sensitive the interposition of the

secondary ought to produce a considerable effect on the currents induced in
the tertiary. If the resistance of the secondary is large this will not happen
unless the frequency of the electromotive force is very great; for ordinary
metals a frequency of about a thousand is sufficient, but this would be
useless if the specific resistance of the tube were comparable with that of
electrolytes.

On the other hand, if the frequency is infinite, there will not be any
current in the tertiaries whatever the resistance of the secondaries may be.

Wheatstone’s Bridge with Self-Induction in the Arms.

Fig. 140.

429.] The preceding investigation can be applied to
find the effect of self-induction in the arms of a Wheat-
stone’s Bridge. Let ABCO represent the bridge, let
an electromotive force X proportional to ειpt act in the
arm CB. Let x be the current in CB, y that in BA,
z that in AO, then the currents along BO, AC, OC are
respectively x− y, y − z, and x− y + z.

Let the self-induction in CB, BA, AC, AO, BO, CO
be respectively A, C, B, L, M , N , while the resistance
in these arms are respectively a, c, b, α, β, γ. We suppose, moreover, that
there is no mutual induction between the various arms of the Bridge. Then
the Kinetic Energy T of the system of currents is expressed by the equation

2T = Ax2 + Cy2 +B(y − z)2 + Lz2 +M(x− y)2 +N(x− y + z)2.

The Dissipation Function F is given by the expression

2F = ax2 + cy2 + b(y − z)2 + αz2 + β(x− y)2 + γ(x− y + z)2.
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Comparing this with our previous notation, we must put

a11 = A+M +N, a12 = −(M +N),

a22 = B + C +M +N, a13 = N,

a33 = B + L+N, a23 = −(N +B);

r11 = α + β + γ, r12 = −(β + γ),

r22 = b+ c+ β + γ, r13 = γ,

r33 = b+ α + γ, r23 = −(γ + b).

Now by equations (11) and (12)

z =
B13

∆
X,

where B13 is the minor of ∆ corresponding to the constituent a13ιp + r13,
i.e.

B13 = (a12ιp+ r12)(a23ιp+ r23)− (a22ιp+ r22)(a13ιp+ r13).

Substituting the preceding values for the a’s and the r’s, we find

B13 = −p2(MB −NC) + ιp(Mb+Bβ −Nc− Cγ) + bβ − cγ.

Now if z vanishes B13 must vanish; hence if the Bridge is balanced for
all values of p we must have

MB −NC = 0,

Mb+Bβ −Nc− Cγ = 0,

bβ − cγ = 0;

while if the Bridge is only balanced for a particular value of p, we have

bβ − cγ = p2(MB −NC),

p(Mb+Bβ −Nc− Cγ) = 0.

When the frequency is very great the most important term in the ex-
pression for B13 is −p2(MB −NC), so that the most important condition
to be fulfilled when the Bridge is balanced is

MB −NC = 0;

thus for high frequencies the Bridge tests the self-induction rather than the
resistances of its arms.
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Combination of Self-Induction and Capacity.

430.] We have supposed in the preceding investigations that the circuits
were closed and devoid of capacity; very interesting results, however, occur
when some or all of the circuits are cut and their free ends connected to
condensers of suitable capacity. We can by properly adjusting the capacity
inserted in a circuit in relation to the frequency of the electromotive force
and the self-induction of the circuit, make the circuit behave under the
action of an electromotive force of given frequency as if it possessed no
apparent self-induction.

The explanation of this will, perhaps, be clear if we consider the be-
haviour of a simple mechanical system under the action of a periodic force.
The system we shall take is that of the rectilinear motion of a mass at-
tached to a spring and resisted by a frictional force proportional to its
velocity.

Suppose that an external periodic force X acts on the system, then
at any instant X must be in equilibrium with the resultant of (1) minus
the rate of change of momentum of the system, (2) the force due to the
compression or extension of the spring, (3) the resistance. If the frequency
of X is very great, then for a given momentum (1) will be very large, so
that unless it is counterbalanced by (2) a finite force of infinite frequency
would produce an infinitely small momentum. Let us, however, suppose
that the frequency of the force is the same as that of the free vibrations
of the system when the friction is zero. When the mass vibrates with this
frequency (1) and (2) will balance each other, thus all the external force
has to do is to balance the resistance. The system will thus behave like
one without either mass or stiffness resisted by a frictional force.

In the corresponding electrical system, self-induction corresponds to
mass, the reciprocal of the capacity to the stiffness of the spring, and
the electric resistance to the frictional resistance. If now we choose the
capacity so that the period of the electrical vibrations, calculated on the
supposition that the resistance of the circuit vanishes, is the same as that
of the external electromotive force, the system will behave as if it had
neither self-induction nor capacity but only resistance. Hence, if L is the
self-induction of a circuit whose ends are connected to the plates of a
condenser whose capacity in electromagnetic measure is C, the system will
behave as if it had no self-induction under an electromotive force whose
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frequency is p/2π if LCp2 = 1.

Fig. 141.

431.] We shall now consider the case represented in the figure, where
we have two circuits in parallel, one of the circuits being cut and its ends
connected to the plates of a condenser. Let Λ be the self-induction of the
leads, r their resistance; L, N the coefficients of self-induction of ACB and
the condenser circuit respectively, M the coefficient of mutual induction
between these circuits. Let R, S be the resistances respectively of ACB
and the condenser circuit, C the capacity of the condenser. Let ẋ be
the current in the leads, ẏ that in the condenser circuit, then that in the
circuit ACB will be ẋ− ẏ. Let X, the electromotive force in the leads, be
proportional to ειpt. If there is no mutual induction between the leads and
the wires in parallel, the equations giving ẋ, ẏ are

(Λ + L)
dẋ

dt
− (L−M)

dẏ

dt
+ (r +R)ẋ−Rẏ = X,

(L+N − 2M)
dẏ

dt
− (L−M)

dẋ

dt
+ (S +R)ẏ −Rẋ+

y

C
= 0.

Substituting the value of ẏ in terms of ẋ and remembering that d/dt =
ιp, we get{

Λ + L+
ξ{R2 − (L−M)2p2} − 2R(R + S)(L−M)

p2ξ2 + (R + S)2

}
ιpẋ

+

{
r +R− (R + S){R2 − (L−M)2p2}+ 2p2ξR(L−M)

p2ξ2 + (R + S)2

}
ẋ = X,

(14)

where ξ = (L+N − 2M)− 1

Cp2
.

From the form of this equation we see that the self-induction of the two
circuits in parallel is

L+
ξ{R2 − (L−M)2p2} − 2R(R + S)(L−M)

p2ξ2 + (R + S)2
,



432.] THE DISTRIBUTION OF RAPIDLY ALTERNATING CURRENTS. 534

this will vanish if

Lp2ξ2 + ξ{R2 − (L−M)2p2}
+ (R + S){L(R + S)− 2R(L−M)} = 0. (15)

If the roots of this quadratic are real, then it is possible to choose C so
that the self-induction of the loop vanishes. An important special case is
when S = 0, M = 0, when the quadratic reduces to

Lp2ξ2 + ξ(R2 − L2p2)− LR2 = 0;

thus ξ = − R2

Lp2
or L;

the first root gives
1

C
= (L+N)p2 +

R2

L
,

the second
1

C
= Np2;

this last value of 1/C makes ẋ = ẏ, so that none of the current goes
through ACB.

When ξ satisfies (15) the self-induction of the loop vanishes. If in that
equation we substitute L+Λ for L and M+Λ for M , the values of ξ which
satisfy the new equation will make the self-induction of the whole circuit
vanish.

432.] We shall next consider the case of an induction coil or transformer,
the primary of which is cut and its free ends connected to the plates of a
condenser whose capacity is C. Let L, N be the self-induction of the
primary and secondary respectively, M the coefficient of mutual induction
between the two, R the resistance of the primary, S that of the secondary,
ẋ, ẏ the currents in the primary and secondary respectively; then if X is
the electromotive force acting on the primary, we have

L
dẋ

dt
+M

dẏ

dt
+Rẋ+

x

C
= X,

M
dẋ

dt
+N

dẏ

dt
+ Sẏ = 0.
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Hence if X varies as ειpt, we find

ẏ =
−MιpX

−p2(ξN −M2) +RS + ιp(RN + Sξ)
,

where ξ = L− 1

Cp2
.

The amplitude of ẏ for a given amplitude of X is proportional to

XMp{(
RS − p2(ξN −M2)

)2
+ (RN + Sξ)2p2

} 1
2

.

This vanishes when p = 0, because in this case the current in the
primary is steady; it also vanishes in general when p is infinite, because in
consequence of the self-induction of the primary only an indefinitely small
current passes through it in this case. If however

ξN = M2,

or
1

Cp2
= L− M2

N
,

then the amplitude of the current in the secondary is finite when p is
infinite, and is equal to

MNX

RN2 + SM2
;

thus when the frequency of the electromotive force is very high the am-
plitude of the current in the secondary may be increased enormously by
cutting the primary circuit and connecting its ends to a condenser of suit-
able capacity.

432*.] We can apply a method similar to that of Art. 424 to determine
the effect of placing a vibrating electrical system near a number of other
such systems.

We shall suppose that the systems are not in electrical connection,
and neglect the resistances of the circuits. Let T be the Kinetic, V the
Potential Energy of the system of currents; let ẋ1 denote the current in
the first circuit, and let ẋ2, ẋ3, . . ., the currents in the other circuits, be
so chosen that when x1 is put equal to zero the expressions for T and V
reduce to the sums of squares of ẋ2, ẋ3, . . .; x2, x3, . . . respectively.

Let T be given by the same expression as in Article 424, while

V = 1
2

{
x2

1

c1

+
x2

2

c2

+
x3

2

c3

+ . . .

}
.
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Then the equations of the type

d

dt

dT

dẋ
+
dV

dx
= 0

give, if all the variables are proportional to ειpt,(
−a11p

2 +
1

c1

)
x1 − a12p

2x2 − a13p
2x3 − . . . = 0

−a12p
2x1 +

(
−a22p

2 +
1

c2

)
x2 = 0

−a13p
2x1 +

(
−a33p

2 +
1

c3

)
x3 = 0.

. . . . . . . . . .

Hence substituting for x2, x3 in terms of x1 we get

−a11p
2 +

1

c1

=
a12

2p4

1

c2

− a22p2

+
a13

2p4

1

c3

− a33p2

+ . . . .

Let us suppose that the period of the first system is only slightly
changed, so that we may in the right-hand side of this equation write p1

for p, where p1 is the value of p when the first vibrator is alone in the field.
Let p2, p3, . . . be the values of p for the other vibrators when the first

one is absent, then

1

c2
= p2

2a22

1

c3
= p3

2a33.

Thus if δp1
2 denotes the increase in p1

2 due to the presence of the other
vibrators, we have

−a11 δp1
2 = p1

4

{
a12

2

a22(p2
2 − p1

2)
+

a13
2

a33(p3
2 − p1

2)
+ . . .

}
.

Thus we see that if p2 is greater than p1 the effect of the proximity of
the circuit whose period is p2 is to diminish p1, while if p2 is less than p1

the proximity of this circuit increases p1. Similar remarks apply to the
other circuits. Thus the first system, if its free period is slower than that
of the second, is made to vibrate still more slowly by the presence of the
latter; while if its free period is faster than that of the second the presence
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of the latter makes it vibrate still more quickly. In other words, the effect
of putting two vibrators near together is to make the difference between
their periods greater than it is when the vibrators are free from each other’s
influence; the quicker period is accelerated, the slower one retarded.



CHAPTER VII.

ELECTROMOTIVE INTENSITY IN MOVING BODIES.

433.] The equations (B) given in Art. 598 of Maxwell’s Electricity
and Magnetism, for the components of the electromotive intensity in a
moving body involve a quantity Ψ, whose physical meaning it is desirable
to consider more fully. The investigation by which the equations themselves
are deduced tells us nothing about Ψ; it is introduced after the investigation
is finished, so as to make the expressions for the electromotive intensity as
general as it is possible for them to be and yet be consistent with Faraday’s
Law of the induction of currents in a variable magnetic field.

Let u, v, w denote the components of the velocity of the medium; a, b, c
the components of the magnetic induction; F , G, H those of the vector
potential; X, Y , Z those of the electromotive intensity.

In the course of Maxwell’s investigation of the values of X, Y , Z due
to induction, the terms

− d

dx
(Fu+Gv +Hw), − d

dy
(Fu+Gv +Hw),

− d

dz
(Fu+Gv +Hw)

respectively in the final expressions for X, Y , Z are included under the
Ψ terms. We shall find it clearer to keep these terms separate and write
the expressions for X, Y , Z as

X = cv − bw − dF

dt
− d

dx
(Fu+Gv +Hw)− dφ

dx
,

Y = aw − cu− dG

dt
− d

dy
(Fu+Gv +Hw)− dφ

dy
,

Z = bu− av − dH

dt
− d

dz
(Fu+Gv +Hw)− dφ

dz
.


(1)



434.] ELECTROMOTIVE INTENSITY IN MOVING BODIES. 539

For Faraday’s law to hold, the line integral of the electromotive intensity
taken round any closed curve must be independent of φ, hence φ must be
a continuous function.

When there is no free electricity

dX

dx
+
dY

dy
+
dZ

dz
= 0.

Substituting the values of X, Y , Z just given, we find, using

dF

dx
+
dG

dy
+
dH

dz
= 0,

F∇2u+G∇2v +H∇2w + 2

(
dF

dx

du

dx
+
dG

dy

dv

dy
+
dH

dz

dw

dz

)
+

(
dH

dy
+
dG

dz

)(
dw

dy
+
dv

dz

)
+

(
dF

dz
+
dH

dx

)(
du

dz
+
dw

dx

)
+

(
dG

dx
+
dF

dy

)(
dv

dx
+
du

dy

)
= −∇2φ.

If the medium is moving like a rigid body, then

u = p+ ω2z − ω3y,

v = q + ω3x− ω1z,

w = r + ω1y − ω2x;

where p, q, r are the components of the velocity of the origin and ω1, ω2, ω3

the rotations about the axes of x, y, z respectively.
Substituting these values we see that whenever the system moves as a

rigid body
∇2φ = 0.

434.] In order to see the meaning of φ we shall take the case of a solid
sphere rotating with uniform angular velocity ω about the axis of z in
a uniform magnetic field where the magnetic induction is parallel to the
axis z and is equal to c. We may suppose that the magnetic induction is
produced by a large cylindrical solenoid with the axis of z for its axis; in
this case

F = −1
2
cy, G = 1

2
cx, H = 0.

In the rotating sphere

u = −ωy, v = ωx, w = 0.
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If the system is in a steady state, dF/dt, dG/dt, dH/dt all vanish.
Thus in the sphere

X = cωx− 1
2

d

dx
{cω(x2 + y2)} − dφ

dx
,

Y = cωy − 1
2

d

dy
{cω(x2 + y2)} − dφ

dy
,

Z = − dφ

dz
;

these equations reduce to

X = −dφ
dx
,

Y = −dφ
dy
,

Z = −dφ
dz
,

and we have also ∇2φ = 0.
In the space outside the sphere the medium does not move as a rigid

body. The process by which the equations (1) were obtained could not
without further investigation be held to justify us in applying them to cases
where the velocity is discontinuous, for in the investigation, see Maxwell,
Art. 598, it is assumed that the variations δx, δy, δz are continuous, and
that these are proportional to the components of the velocity. To avoid any
discontinuity in the velocity at the surface of the sphere we shall suppose
that the medium in contact with the sphere moves at the same rate as the
sphere, but that as we recede from the surface of the sphere the velocity
diminishes in the same way as it does in a viscous fluid surrounding a ro-
tating sphere. Thus we shall suppose that the rotating sphere whose radius
is a is surrounded by a fixed sphere whose radius is b, and that between
the spheres the components of the velocity are given by the expressions

u = −(A
d

dy

1

r
+By), v = (A

d

dx

1

r
+Bx), w = 0,

where r is the distance from the centre of the rotating sphere.
When r = b, u = 0, v = 0, hence

− A
b3

+B = 0;
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when r = a, u = −ωy, v = ωx, hence

−A
a3

+B = ω,

hence

A = − ωa3b3

b3 − a3
.

Substituting these values of u, v in equation (1), we find that when
a < r < b,

X = 1
2
cA(x2 + y2)

d

dx

1

r3
− dφ

dx
,

Y = 1
2
cA(x2 + y2)

d

dy

1

r3
− dφ

dy
,

Z = 1
2
cA(x2 + y2)

d

dz

1

r3
− dφ

dz
;

hence, since
dX

dx
+
dY

dy
+
dZ

dz
= 0,

we have ∇2φ = 0.

Again, when r > b the medium is at rest, here we have

X = −dφ
dx
,

Y = −dφ
dy
,

Z = −dφ
dz
,

and ∇2φ = 0.
The boundary conditions satisfied by φ and its differential coefficients

will depend upon whether the sphere is a conductor or an insulator. We
shall first consider the case when it is an insulated conductor. In this case,
when the system is in a steady state, the radial currents in the sphere must
vanish, otherwise the electrical condition of the surface of the sphere could
not be constant.

Thus at any point on the surface of the sphere

xX + yY + zZ = 0,
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this is equivalent to
dφ1

dr
= 0,

where φ1 is the value of φ inside the rotating sphere; hence we have

φ1 = K,

where K is a constant.
If φ2, φ3 are the values of φ in the region between the fixed and moving

spheres, and in the fixed sphere respectively, then we may put

φ2 = L+
M

r
+NQ2

(
r2

a2
− a3

r3

)
,

φ3 =
PQ2

r3
,

where L, M , N , P are constants, and Q2 is the second zonal harmonic
with z for its axis.

The continuity of φ gives

K = L+
M

a
, 0 = L+

M

b
,

P =
N(b5 − a5)

a2
.

If K1 is the specific inductive capacity of the medium between the two
spheres, K2 that of the medium beyond the outer sphere; then, since the
normal electric polarization must be continuous when r = b, we have

3K2P
Q2

b4
= K1

{
cA

(Q2 − 1)

b2
+
M

b2
−NQ2

(
2b

a2
+

3a3

b4

)}
.

Solving these equations we find

P =
cAK1b

2(b5 − a5)

3K2(b5 − a5) +K1(2b5 + 3a5)
,

N =
cAK1a

2b2

3K2(b5 − a5) +K1(2b5 + 3a5)
,

M = cA, L = −cA/b, K = cA(b− a)/ab,


(2)

where A = −ωa3b3/(b3 − a3).

The surface density of the electricity on the moving sphere is

K1cA

4πa2

{
K1(2b5 + 3a5 − 5a3b2) + 3K2(b5 − a5)

3K2(b5 − a5) +K1(2b5 + 3a5)

}
Q2.
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The preceding formulæ are general; we shall now consider some partic-
ular cases.

435.] The first we shall consider is when b − a = δ is small compared
with either b or a. In this case we have approximately, when K2 is not
infinite,

P = −1
3
cωa5, N = − 1

15

cωa3

δ
, M = −1

3

cωa4

δ
,

L = 1
3

cωa3

δ
, K = −1

3
cωa2.

Thus in the outer fixed sphere the components of the electromotive
intensity are equal to the differential coefficients with respect to x, y, z of
the function

1
3
cωa5Q2

r3
.

Thus the radial electromotive intensity close to the surface of the ro-
tating sphere is

−cωaQ2,

while the tangential intensity is

−cωa sin θ cos θ.

These results show that the effects produced by rotating uncharged
spheres in a strong magnetic field ought to be quite large enough to be
measurable. Thus if the sphere is rotating so fast that a point on its equator
moves with the velocity 3 × 103, which is about 100 feet per second, and
if c = 103, then the maximum radial intensity is about 1/33 of a volt per
centimetre, and the maximum tangential intensity about 1/2 of this: these
are quite measurable quantities, and if it were necessary to increase the
effect both c and ω might be made considerably greater than the values we
have assumed.

The surface density of the electricity on the rotating sphere when (b−
a)/a is small is

− 1

4π
K2cωaQ2.

436.] If the outer fixed sphere is a conductor, the electromotive intensity
must vanish when r > b, hence P = 0, so that N = 0, while M , L, K have
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the same values as before. In this case the surface density of the electricity
on the surface of the rotating sphere is

K1

4πa2
cAQ2,

and when b− a is small, this is equal to

− K1

12πδ
cωa2Q2.

Since this expression is proportional to 1/δ, the surface density can be
increased to any extent by diminishing the distance between the rotating
and fixed surfaces.

In the general case, when b − a is not necessarily small, the surface
density of the electricity on the rotating sphere is

K1

4πa2
cAQ2,

the surface density on the fixed sphere is

− K1

4πb2
cAQ2.

The electrostatic potential due to this distribution of electricity at a dis-
tance r from the centre of the rotating sphere is, when r > b,

−cA
5

(b2 − a2)
Q2

r3
,

while when r < a it is

−cA
5

(
1

b3
− 1

a3

)
r2Q2.

The values of φ in these regions are respectively zero and a constant.
Hence this example is sufficient to show us that φ is not equal to the electro-
static potential due to the free electricity on the surface of the conductors.

437.] We may (though there does not seem to be any advantage gained
by so doing) regard φ as the sum of two parts, one of which, φe, is the
electrostatic potential due to the distribution of free electricity over the
surfaces separating the different media; the other, φm, being regarded as
peculiarly due to electromagnetic induction.

Let us consider the case of a body moving in any manner, then we must
have, since there is no volume distribution of electricity,

∇2φe = 0.
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If σ is the surface density of the electricity over any surface of separation
at a point where the direction cosines of the outward drawn normal are
l, m, n, then if K is the specific inductive capacity

4πσ =
[
K(lX +mY + nZ)

]2
1
,

where the expression on the right-hand side of this equation denotes the
excess of the value of K(lX+mY +nZ) in the outer medium over its value
in the inner. But if φe is the electrostatic potential, then

4πσ = −
[
K

(
l
dφe
dx

+m
dφe
dy

+ n
dφe
dz

)]2

1

.

From these conditions we see from equations (1) that

∇2(φm + Fu+Gv +Hw) =
d

dx
(cv − bw) +

d

dy
(aw − cu) +

d

dz
(bu− av),

and

[
K(l

d

dx
+m

d

dy
+ n

d

dz
)(φm + Fu+Gv +Hw)

]2

1

=
[
K{l(cv − bw) +m(aw − cu) + n(bu− av)}

]2
1
.

From these equations φm is uniquely determined, for we see that φm +
Fu + Gv + Hw is the potential due to a distribution of electricity whose
volume density is

− 1

4π

{
d

dx
(cv − bw) +

d

dy
(aw − cu) +

d

dz
(bu− av)

}
,

together with a distribution whose surface density is

− 1

4π

[
K{l(cv − bw) +m(aw − cu) + n(bu− av)}

]2
1
.

Having thus determined φm and deducing φ by the process exemplified
in the preceding examples we can determine φe.

438.] The question as to whether or not the equations (1) are true
for moving insulators as well as for moving conductors, u, v, w being the
components of the velocity of the insulator, is a very important one. The
truth of these equations for conductors has been firmly established by ex-
periment, but we have, so far as I am aware, no experimental verification
of them for insulators. The following considerations suggest, I think, that
some further evidence is required before we can feel assured of the validity
of the application of these equations to insulators. We may regard a steady
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magnetic field as one in which Faraday tubes are moving about according
to definite laws, the positive tubes moving in one direction, the negative
ones in the opposite, the tubes being arranged so that as many positive as
negative tubes pass through any area. When a conductor is moved about
in such a magnetic field it disturbs the motion of the tubes, so that at
some parts of the field the positive tubes no longer balance the negative
and an electromotive intensity is produced in such regions. To assume the
truth of equations (1), whatever the nature of the moving body may be,
is, from this point of view, to assume that the effect on these tubes is the
same whether the moving body be a conductor or an insulator of large or
small specific inductive capacity. Now it is quite conceivable that though
a conductor, or a dielectric with a considerable inductive capacity, might
when in motion produce a considerable disturbance of the Faraday tubes
in the ether in and around it, yet little or no effect might be produced by
the motion of a substance of small specific inductive capacity such as a
gas, and thus it might be expected that the electromotive intensity due to
the motion of a conductor in a magnetic field would be much greater than
that due to the motion of a gas moving with the same speed.

439.] As one of the most obvious methods of determining whether
or not equations (1) are true for dielectrics is to investigate the effect of
rotating an insulating sphere in a magnetic field: we give the solution of
the case similar to the one discussed in Art. 434, with the exception that
the metallic rotating sphere of that article is replaced by an insulating one,
specific inductive capacity K0, of the same radius. Using the notation of
that article, we easily find that in this case

P

{
3K2

b4
+

2b(3K1 + 2K0)K1 − 6K1(K1 −K0)a5/b4

2(K1 −K0)a5 + (3K1 + 2K0)b5

}
= cK1A

{
1

b2
− 5a2bK1

2(K1 −K0)a5 + (3K1 + 2K0)b5

}
.

When b− a is small, this becomes

P = −1
3

2K0

3K2 + 2K0

cωa5.

So that in this case the components of electromotive intensities in the region
at rest are equal to the differential coefficients with respect to x, y, z of
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the function
1
3

2K0

3K2 + 2K0

cωa5

r3
Q2,

and thus, by Art. 435, bear to the intensities produced by the rotating
conductor the ratio of 2K0 to 3K2 + 2K0.

Thus, if equations (1) are true for insulators, a rotating sphere made of
an insulating material ought to produce an electric field comparable with
that due to a rotating metallic sphere of the same size.

The greatest difficulty in experimenting with the insulating sphere
would be that it would probably get electrified by friction, but unless this
completely overpowered the effect due to the rotation we ought to be able
to distinguish between the two effects, since the rotational one is reversed
when the direction of rotation is reversed as well as when the magnetic
field is reversed.

In deducing equations (2) of Art. 434, we assumed that equations (1)
held in the medium between the fixed and moving surfaces, the general
equations will therefore only be true on this assumption. In the special
case, however, when the layer of this medium is indefinitely thin, the results
will be the same whether this medium is an insulator or conductor, so
that the results in this special case would not throw any light on whether
equations (1) do or do not hold for a moving dielectric.

Propagation of Light through a Moving Dielectric.

440.] We might expect that some light would be thrown on the electro-
motive intensity developed in a dielectric moving in a magnetic field by the
consideration of the effect which the motion of the dielectric would have
on the velocity of light passing through it. We shall therefore investigate
the laws of propagation of light through a dielectric moving uniformly with
the velocity components u, v, w.

In this case, since we have only to deal with insulators, all the currents
in the field are polarization currents due to alterations in the intensity of
the polarization. When the dielectric is moving we are confronted with a
question which we have not had to consider previously, and that is whether
the equivalent current is to be taken as equal to the time rate of variation of
the polarization at a point fixed in space or at a point fixed in the dielectric
and moving with it; i.e. if f is the dielectric polarization parallel to x, is
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the current parallel to x

df

dt
,

or
df

dt
+ u

df

dx
+ v

df

dy
+ w

df

dz
?

In the first case we should have, if α, β, γ are the components of the
magnetic force,

4π
df

dt
=
dγ

dy
− dβ

dz
; (3)

in the second,

4π

(
df

dt
+ u

df

dx
+ v

df

dy
+ w

df

dz

)
=
dγ

dy
− dβ

dz
. (4)

This point seems one which can only be settled by experiment. It seems
desirable, however, to look at the question from as many points of view
as possible; the equation connecting the current with the magnetic force is
the expression of the fact that the line integral of the magnetic force round
any closed curve is equal to 4π times the rate of increase of the number of
Faraday tubes passing through the curve. We saw in Chapter I. that this
was equivalent to saying that a Faraday tube when in motion gave rise to
a magnetic force at right angles to itself, and to the direction in which it
is moving and proportional to its velocity at right angles to itself.

When the medium is moving, the question then arises whether this
velocity to which the magnetic force is proportional is the velocity of the
tube relative (1) to a fixed point in the region under consideration, or
(2) relative to the moving dielectric, or (3) relative to the ether in this
region. If the first supposition is true we have equation (3), if the second
equation (4), if the third an equation similar to (4) with the components
of the velocity of the ether written for u, v, w. I am not aware of any
experiments which would enable us to decide absolutely which, if any, of
the assumptions (1), (2), (3) is correct; a priori (3) appears the most
probable.

If X, Y , Z are the components of the electromotive intensity; a, b, c
those of magnetic induction; f , g, h those of electric polarization, and
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F , G, H those of the vector potential, then we have

X =
4π

K
f = cv − bw − dF

dt
− dψ

dx
,

Y =
4π

K
g = aw − cu− dG

dt
− dψ

dy
,

Z =
4π

K
h = bu− av − dH

dt
− dψ

dz
.


(5)

Then, since the dielectric is moving uniformly, we have

4π

K

(
df

dy
− dg

dx

)
= u

dc

dx
+ v

dc

dy
+ w

dc

dz
+
dc

dt
(6)

=

(
d

dt
+ u

d

dx
+ v

d

dy
+ w

d

dz

)
c.

Now if equation (3) is true

df

dt
=

1

4πµ

(
dc

dy
− db

dz

)
,

with similar equations for dg/dt, dh/dt; hence from (6) we have

1

Kµ
∇2c =

d

dt

(
d

dt
+ u

d

dx
+ v

d

dy
+ w

d

dz

)
c. (7)

If, on the other hand, equation (4) is true, we get

1

Kµ
∇2c =

(
d

dt
+ u

d

dx
+ v

d

dy
+ w

d

dz

)2

c, (8)

with similar equations for a and b.
Let us apply these equations to a wave of plane polarized light travelling

along the axis of x, the dielectric moving with velocity u in that direction.
In this case equation (7) becomes

1

Kµ

d2c

dx2
=
d2c

dt2
+ u

d2c

dx dt
. (9)

Let c = cos(pt − mx); then if V is the velocity of light through the
dielectric when at rest, equation (9) gives

V 2m2 = p2 − upm,

or
p2

m2
− up

m
= V 2.
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Since u is small compared with V , we have approximately
p

m
= 1

2
u+ V.

Thus the velocity of light through the moving dielectric is increased by
half the velocity of the dielectric.

If we take equation (8), then

V 2 d
2c

dx2
=

(
d

dt
+ u

d

dx

)2

c,

or putting as before,

c = cos(pt−mx),

V 2m2 = (p−mu)2,

hence
p

m
= V + u;

so that in this case the velocity of the light is increased by that of the
dielectric.

If we suppose that the condition (3) is the true one, viz., that

4πµ

(
df

dt
+ u0

df

dx
+ v0

df

dy
+ w0

df

dz

)
=
dc

dy
− db

dz
,

where u0, v0, w0 are the components of the velocity of the ether, then,
when equations (1) are supposed to hold, the relation between p and m for
the plane polarized wave is easily found to be

V 2m2 = (p−mu)(p−mu0),

or if u and u0 are small compared with V ,
p

m
= V + 1

2
(u+ u0),

so that in this case the velocity of the light is increased by the mean of the
velocities of the dielectric and the ether.

Fizeau’s result that the increase in the velocity of light passing through
a current of air is a very small fraction of the velocity of the air, shows
that all of the preceding suppositions are incorrect.

Thus, if we retain the Electromagnetic Theory of Light, we must ad-
mit that equations (1) do not represent the electromotive intensities in a
dielectric in motion if u, v, w are the velocities of the dielectric itself.
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If we suppose that in these equations u, v, w ought to refer to the
velocity of the ether and not of the dielectric, then the preceding work
shows that if supposition (1) is true, the velocity of light passing through
moving ether is increased by one half the velocity of the ether, while if
supposition (3) is true it is increased by the velocity of the ether.

As we could not suppose that the motion of the dielectric makes the
ether move faster than itself, the discovery of a case in which the velocity
of light was increased by more than half the velocity of the dielectric would
be sufficient to disprove supposition (1).

Currents induced in a Rotating conducting Sphere.

441.] When the external magnetic field is not symmetrical about the
axis of rotation electric currents will be produced in the sphere. These have
been discussed by Himstedt (Wied. Ann. 11, p. 812, 1880), and Larmor
(Phil. Mag. [5], 17, p. 1, 1884). We can find these currents by the methods
given in Chapters IV and V for dealing with spherical conductors.

From equations (1) we have, since

da

dz
+
db

dy
+
dc

dz
= 0,

dX

dy
− dY

dx
= u

dc

dx
+ v

dc

dy
+ w

dc

dz
+ c

(
du

dx
+
dv

dy
+
dw

dz

)
−
(
a
dw

dx
+ b

dw

dy
+ c

dw

dz

)
, (10)

with similar equations for

dZ

dx
− dX

dz
,

dY

dz
− dZ

dy
.

If the sphere is rotating with angular velocity ω about the axis of z,

u = −ωy, v = ωx, w = 0;

so that equation (10) becomes

dX

dy
− dY

dx
= ω

(
x
dc

dy
− y dc

dx

)
. (11)
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If σ is the specific resistance of the sphere, µ its magnetic permeability,
p, q, r the components of the current,

X = σp =
σ

4πµ

(
dc

dy
− db

dz

)
,

Y = σq =
σ

4πµ

(
da

dz
− dc

dx

)
,

Z = σr =
σ

4πµ

(
db

dx
− da

dy

)
.


(12)

If we substitute these values for X and Y , equation (11) becomes

similarly

σ

4πµ
∇2c = ω

(
x
dc

dy
− y dc

dx

)
,

σ

4πµ
∇2b = ω

(
x
db

dy
− y db

dx

)
− ωa,

σ

4πµ
∇2a = ω

(
x
da

dy
− y da

dx

)
+ ωb.


(13)

From these equations we find by the aid of (12)

σ

4πµ
∇2p = ω

(
x
dp

dy
− ydp

dx

)
+ ωq,

σ

4πµ
∇2q = ω

(
x
dq

dy
− ydq

dx

)
+ ωp,

σ

4πµ
∇2r = ω

(
x
dr

dy
− y dr

dx

)
.

Hence

σ

4πµ
∇2(xp + yq + zr) = ω

(
x
d

dy
− y d

dx

)
(xp + yq + zr). (14)

Let xp + yq + zr = F (r)Y s
n ε

ιsφ,

where r, θ, φ are the polar coordinates of a point, θ being measured from
the axis of z. Y s

n ε
ιsφ is a surface harmonic of degree n. Substituting this

value in (14), we find

d2F

dr2
+

2

r

dF

dr
−
(
n(n+ 1)

r2
+

4πιµsω

σ

)
F = 0.
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The solution of this is, Art. 308,

F (r) = Sn(kr),

where k2 = −4πµιsω/σ.

Thus xp + yq + zr = ASn(kr)Y s
n ε

ιsφ,

where A is a constant.
Now xp + yq + zr is proportional to the current along the radius, and

this vanishes at the surface of the sphere where r = a; hence we have
ASn(ka) = 0, but since the roots of Sn(x) = 0 are real, and k is partly
imaginary, Sn(ka) cannot vanish, thus A must vanish. In other words, the
radial currents must vanish throughout the sphere; the currents thus flow
along the surfaces of spheres concentric with the rotating one.

Since xp + yq + zr = 0,

we may by Art. 370 put

p = fn(kr)

(
y
d

dz
− z d

dy

)
ωn,

q = fn(kr)

(
z
d

dx
− x d

dz

)
ωn,

r = fn(kr)

(
x
d

dy
− y d

dx

)
ωn;


(15)

where fn(kr) =
Sn(kr)

(kr)n
,

k2 = −4πµιsω/σ,

and ωn is a solid spherical harmonic of degree n.
By Art. 372, α, β, γ, the components of magnetic force, will be given

by

α =
4π

(2n+ 1)k2

{
(n+ 1)fn−1(kr)

dωn
dx
− nk2r2n+3fn+1(kr)

d

dx

( ωn
r2n+1

)}
,

(16)
with similar expressions for β and γ.

Now the magnetic force may be regarded as made up of two parts,
one due to the currents induced in the sphere, the other to the external
magnetic field; the latter part will be derived from a potential. Let Ωn

be the value of this potential in the sphere; we may regard Ωn as a solid
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spherical harmonic of degree n, since the most general expression for the
potential is the sum of terms of this type. If α1, β1, γ1 are the components
of the magnetic force due to the currents, α0, β0, γ0 those due to the
magnetic field, then

a = a1 + a0 = a1 −
d

dx
Ωn.

Hence in the sphere

a1 =
dΩn

dx
+

4π

(2n+ 1)k2

{
(n+ 1)fn−1(kr)

dωn
dx

−nk2r2n+3fn+1(kr)
d

dx

( ωn
r2n+1

)}
, (17)

with similar expressions for β1 and γ1.
Outside the sphere the magnetic force due to the currents will (ne-

glecting the displacement currents in the dielectric) be derivable from a
potential which satisfies Laplace’s equation; hence outside the sphere we
may put, if ω′n represents a solid harmonic,

a1 = −a2n+1 d

dx

ω′n
r2n+1

,

with similar expressions for β1 and γ1, where a is the radius of the sphere.
The magnetic force tangential to the sphere due to these currents is contin-
uous, as is also the normal magnetic induction; hence, µ being the magnetic
permeability of the sphere, we have

Ωn +
4π

(2n+ 1)k2

{
(n+ 1)fn−1(ka)ωn − nk2a2fn+1(ka)ωn

}
= −ω′n,

µ(nΩn) +
µn(n+ 1)4π

(2n+ 1)k2

{
fn−1(ka)ωn + k2a2fn+1(ka)ωn

}
= (n+ 1)ω′n.

Solving these equations, we find at the surface of the sphere

4πωn = − (2n+ 1)(µn+ n+ 1)k2Ωn

(n+ 1){(µn+ n+ 1)fn−1(ka) + n(µ− 1)k2a2fn+1(ka)}
, (18)

ω′n = − n(2n+ 1)µk2a2fn+1(ka)Ωn

(n+ 1){(µn+ n+ 1)fn−1(ka) + n(µ− 1)k2a2fn+1(ka)}
. (19)
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If we substitute these values of ωn, ω′n in equations (15) and (17), we
get the currents induced in the sphere and the magnetic force produced by
those currents.

442.] We shall consider in detail the case when n = 1, i.e. when the
sphere is rotating in a uniform magnetic field. Let the magnetic potential
of the external field be equal to the real part of

Cr cos θ +Br sin θ ειφ,

where C is the force parallel to z and B that parallel to x.
Then in the sphere

Ω1 =
3

µ+ 2
(Cr cos θ +Br sin θ ειφ).

We shall first consider the case when kr is very small, so that approxi-
mately by Art. 309

f0(kr) = 1− 1
6
k2r2, f1(kr) = −1

3
, f2(kr) = 1

15
.

Substituting these values in (18) and (19) and retaining only the lowest
powers of k, we find

4πω1 = −9
2

k2

µ+ 2

(
1 +

µ+ 4

10(µ+ 2)
k2a2

)
Br sin θ ειφ,

ω′1 = − 3k2a2

10(µ+ 2)2
Br sin θ ειφ.

The term Cr cos θ in Ω does not give rise to any terms in ωn, ω′n since s
and therefore k vanishes for this term. Substituting these values we get by
equations (15)

p = −3
2

µω

(µ+ 2)σ
zB,

q = 0,

r = 3
2

µω

(µ+ 2)σ
xB.

 (20)

Thus the currents flow in parallel circles, having for their common axis
the line through the centre of the sphere which is at right angles both to the
axis of rotation and to the direction of magnetic force in the external field.
The intensity of the current at any point is proportional to the distance of
the point from this axis.
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The components of the magnetic induction in the sphere are given by
the equations

a = − 3µB

µ+ 2

(
1 +

2πµω

5σ
xy

)
,

b =
3πµ2ωB

(µ+ 2)σ
(4

5
r2 − 2

5
y2 − 2

5

µ+ 4

µ+ 2
a2),

c = − 3µ

µ+ 2

(
C +

2πµω

5σ
Byz

)
.


(21)

Thus the magnetic force due to currents consists of a radial force
proportional to yr, together with a force parallel to y proportional to
2r2 − (µ+ 4)a2/(µ+ 2).

Outside the sphere the total magnetic potential is

(Cz +Bx)

(
1− (µ− 1)

µ+ 2

a3

r3

)
− 6πB

5(µ+ 2)2

µ2ωa5

σ

y

r3
.

Thus the magnetic effect of the currents at a point outside the sphere
is the same as that of a small magnet at the centre, with its axis at right
angles to the axis of rotation and the external magnetic field, and whose
moment is

6πB

5(µ+ 2)2

µ2ωa5

σ
.

443.] Let us now consider the case when ka is large, since, when s = 1

k2 = −4πµωι

σ
,

we have k =
√

2K ε−
ιπ
4 ,

where K2 =
2πµω

σ
,

thus the real part of ιka is positive and large; hence we have approximately

f0(ka) =
ειka

2ιka
,

f1(ka) =
ειka

2k2a2
,

f2(ka) = − ειka

2ιk3a3
.
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Hence we find

4πω1 = −3ιk3a ε−ιkaBr sin θ ειφ,

ω′1 = 3
2

µ

µ+ 2
Br sin θ ειφ,

so that by (15)

p = −3
√

2K
8π

za
r2
Bε−K(a−r) cos

{
K(a− r) +

π

4

}
,

q = −3
√

2K
8π

za
r2
Bε−K(a−r) sin

{
K(a− r) +

π

4

}
,

r =
3
√

2K
8π

a
r2
Bε−K(a−r)

[
x cos

{
K(a− r) +

π

4

}
+ y sin

{
K(a− r) +

π

4

}]
.


(22)

The total components of the magnetic induction inside the sphere are
given by

a = −µB a
r
ε−K(a−r) cosK(a− r)− 1

2µBε
−K(a−r)ar2 cosK(a− r) d

dx

x

r3

− 1
2µBε

−K(a−r)ar2 sinK(a− r) d

dx

y

r3
,

b = −µB a
r
ε−K(a−r) sinK(a− r)− 1

2µBε
−K(a−r)ar2 cosK(a− r) d

dy

x

r3

− 1
2µBε

−K(a−r)ar2 sinK(a− r) d

dy

y

r3
,

c = − 3µC
µ+ 2

− 1
2µB ε

−K(a−r)ar2 cosK(a− r) d

dz

x

r3

− 1
2µBε

−K(a−r)ar2 sinK(a− r) d

dz

y

r3
,



(23)

while the magnetic potential outside due to the currents in the sphere is

3

2

µB

µ+ 2
a3 x

r3
. (24)

If we compare these results with those we obtained when ka, was small,
we see that they differ in the same way as the distribution of rapidly varying
currents in a conductor differs from that of steady or slowly varying ones.
When ka is small the currents spread through the whole of the sphere,
while when ka is large they are, as equations (22) show, confined to a thin
shell. The currents flow along the surfaces of spheres concentric with the
rotating one, and the intensity of the currents diminishes in Geometrical
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Progression as the distance from the surface of the sphere increases in
Arithmetical Progression.

The magnetic field due to these currents annuls in the interior of the
sphere, as equation (23) shows, that part of the external magnetic field
which is not symmetrical about the axis of rotation. Thus the rotating
sphere screens its interior from all but symmetrical distributions of mag-
netic force if {4πµω/σ} 1

2 a is large.
A very interesting case of the rotating sphere is that of the earth; in

this case
a = 6.37× 108, ω = 2π/(24× 60× 60),

so that approximately

{4πµω/σ}
1
2 a = 2× 107σ−

1
2 .

Thus if σ is comparable with 108, which is of the order of the specific
resistance of electrolytes, ka will be about 2000, and this will be large
enough to keep the earth a few miles below its surface practically free from
the effects of an external unsymmetrical magnetic field.

Again, we have seen, Art. 84, that rarefied gases have considerable con-
ductivity for discharges travelling along closed curves inside them. For
gases in the normal state this conductivity only manifests itself under
large electromotive intensities, but when the gas is in the state similar
to that produced by the passage of a previous discharge, it has consid-
erable conductivity even for small electromotive intensities. We see from
the preceding results that if there were a belt of gas in this condition in
the upper regions of the earth’s atmosphere, and if the part of the solar
system traversed by the earth were a magnetic field, this gas would screen
off from the earth all magnetic effects which were not symmetrical about
the axis of rotation. Thus the magnetic field at the earth’s surface would,
on this hypothesis, resemble that which actually exists in being roughly
symmetrical about the earth’s axis. The thickness of a shell required to
reduce the magnetic field to 1/ε of its value at the outer surface of the shell

is {4πω/σ}− 1
2 , or if σ = 108, about two miles. The result mentioned in

Art. 470 of Maxwell’s Electricity and Magnetism, that by far the greater
part of the mean value of the magnetic elements arises from some cause
inside the earth, shows, however, that we cannot assign the earth’s perma-
nent magnetic field to this cause.
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444.] The total magnetic potential outside the sphere is, when ka is
large, by equation (24),

Cz

(
1− µ− 1

µ+ 2

a3

r3

)
+B

(
x− µ− 1

µ+ 2

a3

r3
x+ 3

2

µ

µ+ 2

a3

r3
x

)
= Cz

(
1− µ− 1

µ+ 2

a3

r3

)
+Bx

(
1 + 1

2

a3

r3

)
.

Thus the effect of the rotating sphere on the part of the external mag-
netic field which is unsymmetrical about the axis of rotation, i.e. upon the
term Br sin θ ειφ, is exactly the same as if this sphere were replaced by
a sphere of diamagnetic substance for which µ = 0; in other words, the
rotating sphere behaves like a diamagnetic body. Thus we could make a
model which would exhibit the properties of a feebly diamagnetic body in
a steady field, by having a large number of rotating conductors arranged
so that the distance between their centres was large compared with their
linear dimensions.

Couples and Forces on the Rotating Sphere.

445.] We shall now proceed to investigate the couples and forces on the
sphere caused by the action of the magnetic field on the currents induced
in the sphere.

If X, Y , Z are the components of the mechanical force per unit volume,
then (Maxwell’s Electricity and Magnetism, vol. ii. Art. 603, equations C )

X = cq− br,
Y = ar− cp,
Z = bp− aq.

The couple on the sphere round the axis of z is∫∫∫
(Y x−Xy) dx dy dz,

the integration extending throughout the sphere.
Substituting the preceding values for Y and X, we see that this may

be written ∫∫∫
(r(ax+ by + cz)− c(px+ qy + rz)) dx dy dz.
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But since the radial current vanishes,

px+ qy + rz = 0;

thus the couple round z reduces to∫∫∫
rRr dx dy dz,

where R is the magnetic induction along the radius.
Similarly the couple round x is equal to∫∫∫

pRr dx dy dz,

while that round y is ∫∫∫
qRr dx dy dz.

From equation (16) we see that

Rr =
4πµ

(2n+ 1)k2
n(n+ 1){fn−1(kr) + k2r2fn+1(kr)}ωn.

Now by (4), Art. 370,

fn−1(kr) + k2r2fn+1(kr) = −(2n+ 1)fn(kr),

so that

Rr = −4πµ

k2
n(n+ 1)fn(kr)ωn, (25)

or by (15)

Rr = − σ

ωs2
n(n+ 1)r.

Thus the couple around z is

− σ

ωs2
n . (n+ 1)

∫∫∫
r2 dx dy dz.

When ω is small we find, by substituting the value of r given in equa-
tion (20), that when the sphere is rotating in a uniform magnetic field the
couple tending to stop it is

6µ2

5(µ+ 2)2
B2 ω

σ
πa5.
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446.] We see by equation (25) that the normal component of the mag-
netic force is proportional to fn(kr), while by (16) the other components
contain terms proportional to fn−1(kr), but when ka is very large we have
approximately

fn−1(ka) = 1
2
ιn−2 ειka

(ka)n
,

fn(ka) = 1
2
ιn−1 ειka

(ka)n+1
.

Thus when ka is very large fn(ka), and near the surface of the sphere
fn(kr), is very small compared with fn−1(ka), so that by (25) the mag-
netic force along the normal to the sphere vanishes in comparison with
the tangential force, in other words the magnetic force is tangential to the
surface.

This result can be shown to be true, whatever the shape of the body,
provided it is rotating with very great velocity. If we consider the part of
the magnetic field which is not symmetrical about the axis of rotation we
have the following results:—

Since the magnetic potential outside the rotating bodies is determined
by the conditions (1) that it should have at an infinite distance from these
bodies the same value as for the undisturbed external field, and (2) that
the magnetic force at right angles to these bodies should vanish over their
surface, we see that the magnetic force at any point will be the same as the
velocity of an incompressible fluid moving irrotationally and surrounding
these bodies supposed at rest, the velocity potential at an infinite distance
from these being equal to the magnetic potential in the undisturbed mag-
netic field.

447.] If we substitute the value of R, given by equation (25), in the
expression for the couple round z, we find that if we neglect powers of 1/ka
the couple vanishes. Thus the couple vanishes when ω = 0 and when
ω = ∞, there must therefore be some intermediate value of ω for which
the couple is a maximum.

Let us now consider the forces on the sphere. The force parallel to x is
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equal to ∫∫∫
(cq− br) dx dy dz

=
1

4π

∫∫∫ {
c

(
dα

dz
− dγ

dx

)
− b
(
dβ

dx
− dα

dy

)}
dx dy dz

=
1

4π

∫∫ {
α(la+mb+ nc)− 1

2
l(aα + bβ + cγ)

}
dS,

where dS is an element of the surface, and l, m, n the direction cosines
of the outward drawn normal. The forces parallel to y and z are given by
similar expressions. We see that the force is equivalent to a tension parallel
to the magnetic force inside the sphere and equal to

1

4π
(α2 + β2 + γ2)

1
2R

per unit of surface, R being the magnetic induction along the outward
normal; and to a normal pressure equal to

1

8π
(aα + bβ + cγ).

When the sphere is rotating so rapidly that ka is very large R vanishes,
and the force on the rotating sphere is that due to a pressure

µ

8π
(α2 + β2 + γ2);

this pressure will tend to make the sphere move from the strong to the
weak places of the field. We see, therefore, that not only does the rotating
sphere disturb the magnetic field in the same way as a diamagnetic body,
but that it tends to move as such a body would move, i.e. from the strong
to the weak parts of the field.

448.] If instead of a rotating sphere in a steady magnetic field we have
a fixed sphere in a variable field, varying as ειpt, the preceding results will
apply if instead of putting k2 = −4πµωιs/σ we put k2 = −4πµιp/σ, and
neglect the polarization currents in the dielectric. We can prove this at once
by seeing that the equations for a, b, c in the two cases become identical if
we make this change.

The results we have already obtained in this chapter, when applied
to the case of alternating currents, show that in a variable field when
ka is large the currents and magnetic force will be confined to a thin layer
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near the surface, and that a conductor will act like a diamagnetic body
both in the way it disturbs the field and the way it tends to move under
the influence of that field. The movement of currents from the strong to
the weak parts of the field has been demonstrated in some very striking
experiments made by Professor Elihu Thomson, Electrical World, 1887,
p. 258 (see also Professor J. A. Fleming on ‘Electromagnetic Repulsion,’
Electrician, 1891, pp. 567 and 601, and Mr. G. T. Walker, Phil. Trans. A.
p. 279, 1892). The correspondence of the magnetic force to the velocity
of an incompressible fluid, flowing round the conductors, is more complete
in this case than in that of the rotating sphere, inasmuch as we have not
to except any part of the magnetic potential, whereas in the case of the
rotating sphere we have to except that part of the magnetic potential which
is symmetrical about the axis of rotation.



APPENDIX.

In Art. 201 of the text there is a description of Perrot’s experiments on
the electrolysis of steam. As these experiments throw a great deal of light
on the way in which electrical discharges pass through gases I have, while
this work has been passing through the press, made a series of experiments
on the same subject.

The apparatus I used was the same in principle as Perrot’s. I made
some changes, however, in order to avoid some inconveniences to which it
seemed to me Perrot’s form was liable. One source of doubt in Perrot’s
experiments arose from the proximity of the tubes surrounding the elec-
trodes to the surface of the water, and their liability to get damp in conse-
quence. These tubes were narrow, and if they got damp the sparks instead
of passing directly through the steam might conceivably have passed from
one platinum electrode to the film of moisture on the adjacent tube, then
through the steam to the film of moisture on the other tube and thence to
the other electrode. If anything of this kind happened it might be urged
that since the discharge passed through water in its passage from one ter-
minal to the other, some of the gases collected in the tubes gg (Fig. 84)
might have been due to the decomposition of the water and not to that of
the steam.

To overcome this objection I (1) removed the terminals to a very much
greater distance from the surface of the water and placed them in a region
surrounded by a ring-burner by means of which the steam was heated
to a temperature of 140◦C to 150◦C. (2) I got rid of the narrow tubes
surrounding the electrodes altogether by making the tubes through which
the steam escaped partly of metal and using the metallic part of these
tubes as the electrodes.

Instead of following Perrot’s plan of removing the mixed gases from the
collecting tubes ee (Fig. 84) and then exploding them in a separate vessel,
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I collected the gases on their escape from the discharge tubes in gradu-
ated eudiometers provided with platinum terminals, by means of which
the mixed gases were exploded in situ at short intervals during the course
of the experiments.

Description of Apparatus.

This apparatus is represented in Fig. 142. H is a glass bulb 1.5 to
2 litres in volume containing the water which supplies the steam; a glass
tube about .75 cm. in diameter and 35 cm. in length is joined on to this
bulb, and the top of this tube is fused on to the discharge tube CD; this
tube is blown out into a bulb in the region where the sparks pass, so that
when long sparks are used they may not fly to the walls of the tube. This
part of the tube is encircled by the ring-burner K by means of which the
steam can be superheated.

The electrodes between which the sparks pass are shown in detail in
Fig. 143; A, B are metal tubes, these must be made of a metal which does
not oxidise. In the following experiment A, B are either brass tubes thickly
plated with gold, or tubes made by winding thick platinum wire into a coil.
These tubes are placed in pieces of glass tubing to hold them in position.
These tubes stop short of the places F, G where the delivery tubes join the
discharge tube. The discharge tube is closed at the ends by the glass tubes
P and Q, and wires connected to the electrodes A and B are fused through
these tubes.

The delivery tubes which terminate in fine openings were fused on to
the discharge tube at F and G.

To get rid of the air which is in the apparatus or which is absorbed by
the water, the apparatus is filled so full of water at the beginning of the
experiment that when the water is heated it expands sufficiently to fill the
discharge tube and overflow through the delivery tubes. The water is boiled
vigorously for 6 or 7 hours with the ends of the delivery tubes open to the
atmosphere. The eudiometer tubes filled with mercury are then placed
over the ends of the delivery tubes, so that if any air is mixed with the
steam it will be collected in these tubes. The sparking is not commenced
until after the steam has run into the delivery tubes for about an hour
without carrying with it a quantity of air large enough to be detected.

The sparks are produced by a large induction coil giving sparks about
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Fig. 142.

5 cm. long when the current from five large storage cells is sent through
the primary. When a condenser of about 6 or 7 micro-farads capacity is
added to that supplied with the instrument a current was produced which,
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Fig. 143.

when the distance between the electrodes A and B in the discharge tube is
not more than about 4 mm., will liberate about 4 c.c. of hydrogen per hour
in a water voltameter placed in series with the discharge tube.

Method of making the Experiments.

When it had been ascertained that all the air had been expelled from the
vessel and from the water, and that the rates of flow of the gases through
the delivery tubes were approximately equal, the eudiometer tubes filled
with mercury were placed over the ends of the delivery tubes, a water
voltameter was placed in series with the steam tube, and the coil set in
action.

The steam which went up the eudiometer tubes condensed into hot wa-
ter which soon displaced the mercury; the mixture of oxygen and hydrogen
produced by the spark went up the eudiometer tubes and was collected over
this hot water and exploded at short intervals of time by the sparks from a
Wimshurst machine. The gases did not disappear entirely when the sparks
passed; a small fraction of the volume remained over after each explosion,
and the volume which remained was greater in one tube than the other.
The residual gas which had the greatest volume was found on analysis to be
hydrogen, the other was oxygen. When a sufficient quantity of the residual
gases had been collected they were analysed. The result of the analysis
was that when the sparks were not too long the residual gas in one tube
was pure hydrogen, that in the other pure oxygen; if any other gases were
present their volume was too small to be detected by my analyses. When
the sparks were very long there was always some other gas (nitrogen?)
present, sometimes in considerable quantities.
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Results of the Experiments.

The results obtained by the preceding method varied greatly in their
character with the length of the spark, I shall therefore consider them under
the heads—‘short sparks,’ ‘medium sparks,’ and ‘long sparks.’

The lengths at which a spark changes from ‘short’ to ‘medium’ and then
again to ‘long’ depend on the intensity of the current passing through the
steam, and therefore upon the size of the induction coil and the battery
power used to drive it. The limits of ‘short,’ ‘medium,’ and ‘long’ sparks
given below must therefore be understood to have reference to the par-
ticular coil and current used in these experiments. With a larger coil and
current these limits would expand, with a smaller one they would contract.

Short Sparks.

These sparks were from 1.5 mm. to 4 mm. long. The appearance of the
spark showed all the characteristics of an arc discharge, it was a thickish
column with ill-defined edges and was blown out by a wind to a broad
flame-like appearance. For these arcs the following laws were found to
hold:—

1. That within the limits of error of the experiments the volumes of
the excesses of hydrogen in one tube and of oxygen in the other which
remain after the explosion of the mixed gases are respectively equal to
the volumes of the hydrogen and oxygen liberated in the water voltameter
placed in series with the steam tube.

2. The excess of hydrogen appears in the tube which is in connection
with the positive electrode, the excess of oxygen in the tube which is in
connection with the negative electrode.

It thus appears that with these short sparks or arcs the hydrogen ap-
pears at the positive electrode instead of as in ordinary electrolysis at the
negative.

The following table contains the results of some measurements of the
relation between the excesses of hydrogen and oxygen in the eudiometer
tubes attached to the steam tube and the quantity of hydrogen liberated in
a water voltameter placed in series with the discharge tube. The ordinary
vibrating break supplied with induction coils was used unless the contrary
is specified:—



448.] APPENDIX. 569

Spark length
in milli-
metres.

Metal used for
electrodes.

Excess of H in
tube next +

electrode.

Excess of O in
tube next −

electrode.

H liberated
in water

voltameter.

Duration of
experiment
in minutes.

1.5 Gold 3.25 c.c. 1.5 c.c. 3.2 c.c. 40
1.5 Platinum 2.8 1.6 3 30
1.5 Gold 1.7 .8 1.8 20
2 Gold 2 1.08 1.95 30
2 Gold 3.25 1.75 3.2 60
2 Platinum 1.8 Tube broke 2 Not noted
2 Platinum 3 1.5 3 60
2 Gold 2.5 1.5 3 60
3 Gold 1.8 Not noted 1.8 Not noted
31 Gold .7 .4 .8 90
32 Gold 1.6 Not noted 1.75 Not noted
4 Gold .9 .37 .7 20
4 Gold 2.75 1.25 2.7 60
42 Gold 1.0 Not noted 1.25 Not noted
4 Gold 2.5 1.25 2.3 45

The results tabulated above show that the excesses of hydrogen and
oxygen from the steam are approximately equal to the quantities of hydro-
gen and oxygen liberated in the water voltameter.

Medium Sparks.

When the spark length is greater than 4 mm. the first of the preceding
results ceases to hold. The second, that the hydrogen comes off at the
positive electrode, remains true until the sparks are about 11 mm. long,
but the hydrogen from the steam, instead of being equal to that from
the voltameter, is, when the increase in the spark length is not too large,
considerably greater.

1In this experiment a slow mercury break, making about four breaks a second, was
used.

2In these experiments Leyden jars were attached to the electrodes.
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The following are a few instances of this:—

Spark length
Hydrogen from
steam in c.c.

Hydrogen from
voltameter in c.c.

5 mm. 1.8 1.2
5 mm. 3.75 3
5 mm. 4.4 2.1
6 mm. 4 1.6
7 mm. 4.25 3
7 mm. 3.75 2
8 mm. 3.75 2.6

The increase in the ratio of the hydrogen from the steam to that from
the voltameter does not continue when the spark length is still further
increased. When the spark length exceeds 8 mm. this ratio begins to fall
off very rapidly as the spark length increases, and we soon reach a critical
spark length at which it seems almost a matter of chance whether the
hydrogen from the steam appears at the positive or the negative electrode.

Long Sparks.

When the spark length is increased beyond the critical value, the excess
of hydrogen instead of appearing at the positive electrode as with shorter
sparks changes over to the negative, the excess of oxygen at the same time
going over from the negative to the positive electrode. Thus the gases,
when the spark length is greater than its critical value, appear at the same
terminals in the steam tube as when liberated from an ordinary electrolyte,
instead of at the opposite ones as they do when the sparks are shorter.

The critical length depends very largely upon the current sent through
the steam; the smaller the current the shorter this length. It also depends
upon a number of small differences, some of which are not easily specified,
and it will sometimes change suddenly without any apparent reason. I
have found, however, that this capriciousness disappears if Leyden jars are
attached to the terminals of the steam tube or if an air-break is placed in
series with that tube.

It will be seen that the results when the spark length is greater than the
critical length agree with those obtained by Perrot (Art. 201) and Ludeking
(Art. 210), as both these observers found that the hydrogen appeared at
the negative, the oxygen at the positive electrode. Ludeking worked with
long sparks, so that his results are quite in accordance with mine. In
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Perrot’s experiments the spark length was 6 mm. I have never been able
to reduce the critical length quite so low as this, though I diminished the
current to the magnitude of that used by Perrot; I have, however, got it
as low as 8 mm., and it is probable that the critical length may not be
governed entirely by the current.

I was not able to detect any decided change in the appearance of the
spark as the spark length passed through the critical value. My observa-
tions on the connection between the appearance of the discharge and the
electrode at which the hydrogen appears may be expressed by the state-
ment that when the discharge is plainly an arc the hydrogen appears at
the positive electrode, and that when the hydrogen appears at the negative
electrode the discharge shows all the characteristics of a spark. It however
looks much more like a spark than an arc long before the spark length
reaches the critical value.

With regard to the ratio of the quantities of hydrogen liberated from
the steam tube and from the water voltameter, I found that when the spark
length was a few millimetres greater than the critical length the amount of
hydrogen from the steam was the same as that from the voltameter. The
following table contains a few measurements on this point:—

Spark length. Hydrogen from
steam in c.c.

Hydrogen from
voltameter in c.c.

10 mm. .7 .8
12 mm.1 .75 .9
14 mm. .8 1.1

When the sparks were longer than 14 mm. the amount of hydrogen
from the steam was no longer equal to that from the voltameter. The
results became irregular, and there was a further reversal of the electrode
at which the hydrogen appeared when the spark length exceeded 22 mm.
In this case, however, the current was so small that it took several hours to
liberate 1 c.c. of hydrogen in the voltameter. With these very long sparks
the proportion between the hydrogen from the steam and that from the
voltameter was too irregular to allow of any conclusions being drawn.

We see from the preceding results that in the electrolysis of steam, as
in that of water, there is a very close connection between the amounts
of hydrogen and oxygen liberated at the electrodes and the quantity of

1In this experiment there was an air break 9 mm. long in series with the steam tube.
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electricity which has passed through the steam, and that this relation for
certain lengths of arc is the same for steam as for water. There is, however,
this remarkable difference between the electrolysis of steam and that of
water, that whereas in water the hydrogen always comes off at the negative,
the oxygen at the positive electrode, in steam the hydrogen and oxygen
come off sometimes at one terminal, sometimes at the other, according to
the nature of the spark.

Fig. 144.

The results obtained when the discharge passed as an arc, i.e. that the
oxygen appears at the negative electrode, the hydrogen at the positive, is
what would happen if the oxygen in the arc had a positive charge, the
hydrogen a negative one. With the view of seeing if I could obtain any
other evidence of this peculiarity I tried the following experiments, the
arrangement of which is represented in Fig. 144.

An arc discharge between the platinum terminals A, B was produced by
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a large transformer, which transformed up in the ratio of 400 to 1; a current
of about 40 Ampères making 80 alternations per second was sent through
the primary. A current of the gas under examination entered the discharge
tube through a glass tube C and blew the gas in the neighbourhood of the
arc against the platinum electrode E, which was connected to one quadrant
of an electrometer, the other quadrant of which was connected to earth.
To screen E from external electrical influences it was enclosed in a platinum
tube D, which was closed in by fine platinum wire gauze, which though it
screened E from external electrostatic action, yet allowed the gases in the
neighbourhood of the arc to pass through it. This tube was connected to
earth. The electrode E after passing out of this tube was attached to one
end of gutta-percha covered wire wound round with tin-foil connected to
earth.

The experiments were of the following kind. The quadrants of the
electrometer were charged up by a battery, the connection with the battery
was then broken and the rate of leak observed. When the arc was not
passing the insulation was practically perfect. As soon, however, as the
arc was started, and for as long as it continued, the insulation of the gas
in many cases completely gave way. There are, however, many remarkable
exceptions to this which we proceed to consider.

Oxygen.

We shall begin by considering the case when a well-developed arc passed
through the oxygen.

If the electrode E was charged negatively, it lost its charge very rapidly;
it did not however remain uncharged, but acquired a positive charge, this
charge increasing until E acquired a potential V ; V depended greatly upon
the size of the arc and the proximity to it of the electrode E, in many of
my experiments it was as large as 10 or 12 volts.

When E was charged positively to a high potential the electricity leaked
from it until the potential fell to V ; after reaching this potential the leak
stopped and the gas seemed to insulate as well as when no discharge passed
through it. If the potential to which E was initially raised was less than V
(a particular case being when it was without charge to begin with) the
positive charge increased until the potential of E was equal to V , after
which it remained constant. Thus we see (1) that an electrode immersed
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in the oxygen of the arc can insulate a small positive charge perfectly,
while it very rapidly loses a negative one; (2) that an uncharged electrode
immersed in this gas acquires a positive charge.

When the distance between the electrodes A, B was increased until the
discharge passed as a spark then the electrode E leaked slowly, whether
charged positively or negatively. The rate of leak in this case was how-
ever exceedingly small compared to that which existed when the discharge
passed as an arc.

Hydrogen.

When similar experiments were tried in hydrogen the results were quite
different. When the arc discharge passed through the hydrogen the elec-
trode E always leaked when it was positively electrified, and it did not
merely lose its charge but acquired a negative one, its potential falling
to −U , where U is a quantity which depended upon the size of the arc and
on its proximity to the electrode E. In my experiments 5 to 6 volts was a
common value of U .

When the electrode E was initially uncharged it acquired a negative
charge, the potential falling to −U ; when it was initially charged nega-
tively, it leaked if its initial negative potential was greater than U until its
potential fell to this value, when no further leak occurred. When the initial
negative potential of E was less than U the negative charge increased until
the potential had fallen to −U .

It is more difficult to get a good arc in hydrogen than in oxygen, so
that the experiments with the former gas are a little more troublesome
than those with the latter. When short arcs are used the electrode E must
be placed close to the arc.

The following experiment was made to see if the charging up of the
electrode was due to an electrification developed by the contact of the gas
in the arc with the electrode, or whether this gas behaved as if it had
a charge of electricity independent of its contact with the metal of the
electrode. If the electrification were due to the contact of the gas with
the electrode it would disappear if the electrode were covered with a non-
conducting layer; if however the gas in the arc behaved as if it were charged
with electricity, then even though the electrode were covered with a non-
conducting layer the electrostatic induction due to the charge in the gas
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ought to produce a deflection of the electrometer in the same direction as if
the electrode were uncovered. To test this point the electrode E was coated
with glass, with mica, with ebonite, and with sulphur; in all these cases
the needle of the electrometer was deflected as long as the arc was passing,
and the deflection corresponded to a positive charge on the gas when the
arc passed through oxygen and to a negative one when it passed through
hydrogen; this deflection disappeared almost entirely as soon as the arc
stopped.

In another experiment tried with the same object the arc was sur-
rounded by a large glass tube coated inside and out with a thin layer of
sulphur so as to prevent conduction over the surface. A ring of tin-foil was
placed outside the tube so as to surround the place where the arc passed,
and this ring was connected with one of the quadrants of an electrome-
ter. As a further precaution against the creeping of the electricity over the
surface of the tube two thin rings of tin-foil connected to the earth were
placed round the ends of the tube. When the arc passed through oxygen
the quadrants of the electrometer connected with the ring of tin-foil were
positively electrified by induction, when the arc passed through hydrogen
they were negatively charged.

These experiments show that the oxygen in the arc behaves as if it had
a positive charge of electricity, while the hydrogen in the arc behaves as if
it had a negative charge.

In all the above experiments the electrodes were so large that they were
not heated sufficiently by the discharge to become luminous.

Elster and Geitel found (Art. 43) that a metal plate placed near a
red-hot platinum wire became positively electrified if the wire and the
plate were surrounded by oxygen, and negatively electrified if they were
surrounded by hydrogen. If we suppose that the effect of the hot wire is to
put the gas around it in a condition resembling the gas in the arc, Elster
and Geitel’s results would be explained by the preceding experiments, for
these have shown that when this gas is oxygen it is positively electrified,
while when it is hydrogen it is negatively electrified.

These experiments suggest the following explanation of the results of
the investigation on the electrolysis of steam. We have seen (Art. 212) that
when an electric discharge passes through a gas the properties of the gas
in the neighbourhood of the line of discharge are modified, and (Art. 84)
that this modified gas possesses very considerable conductivity. When the
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discharge stops, this modified gas goes back to its original condition. If
now the discharges through the gas follow one another so rapidly that the
modified gas produced by one discharge has not time to revert to its original
condition before the next discharge passes, the successive discharges will
pass through the modified gas. If, on the other hand, the gas has time
to return to its original condition before the next discharge passes, each
discharge will have to make its way through the unmodified gas.

We regard the arc discharge as corresponding to the first of the preced-
ing cases when the discharge passes through the modified gas, the spark
discharge as corresponding to the second case when the discharge passes
through the gas in its unmodified condition.

From this point of view the explanation of the results observed in the
electrolysis of steam are very simple. The modified gas produced by the
passage of the discharge through the steam consists of a mixture of hydro-
gen and oxygen, these gases being in the same condition as when the arc
discharge passes through hydrogen and oxygen respectively, when, as we
have seen, the hydrogen behaves as if it had a negative charge, the oxygen
as if it had a positive one. Thus in the case of the arc in steam the oxygen,
since it behaves as if it had a positive charge, will move in the direction of
the current and appear at the negative electrode; the hydrogen will move
in the opposite direction and appear at the positive electrode.

The equality which we found to exist between the quantities of hydrogen
and oxygen from the electrolysis of the steam and those liberated from the
electrolysis of water by the same current, shows that the charges on the
atoms of the modified oxygen and hydrogen are the same in amount but
opposite in sign to the charges we ascribe to them in ordinary electrolytes.

In the case of the long sparks when the discharge goes through the
steam itself, since the molecule of steam consists of two positively charged
hydrogen atoms and one negatively charged oxygen atom, when this splits
up in the electric field the hydrogen atoms will go towards the negative,
the oxygen atom towards the positive electrode, as in ordinary electrolysis.
The experiments described on page 571 show that with these long sparks
the hydrogen appears at the negative, the oxygen at the positive electrode.
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weight of electrodes and quantity
of electricity passing, 162

— — electrification in, 571
— — with large potential differences,

161
Arons, electromagnetic waves, 463
Arons and Cohn, specific inductive

capacity of water, 47, 470
Arons and Rubens, velocity of elec-

tromagnetic waves, 474
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Arrhenius, conductivity of flames, 56
Attraction between flat conductors

conveying variable currents, 296
Aurora, 105
Ayrton and Perry, specific inductive

capacity of a ‘vacuum’, 96, 472
— arc discharge, 160

Baille, spark discharge, 67–70, 72, 84,
89

Balance, Induction, 529
Beccaria, phosphorescence, 117
Becquerel, conductivity of hot gases,

53
Berthelot, chemical action of electric

discharge, 176
Bessel’s functions, values of, when

variable, is small or large, 258
— — roots of, 349
v. Bezold, velocity of electromagnetic

waves, 473
Bichat and Guntz, formation of ozone,

175
Bjerknes, decay of vibrations, 396
Blake, experiment with mercury

vapour, 53
Blondlot, conductivity of hot gases,

54
— velocity of electromagnetic waves,

481
Boltzmann, specific inductive capac-

ity, 471
Brush discharge, 167, 184

Capacity of a semi-infinite plate par-
allel to an infinite one, 206

— of a pile of plates, 234
— of a plate between two infinite

plates, 211, 213
— of a series of radial plates, 235

— of a strip between two plates, 241
— of one cube inside another, 217
— of two infinite strips, 232
— of two piles of plates, 239–244
— of two series of radial plates, 240–

244
— specific inductive, 469 et seq.
— electrostatic neutralizes self-

induction, 532
Cardani, effect of temperature on

electric strength of gases, 90
Cathode, potential fall at, 147, 149
Chemical action of electric discharge,

173
Chree on negative dark space, 108
Christoffel’s theorem in conjugate

functions, 203
Chrystal on spark discharge, 72, 82
‘Closed’ Faraday tubes, 1
Cohn and Arons, specific inductive

capacity, 47, 470
Column, negative, 108
Concentration of alternating current

on the outside of a conductor, 255
Condenser, discharge of, 326, 330
Conduction of electricity through

metals and electrolytes, 48
Conductivity of rarefied gases, 97
Continuity of current through

discharge-tube, 139
Contraction in discharge-tube pro-

duces effects similar to a cathode,
121

Coulomb, leakage of electricity
through air, 52

Couple on a sphere rotating in a
magnetic field, 560

‘Critical’ pressure, 83
— — effect of spark length on, 86
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— — for electrodeless discharges, 95
Crookes on discharge through gases,

58, 102, 107, 108, 117–121, 136
Crookes’ space, 106
Curie, specific inductive capacity, 470
Current, connection between and ex-

ternal E.M.F., 283
— force between two parallel currents,

36
— mechanical force on conductor con-

veying, 14
— motion of Faraday tubes in neigh-

bourhood of steady, 35
Cylinder, electrical oscillations on,

340, 343
— field of force round oscillating, 346
— scattering of electromagnetic waves

by, 427

Damp air, potential required to spark
through, 91

Dark space, 106
— — Crookes’ theory of, 107
De la Rive and Sarasin, experiments

on electromagnetic waves, 398
De la Rive, rotation of electric dis-

charge, 135
De la Rue and Müller, discharge

through gases, 67, 78, 89, 107,
109, 111, 155, 166, 169, 170

Decay, rate of, of slowly alternating
currents along a wire, 267

Decay, rate of, xof moderately rapid
currents along a wire— — of mod-
erately rapid currents along a wire,
272

— — of very rapid currents along a
wire, 274

— of currents and magnetic force in
cylinders, 347

— of currents and magnetic force in
spheres, 375, 378

— of electrical oscillations on cylin-
ders, 345

— of electrical oscillations on spheres,
367

— of vibrations in Hertz’s vibrator,
395

Dewar and Liveing, effects of metallic
dust in discharge, 101

Dielectric, electromotive forces in a
moving, 548

— velocity of light through a moving,
549

Difference between positive and neg-
ative discharge, 165

Discharge between electrodes near to-
gether, 156–157

— — action of magnet on, 102
— — critical pressure for, 95
— — difficulty of passing from one

medium to another, 96
— electrodeless, 91 et seq.
— chemical action of, 173
— electric, difference between positive

and negative, 165
— furrows made by, 173
— heat produced by, 163
— mechanical effects produced by,

170
— of a condenser, 326
‘Displacement’, electric, 1, 5
Distance alternating currents travel

along a wire, 267, 273, 274
Disturbance, electric, transmission of

along a wire, 279
Drude on metallic reflection, 419
Du Bois, reflection of light from a

magnet, 484
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Dust figures, 170
— given off from electrified metals,

53

Earth’s magnetism, 558
Ebert and E. Wiedemann, effect of

ultra-violet light, 57
Eisenlohr, metallic reflection, 419
Electric currents, decay of, in cylin-

ders, 347
— — decay of, in spheres, 375, 378
Electric discharge, passage of across

junction of a metal and a gas, 96
— — action of magnet on, 128
— — effect of air blast on, 129
— — heat produced by, 163
— — mechanical effects produced by,

170
— — expansion due to, 170
— — furrows made by, 173
— — chemical action of, 173
— — facilitated by rapid changes in

the electric field, 181
Electric displacement, 1, 5
— screening, 403
— ‘skin’, 255, 276
— strength, 67
Electrical vibrations, 323 et seq.
— — Feddersen on, 328
— — Lodge on, 329
— — Lord Kelvin on, 328
— — on cylinders, 340
— — on spheres, 358
Electrification of a metal plate by

light, 58
— produced near glowing bodies, 61
— effect of on surface tension, 63
— in arc discharge, 571
Electrified plates, rotating, 23–28
— sphere, moving, 15

— — moving, force on in a magnetic
field, 21

— — moving, kinetic energy, 21
— — moving, magnetic force due to,

19
— — moving, momentum of, 19
Electrode, effect of magnet on distri-

bution of negative glow over, 135
Electrodeless discharge, 91 et seq.
— — action of magnet on, 103
— — difficulty of passing from one

medium to another, 96
— — existence of critical pressure for,

95
Electrodes, discharge between two

when close together, 156–157
— difference between positive and

negative, 165
— spluttering of, 58
Electrolytes, conduction of electricity

through, 48
— conductivity of, 98
— under rapidly alternating currents,

416
Electromagnetic theory of light, 41
— repulsion, 563
— waves, 387
— — reflection of, 397
— — reflection of from grating, 404
— — refraction of, 404
— — angle of polarization of, 404
— — scattering of by a cylinder, 427
— — scattering of by a metal sphere,

437
— — theory of reflection of from in-

sulators, 405
— — theory of reflection of from met-

als, 413
— — along wires, 452
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Electromotive intensity, 9, 13
— — relation between and current for

alternating currents, 283
— — required to produce a spark

across a thin layer of gas, 71
— — required to produce a spark in

a variable field, 80
Elster and Geitel, electrification pro-

duced by glowing bodies, 59, 60,
575

Energy, transfer of, 9, 303
Equations for a moving dielectric, 548

Faraday, lines of force, 1
— difference between positive and

negative discharge, 166
— rotation of plane of polarization

of light, 484
— space, 109
— spark potential through different

gases, 89
— tubes, 1–5
— — disposition in a steady magnetic

field, 28
— — disposition of round vibrating

cylinder, 346
— — disposition of round vibrating

sphere, 367
— — duration of in terms of resis-

tance, 45
— — effect of soft iron on their mo-

tion, 33
— — momentum of, 8
— — motion of during the discharge

of a Leyden jar, 37
— — round a wire carrying a steady

current, 35
— — round a wire carrying an alter-

nating current, 37
— — shortening of in a conductor,

43–45
— — velocity of, 11
Feddersen, effect of air blast on spark,

129
— electrical vibrations, 328
Feussner, temperature coefficient of

electrical resistance for alloys, 49
Films, transmission of light through,

422
— transmission of light through when

in magnetic field, 506
First dark space, 106
Fitzgerald, auroras, 105
— rotation of plane of polarization

of light, 496
Flames, electrical properties of, 56
Fleming, arc discharge, 161, 163
— electromagnetic repulsion, 563
Force acting on a current, 14
— between flat conductors conveying

alternating currents, 296
— between two parallel currents, 36
— relation between external electro-

motive force and alternating cur-
rent, 283

Foster and Pryson, spark potential,
72

Foucault currents, heat produced by,
in a transformer, 313

Functions, Bessel’s, 258, 344, 349
— ‘S’ and ‘E’, 361

Galvanic cell, 47
Gases, passage of electricity through,

52 et seq.
— passage of electricity through hot

gases, 53–55
— high conductivity of rarefied, 97–

101
Gassiot on electric discharge, 159



448.] INDEX. 582

Gaugain, spark discharge, 67, 80
Geitel and Elster, electrification

caused by glowing bodies, 60, 61
— escape of electricity from illumi-

nated surfaces, 59
Giese, electrical properties of flames,

56
— conduction of electricity through

gases, 185
Glazebrook, Report on Optical Theo-

ries, 420
Glow, discharge, 167
— produced by electrodeless dis-

charge, 176–180
Glowing bodies, discharge of electric-

ity by, 61
— electrification caused by, 61
Goldstein, discharge of electricity

through gases, 108–111, 117, 120–
123, 137–139, 192

Gordon, reflection of light from a
magnet, 485

Gradient of potential in discharge
tube, 140

Grating, reflection of electromagnetic
waves from, 404, 424

Grotthus’ chains, 185, 191
Grove, chemical action of the dis-

charge, 43, 186
— on the arc discharge, 162
Guard-ring, distribution of electricity

on, 221, 225, 227, 229
Guntz and Bichat on the formation

of ozone, 175

Hagenbach, transmission of signals
along wires, 281

‘Hall effect’, 488
Hallwachs, electrification by light, 58
Heat produced by electric discharge,

163
— — by currents induced in a tube,

318
— — by Foucault currents in a trans-

former, 313
— — in wires carrying alternating

currents, 310, 312, 313
Heaviside, moving electrified sphere,

19
— concentration of current, 255
— impedance, 288
Heine, Kügelfunctionen, 258, 360
Helmholtz, v. H., attraction of elec-

tricity by different substances, 5,
62

— — on the functions ‘S’ and ‘E’,
360

Helmholtz, v. R., effect of electrifica-
tion on a steam jet, 57, 183

Henry, on electrical vibrations, 328
Hertz, effect of ultra-violet light on

the discharge, 56
— negative rays, 120, 123
— explosive effects due to spark, 173
— electromagnetic waves, 387 et seq.
Herwig, arc discharge, 162
Himstedt, rotating disc, 23
— currents induced in rotating

sphere, 551
Hittorf, discharge through gases, 75,

93, 97, 130, 140, 148, 150, 156,
157, 164

Hoor, effect of light on charged met-
als, 59

Hopkinson, specific inductive capac-
ity, 471

Hot gases, passage of electricity
through, 53–55

Hughes, concentration of alternating
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current, 255
— induction balance, 529
Hutchinson and Rowland, rotating

electrified disc, 23, 27

Impedance, 288
— expression for, 288–290
— for a network of wire, 522
— for flat conductors, 291
— for two wires in parallel, 520
Incandescent bodies, discharge of elec-

tricity by, 61
— — production of electrification by,

61
Induction balance, 529
— of currents due to changes in the

magnetic field, 31
— — due to alternations in the pri-

mary circuit, 41
— — due to motion of the circuit,

32
— self, expressions for, 288–291
— — for a network of wires, 522
— — for flat conductors, 291
— — for two wires in parallel, 518
— — and capacity, 532
Inductive capacity, specific, 469
— — specific in rapidly varying fields,

473
Intensity, electromotive, 9–13
Iron, effect of, on motion of Faraday

tubes, 33
— magnetic properties of, under

rapidly alternating currents, 318
— decay of electromagnetic waves in,

335

Jaumann, discharge facilitated by
rapid changes in the potential, 67,
181

Joly, discharge figures, 169
— furrows made by discharge, 173

Kelvin, Lord, spark discharge, 68, 72
— — transmission of an electric dis-

turbance along a wire, 282
— — oscillatory discharge, 327, 328
Kerr, reflection of light from the pole

of a magnet, 484
Kinetic energy, due to motion of

Faraday tubes, 12
— — due to moving charged sphere,

21
— — a minimum for rapidly alter-

nating currents, 513
Kinnersley, electrification by evapo-

ration, 53
Kirchhoff, on conjugate functions, 203
Klemenčič, specific inductive capac-

ity, 470
Kundt, dust figures, 170
— reflection of light from a magnet,

484
— transmission of light through thin

films, 422, 510

Lamb, decay of currents in cylinders,
353, 358

— decay of currents in spheres, 376,
380, 382

— on the functions ‘S’ and ‘E’, 360
Lamb’s theorem, 438
Larmor, currents in a rotating sphere,

551
Lebedew, specific inductive capacity,

472
Lecher, on the arc discharge, 160
— on electromagnetic waves, 464, 466
Lehmann, discharge between elec-

trodes close together, 157
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— difference between positive and
negative discharge, 169

— chemical action of the discharge,
175

Lenard and Wolf, dust given off under
ultra-violet light, 53, 57

Leyden jar, motion of Faraday tubes
during discharge of, 37

— — oscillatory discharge of, 326 et
seq.

Lichtenberg’s figures, 168
Liebig, spark potential, 70, 89
Light, electromagnetic theory of, 41
— effect of ultra-violet on electric

discharge, 56
— effect of ultra-violet on electrified

metals, 57
— electrification of a metal plate, 58
— reflection of from metals, 416
— transmission of through thin films,

422
— effect of magnetic field on, 484 et

seq.
— action of magnet on light through

thin films, 506
— scattering of by cylinders, 427
— — of by metallic spheres, 437
— velocity of through moving dielec-

tric, 549
Liveing and Dewar, dust in electric

discharge, 101
Lodge, electrical vibration, 329
— electrical resonance, 394
Longitudinal waves of magnetic in-

duction along wires, 297
Love on conjugate functions, 203
Ludeking, passage of electricity

through steam, 187

Macfarlane, spark potential, 84, 166

Magnet, permanent, 34
Magnetic force due to the motion of

Faraday tubes, 8, 12, 13
— field due to a moving charged

sphere, 19
— — due to rotating electrified

plates, 23, 27
— — steady, 28
— — induction of current due to

change of, 31
— induction, longitudinal waves of,

along wires, 297
— properties of iron in rapidly alter-

nating fields, 318
— force, decay of in cylinders, 347
— — of in spheres, 375, 378
— field, effect of on light, 484 et seq.
Magnets, action of, on electrodeless

discharge, 103
— — on discharge with electrodes,

128
— — on negative glow, 129
— — on negative rays, 118, 130
— — on positive column, 135
— — distribution of negative glow

over electrodes, 135
— — striations, 138
— reflection of light from, 484 et seq.
— action of light passing through thin

films, 506
Matteuchi arc discharge, 162
Mechanical effects due to negative

rays, 121
— — produced by electric discharge,

170
— force on current, 14
— — a moving charged sphere, 21
— — between flat conductors convey-

ing alternating currents, 296
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Meissner, expansion due to discharge,
171, 175, 182

Mercury vapour, discharge through,
108

Metallic vapours, conductivity of, 55
Metals, opacity of, 47, 50
— conduction through, 48
— reflection of light from, 416
— transmissions of light through thin

films of, 422
Michell, plane electromagnetic waves,

437
— conjugate functions, 203
Mirrors, parabolic, for electromag-

netic waves, 402
Molecular streams, 116
Molecule, electric field required to

decompose, 188
Momentum of Faraday tubes, 8, 256,

278
— — a moving electrified sphere, 19
Moulton and Spottiswoode, electric

discharge, 116, 121, 125
Moving dielectrics, electromotive in-

tensity in, 548
— — velocity of light through, 549
Müller and de la Rue, electric dis-

charge, 67, 78, 89, 109, 111, 166,
169, 170

Multiple arc, electrical vibrations
along wires in, 337

— — impedance of wires in, 520
— — self-induction of wires in, 518

Nahrwold, leakage of electricity
through air, 52, 167

Negative column, 108
— dark space, second, 109
— electrode, quasi, produced by con-

traction of tube, 121

— — potential fall at, 152
— glow, 108
— — action of magnet on, 129
— — distribution over electrode, 135
— and positive discharges, difference

between, 165
— rays, 116
— — action of a magnet on, 118
— — mechanical effects produced by,

121
— — opacity of substances to, 123
— — phosphorescence due to, 118,

130
— — repulsion of, 119, 126
— — shadows cast by, 117
Negreano, specific inductive capacity,

470
Niven, C., on the functions ‘S’ and

‘E’, 360
Nowak and Romich, specific inductive

capacity, 470

Opacity of metals, 47
— of substances to the negative rays,

123
Oscillations, electrical, on cylinders,

340
— — on spheres, 358
Oscillatory discharge, 326
Oxygen, glow produced by discharge

in, 180
Ozone, production of, 175
Ozonizer, 174

Paalzow, electromagnetic waves, 463
Parabolic mirrors for electromagnetic

waves, 402
Paschen, spark discharge, 67, 84, 89
Passage of electricity across junction

of a metal and a gas, 96
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Peace, spark potential, 67–75, 83 et
seq., 157

Permanent magnet, 34
Perrot, decomposition of steam, 43,

177 et seq., 186
Phosphorescence, due to magnetic

rays, 118
— — to positive column, 121
Phosphorescent glow, 176, 180
Plücker, effect of magnet on discharge,

116, 129
Plates, rotating electrified, 23–28
Polarization, 5, 37
— angle of for electromagnetic waves,

404
Positive and negative discharge, dif-

ference between, 165
Positive column, 109
— — effect of magnet on, 135
— — potential gradient in, 142
— — striations in, 109
— — velocity of, 113
Potential difference at cathode, 147,

150 et seq.
— — required to produce a spark in

different gases, 89
— distribution of along discharge

tube, 138
— gradient in positive column, 142,

155
— — at low pressures, 142
Potier, conjugate functions, 203
Poynting’s theorem, 303
Poynting, transfer of energy in electric

field, 9
Pressure, connection between and

spark potential, 83 et seq.
— critical, 83
Priestley’s History of Electricity, 53,

117
Pringsheim, combination of hydrogen

and chlorine, 154
Propagation of light through moving

dielectrics, 548
— velocity of slowly alternating cur-

rents along a wire, 266
— — of moderately rapid currents

along a wire, 273
— — of very rapid currents along a

wire, 274
— — of electromagnetic waves along

a wire, 452
Pryson and Foster, spark potential,

72
Puluj, dark space, 106

Quincke, transmission of light through
thin films, 422

Radiant matter, 118
Rate of decay of slowly alternating

currents along a wire, 267
— — of moderately rapid currents,

272
— — of very rapid currents, 274
— — of currents in cylinders, 347
— — of currents in spheres, 375, 378
— — of oscillation in Hertz’s vibra-

tor, 395
— — of oscillation on cylinders, 345
— — of oscillation on spheres, 367
Rayleigh, Lord, Theory of Sound, 349,

352, 360, 443
— — concentration of alternating

current, 255
— — distribution of alternating cur-

rents, 512 et seq.
— — metallic reflection, 419
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— — scattering of light by fine par-
ticles, 431, 451

Reflection of electromagnetic waves,
397

— — electromagnetic waves from a
grating, 404, 424

— — light from a magnet, 484
— — light from metals, 416
Refraction of electromagnetic waves,

404
‘Refractive Indices’ of metals, 420
Repulsion, electromagnetic, 563
— of negative rays, 119, 126
Resistance of a conductor, 45
Resonance, 393
Resonator, 390
Richarz and R. v. Helmholtz, steam

jet, 183
Righi, electrification by light, 58, 67
— reflection from a magnet, 484
Ritter, electromagnetic waves, 463
Roberts-Austen, conduction through

alloys, 50
Romich and Nowak, specific inductive

capacity, 470
Röntgen, rotating disc, 23, 27
— discharge through gases, 90
Rosa, specific inductive capacity, 470
Rotating electrified plates, 23
— sphere in a symmetrical magnetic

field, 539 et seq.
— — in an unsymmetrical field, 551

et seq.
Rotation of plane of polarization of

light, 484
— — of polarization by a thin film,

506
Routh’s Rigid Dynamics, 481
Rowland, rotating disc, 23

Rowland and Hutchinson, rotating
disc, 23–27

Rubens, metallic reflection, 421
— electromagnetic waves, 463
Rubensx and Arons, velocity of elec-

tromagnetic waves, 474

Sack, temperature coefficients of elec-
trolytes, 49

Sage, Le, theory of gravitation, 15
Sarasin and De la Rive, reflection of

electromagnetic waves, 398
— — electromagnetic waves along

wires, 460
Scattering of electromagnetic waves

by a cylinder, 427
— of electromagnetic waves by a

sphere, 437
Schuster, discharge through gases, 68,

78, 106–108, 155, 187
Schwarz’s transformation, 203
Schwarz, conjugate functions, 203
Screening, electric, 403
Searle, experiment on alternating cur-

rents, 514
Self-induction, expression for, for vari-

able currents, 288
— — for flat conductors, 291
— — of a net-work of wires, 522
— — of two wires in parallel, 518
— — and capacity, 532
Shadows cast by negative rays, 117
Siemens, ozonizer, 174
Sissingh, reflection of light from a

magnet, 484
‘Skin’, electrical, 255, 276
Sohncke, electrification by evapora-

tion, 53
Spark, discharge, 67 et seq.
— length, connection between and
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potential difference, 68 et seq.
— length, effect of nature of elec-

trodes on, 67
— length, effect of on critical pres-

sure, 86
— length, effect of size of electrode

on, 67
— potential difference required to

produce in a variable field, 80
— potential effect of pressure on, 83

et seq.
— potential in different gases, 89
— — effect of temperature on, 90
— effects of rapid alternations in field

on, 181
Specific inductive capacity, 469
‘Spectroscopy, Radiant Matter’, 118
Sphere, charged moving, magnetic

force due to, 19
— charged moving, momentum of, 19
— charged moving, kinetic energy of,

21
— charged moving, force acting on,

21
— rotating in a symmetrical magnetic

field, 539 et seq.
— rotating in an unsymmetrical field,

551 et seq.
— electrical oscillations on, 358
— period of these oscillations, 366
— field of force round vibrating, 367
— vibrations of concentric spheres,

370
— decay of electric currents in, 375,

378
— scattering of light by, 437
‘Spluttering’ of electrodes, 58
Spottiswoode and Moulton, electric

discharge, 116, 121, 126, 127, 138,

140, 192
Spottiswoode, on striations, 109
Stanton, escape of electricity from

hot metals, 201
Steady current, motion of Faraday

tubes in neighbourhood of, 36
Steam, decomposition of by spark,

177
Stokes, theorem, 10
— on the functions ‘S’ and ‘E’, 360
Stoletow, electrification by light, 58
Striations, 109
— effect of magnetic force on, 138
— variation of, with density of gas,

109
Surface tension, effect of electrifica-

tion on, 64

Temperature, effect of, on spark po-
tential, 90

— effect of, on conductivity, 49
Theory of electric discharge, 184
Thompson, Elihu, electromagnetic re-

pulsion, 563
Time of ‘relaxation’, 46
— — vibration of adjacent electrical

systems, 535
— — vibration of electricity on a

cylinder, 340, 343
— — vibration of electricity on a

sphere, 366
— — vibration of two spheres con-

nected by a wire, 324
Times involved in electric discharge,

127
Töpler, disturbance produced by

spark, 172
Transfer of energy, 9, 303
Transformation, Schwarz’s, 203
Transformer, heat produced in, 313
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Trouton, angle of polarization for elec-
tromagnetic waves, 405

— influence of size of reflector on
Hertz’s experiments, 437

Trowbridge, decay of vibrations along
iron wires, 335

Tube, heat produced in under variable
magnetic field, 318

Tubes of electric force, 1

Ultra-violet light, effect of, on electric
discharge, 56

Vacuum an insulator, 96
Velocity of Faraday tube, 11
— — positive column, 113
— — propagation of moderately rapid

currents along wires, 273
— — propagation of slowly alternat-

ing currents along wires, 266
— — propagation of very rapid cur-

rents along wires, 274
— — electromagnetic waves along

wires, 452
— — light through moving dielectrics,

549
Vibrations along wires in multiple

arc, 337
Vibrations, decay of, in Hertz’s vi-

brator, 395
— — on cylinders, 345
— — on spheres, 367
Vibrations of electrical systems, 323

et seq.
— — electrical systems, Feddersen

on, 328
— — electrical systems, Lodge on,

329
— — electrical systems, Lord Kelvin

on, 328

Vibrator, Electrical, 387
‘Volta, potential’, 62

Walker, electromagnetic repulsion,
563

Warburg, leakage of electricity
through air, 52

— potential fall at cathode, 152 et
seq.

Waves, electromagnetic, 387
— — along wires, 452
— — production of, 387
— — reflection of, 397
— — reflection of from grating, 404
— — refraction of from grating, 404
— — Sarasin’s and de la Rive’s ex-

periments on, 398
— — scattering of from cylinders, 427
— — scattering of from spheres, 437
— — theory of reflection of from in-

sulators, 405
— — theory of reflection of from met-

als, 413
Wesendonck, positive and negative

discharge, 166, 167
Wheatstone’s Bridge with alternating

current, 530
Wheatstone, velocity of discharge, 113
Wiedemann’s Elektricität, 56
Wiedemann, E., and Ebert, effect of

ultra-violet light, 57
Wiedemann, E., on electric discharge,

106, 163, 164
Wiedemann, G. and E., heat pro-

duced by electric discharge, 164
Wires, electromagnetic waves along,

452
— Sarasin’s and de la Rive’s experi-

ments on, 460
Wolf and Lenard, action of ultra-
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violet light, 53, 57
Wolf, effect of pressure on spark po-

tential, 83
Worthington, electric strength of a

vacuum, 96

Zahn, von, velocity of molecules in
electric discharge, 113

THE END.
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