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PREFACE.

THE present work is designed as a text-book of Astronomy
suited to the general course in our colleges and schools of science,
and is meant to supply that amount of information upon the subject
which may fairly be expected of every “liberally educated” person.
While it assumes the previous discipline and mental maturity usu-
ally corresponding to the latter years of the college course, it does
not demand the peculiar mathematical training and aptitude nec-
essary as the basis of a special course in the science—only the most
elementary knowledge of Algebra, Geometry, and Trigonometry is
required for its reading. Its aim is to give a clear, accurate, and
justly proportioned presentation of astronomical facts, principles,
and methods in such a form that they can be easily apprehended
by the average college student with a reasonable amount of effort.

The limitations of time are such in our college course that proba-
bly it will not be possible in most cases for a class to take thoroughly
everything in the book. The fine print is to be regarded rather as
collateral reading, important to anything like a complete view of
the subject, but not essential to the course. Some of the chapters
can even be omitted in cases where it is found necessary to abridge
the course as much as possible; e.g., the chapters on Instruments
and on Perturbations.

While the work is no mere compilation, it makes no claims to
special originality: information and help have been drawn from all
available sources. The author is under great obligations to the
astronomical histories of Grant and Wolf, and especially to Miss
Clerke’s admirable “History of Astronomy in the Nineteenth Cen-
tury.” Many data also have been drawn from Houzeau’s valuable
“Vade Mecum de I’ Astronomie.”

It has been intended to bring the book well down to date, and
to indicate to the student the sources of information on subjects
which are necessarily here treated inadequately on account of the
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limitations of time and space.

Special acknowledgments are due to Professor Langley and to
his publishers, Messrs. Ticknor & Co., for the use of a number of
illustrations from his beautiful book, “The New Astronomy”; and
also to D. Appleton & Co. for the use of several cuts from the au-
thor’s little book on the Sun. Professor Trowbridge of Cambridge
kindly provided the original negative from which was made the cut
illustrating the comparison of the spectrum of iron with that of the
sun. Warner & Swasey of Cleveland and Fauth & Co. of Washing-
ton have also furnished the engravings of a number of astronomical
instruments.

Professors Todd, Emerson, Upton, and McNeill have given most
valuable assistance and suggestions in the revision of the proof; as
indeed, in hardly a less degree, have several others.

The author will consider it a great favor if those who may use
the book will kindly communicate to him, either directly or through
the publishers, any errata, in order that they may be promptly
corrected.

PRINCETON, N. J., August, 1888.

NOTE. In this issue of the book a number of errors which appeared in the
first impression have been corrected.

April, 1889.
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INTRODUCTION.

1. Astronomy (dotpov vouoc) is the science which treats of
the heavenly bodies. As such bodies we reckon the sun and moon,
the planets (of which the earth is one) and their satellites, comets
and meteors, and finally the stars and nebulze.

We have to consider in Astronomy:—

(a) The motions of these bodies, both real and apparent, and
the laws which govern these motions.

(b) Their forms, dimensions, and masses.

(¢) Their nature and constitution.

(d) The effects they produce upon each other by their attrac-
tions, radiations, or by any other ascertainable influence.

It was an early, and has been a most persistent, belief that the
heavenly bodies have a powerful influence upon human affairs, so
that from a knowledge of their positions and “aspects” at critical
moments (as for instance at the time of a person’s birth) one could
draw up a “horoscope” which would indicate the probable future.

The pseudo-science which was founded on this belief was named
Astrology,—the elder sister of Alchemy,—and for centuries Astron-
omy was its handmaid; i.e., astronomical observations and calcula-
tions were made mainly in order to supply astrological data.

At present the end and object of astronomical study is chiefly
knowledge pure and simple; so far as now appears, its development
has less direct bearing upon the material interests of mankind than
that of any other of the natural sciences. It is not likely that great
inventions and new arts will grow out of its laws and principles,
such as are continually arising from physical, chemical, and biolog-
ical discoveries, though of course it would be rash to say that such
outgrowths are impossible. But the student of Astronomy must ex-
pect his chief profit to be intellectual, in the widening of the range
of thought and conception, in the pleasure attending the discovery
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of simple law working out the most complicated results, in the de-
light over the beauty and order revealed by the telescope in systems
otherwise invisible, in the recognition of the essential unity of the
material universe, and of the kinship between his own mind and the
infinite Reason that formed all things and is immanent in them.

At the same time it should be said at once that, even from the
lowest point of view, Astronomy is far from a useless science. The
art of navigation depends for its very possibility upon astronomical
prediction. Take away from mankind their almanacs, sextants, and
chronometers, and commerce by sea would practically stop. The
science also has important applications in the survey of extended
regions of country, and the establishment of boundaries, to say noth-
ing of the accurate determination of time and the arrangement of
the calendar.

It need hardly be said that Astronomy is not separated from
kindred sciences by sharp boundaries. It would be impossible, for
instance, to draw a line between Astronomy on one side and Geology
and Physical Geography on the other. Many problems relating to
the formation and constitution of the earth belong alike to all three.

2. Astronomy is divided into many branches, some of which, as
ordinarily recognized, are the following:—

1. Descriptive Astronomy.—This, as its name implies, is
merely an orderly statement of astronomical facts and principles.

2. Practical Astronomy.—This is quite as much an art as a
science, and treats of the instruments, the methods of observation,
and the processes of calculation by which astronomical facts are
ascertained.

3. Theoretical Astronomy, which treats of the calculations
of orbits and ephemerides, including the effects of so-called “per-
turbations.”

4. Mechanical Astronomy, which is simply the application
of mechanical principles to explain astronomical facts (chiefly the
planetary and lunar motions). It is sometimes called Gravitational
Astronomy, because, with few exceptions, gravitation is the only
force sensibly concerned in the motions of the heavenly bodies. Un-
til within thirty years this branch of the science was generally des-
ignated as Physical Astronomy, but the term is now objectionable
because of late it has been used by many writers to denote a very
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different and comparatively new branch of the science; viz.,—

5. Astronomical Physics, or Astro-physics.—This treats
of the physical characteristics of the heavenly bodies, their bright-
ness and spectroscopic peculiarities, their temperature and radia-
tion, the nature and condition of their atmospheres and surfaces,
and all phenomena which indicate or depend on their physical con-
dition.

6. Spherical Astronomy.—This, discarding all consideration
of absolute dimensions and distances, treats the heavenly bodies
simply as objects moving on the “surface of the celestial sphere”: it
has to do only with angles and directions, and, strictly regarded, is
in fact merely Spherical Trigonometry applied to Astronomy.

3. The above-named branches are not distinct and separate,
but they overlap in all directions. Spherical Astronomy, for instance,
finds the demonstration of many of its formulee in Gravitational As-
tronomy, and their application appears in Theoretical and Practical
Astronomy. But valuable works exist bearing all the different titles
indicated above, and it is important for the student to know what
subjects he may expect to find discussed in each; for this reason it
has seemed worth while to name and define the several branches,
although they do not distribute the science between them in any
strictly logical and mutually exclusive manner.

In the present text-book little regard will be paid to these sub-
divisions, since the object of the work is not to present a complete
and profound discussion of the subject such as would be demanded
by a professional astronomer, but only to give so much knowledge
of the facts and such an understanding of the principles of the sci-
ence as may fairly be considered essential to a liberal education. If
this result is gained in the reader’s case, it may easily happen that
he will wish for more than he can find in these pages, and then he
must have recourse to works of a higher order and far more difficult,
dealing with the subject more in detail and more thoroughly.

To master the present book no further preparation is neces-
sary than a very elementary knowledge of Algebra, Geometry,
and Trigonometry, and a similar acquaintance with Mechanics and
Physics, especially Optics. While nothing short of high mathemati-
cal attainments will enable one to become eminent in the science, yet
a perfect comprehension of all its fundamental methods and princi-
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ples, and a very satisfactory acquaintance with its main results, is
quite within the reach of every person of ordinary intelligence, with-
out any more extensive training than may be had in our common
schools. At the same time the necessary statements and demonstra-
tions are so much facilitated by the use of trigonometrical terms and
processes that it would be unwise to dispense with them entirely in
a work to be used by pupils who have already become acquainted
with them.

In discussing the different subjects which present themselves,
the writer will adopt whatever plan appears best fitted to convey to
the student clear and definite ideas, and to impress them upon the
mind. Usually it will be best to proceed in the Euclidean order, by
first stating the fact or principle in question, and then explaining its
demonstration. But in some cases the inverse process is preferable,
and the conclusion to be reached will appear gradually unfolding
itself as the result of the observations upon which it depends, just
as its discovery came about.

The frequent references to “Physics” refer to the “Elementary
Text-Book of Physics,” by Anthony & Brackett; 3d edition, 1887.
Wiley & Sons, N.Y.
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CHAPTER 1.

THE “DOCTRINE OF THE SPHERE,” DEFINITIONS, AND
GENERAL CONSIDERATIONS.

ASTRONOMY, like all the other sciences, has a terminology of
its own, and uses technical terms in the description of its facts and
phenomena. In a popular essay it would of course be proper to avoid
such terms as far as possible, even at the expense of circumlocutions
and occasional ambiguity; but in a text-book it is desirable that the
reader should be introduced to the most important of them at the
very outset, and made sufficiently familiar with them to use them
intelligently and accurately.

4. The Celestial Sphere.—To an observer looking up to the
heavens at night it seems as if the stars were glittering points at-
tached to the inner surface of a dome; since we have no direct per-
ception of their distance there is no reason to imagine some nearer
than others, and so we involuntarily think of the surface as spher-
ical with ourselves in its centre. Or if we sometimes feel that the
stars and other objects in the sky really differ in distance, we still
instinctively imagine an immense sphere surrounding and enclosing
all. Upon this sphere we imagine lines and circles traced, resem-
bling more or less the meridians and parallels upon the surface of
the earth, and by reference to these circles we are able to describe
intelligently the apparent positions and motions of the heavenly
bodies.

This celestial sphere may be regarded in either of two different
ways, both of which are correct and lead to identical results.

(a) We may imagine it, in the first place, as transparent, and of
merely finite (though undetermined) dimensions, but in some way
so attached to, and connected with, the observer that his eye always
remains at its centre wherever he goes. Each observer, in this way
of viewing it, carries his own sky with him, and is the centre of his
own heavens.

(b) Or, in the second place,—and this is generally the more
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convenient way of regarding the matter,—we may consider the ce-
lestial sphere as mathematically infinite in its dimensions; then, let
the observer go where he will, he cannot sensibly get away from
its centre. Its radius being “greater than any assignable quantity,”
the size of continents, the diameter of the earth, the distance of the
sun, the orbits of planets and comets, even the spaces between the
stars, are all insignificant, and the whole visible universe shrinks
relatively to a mere point at its centre. In what follows we shall use
this conception of the celestial sphere.’

The apparent place of any celestial
body will then be the point on the ce-
lestial sphere where the line drawn from
the eye of the observer in the direction in
which he sees the object, and produced
indefinitely, pierces the sphere. Thus, in
A, B, C are the apparent places
of a, b, and ¢, the observer being at O.
The apparent place of a heavenly body ev-
idently depends solely upon its direction,
and is wholly independent of its distance
from the observer.

5. Linear and Angular Dimensions.—Linear dimensions
are such as may be expressed in linear units; i.e., in miles, feet,
or inches; in metres or millimetres. Angular dimensions are ex-
pressed in angular units; i.e., in right angles, in radians,? or (more

ITo most persons the sky appears, not a true hemisphere, but a flattened
vault, as if the horizon were more remote than the zenith. This is a subjective
effect due mainly to the intervening objects between us and the horizon. The
sun and moon when rising or setting look much larger than when they are
higher up, for the same reason.

2A radian is the angle which is measured by an arc equal in length to radius.
Since a circle whose radius is unity has a circumference of 27, and contains
360°, or 21,600, or 1,296,000”, it follows that a radian contains <3260> ° or

™

21 ' 12 "
< 600) , OF <96000) ; i.e. (approximately), a radian = 57.3° = 3437.7" =

27 27
206264.8"”. Hence, to reduce to seconds of arc an angle expressed in radians,
we must multiply it by the number 206264.8; a relation of which we shall have
to make frequent use.
See Halsted’s Mensuration, p. 25.
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commonly in astronomy) in degrees, minutes, and seconds. Thus,
for instance, the linear semi-diameter of the sun is about 697,000
kilometers (433,000 miles), while its angular semi-diameter is about
16’, or a little more than a quarter of a degree. Obviously, angular
units alone can properly be used in describing apparent distances
and dimensions in the sky. For instance, one cannot say correctly
that the two stars which are known as “the pointers” are two or five
or ten feet apart: their distance is about five degrees.

It is sometimes convenient to speak of “angular area,” the unit
of which is a “square degree” or a “square minute”; i.e., a small
square in the sky of which each side is 1° or 1’. Thus we may
compare the angular area of the constellation Orion with that of
Taurus, in square degrees, just as we might compare Pennsylvania
and New Jersey in square miles.

6. Relation between the Distance and Apparent Size of
Object.—Suppose a globe having a radius BC' equal to r. As seen
from the point A its apparent (i.e., angular) semi-diameter
will be BAC' or s, its distance being AC or R.

FiG. 2.

We have immediately from Trigonometry, since B is a right an-
gle,
) r
sins = 7
If, as is usual in Astronomy, the diameter of the object is small
as compared with its distance, we may write

r
R’

which gives s in radians (not in degrees or seconds). If we wish it
in the ordinary angular units,

S =

& = 57.3%, or s = 206264.8}%.

In either form of the equation we see that the apparent diameter
varies directly as the linear diameter, and inversely as the distance.
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In the case of the moon, R = about 239,000 miles; and r, 1081

miles. Hence s = 8L — _L of 5 radian, which is a little more
than }L of a degree.

239000 — 221

It may be mentioned here as a rather curious fact that most persons
say that the moon appears about a foot in diameter; at least, this seems
to be the average estimate. This implies that the surface of the sky
appears to them only about 110 feet away, since that is the distance at
which a disc one foot in diameter would have an angular diameter of -1

. 110
of a radian, or 5°.

7. Vanishing Point.—Any system of parallel lines produced
in one direction will appear to pierce the celestial sphere at a sin-
gle point. They actually pierce it at different points, separated on
the surface of the sphere by linear distances, equal to the actual
distances between the lines, but on the infinitely distant surface
these linear distances, being only finite, become invisible, subtend-
ing at the centre angles less than anything assignable. The different
points, therefore, coalesce into a spot of apparently infinitesimal
size—the so-called “vanishing point” of perspective. Thus the axis
of the earth and all lines parallel to this axis point to the celestial
pole.

In order to describe intelligibly the apparent position of an ob-
ject in the sky, it is necessary to have certain points and lines from
which to reckon. We proceed to define some of these which are most
frequently used.

8. The Zenith.—The Zenith is the point vertically overhead,
i.e., the point where a plumb-line, produced upwards, would pierce
the sky: it is determined by the direction of gravity where the ob-
server stands.

If the earth were exactly spherical, the zenith might also be de-
fined as the point where a line drawn from the centre of the earth
upward through the observer meets the sky. But since, as we shall
see hereafter, the earth is not an exact globe, this second defini-
tion indicates a point known as the Geocentric Zenith, which is not
identical with the True or Astronomical Zenith, determined by the
direction of gravity.

9. The Nadir.—The Nadir is the point opposite the zenith—
under foot, of course.
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Both zenith and nadir are derived from the Arabic, which lan-
guage has also given us many other astronomical terms.

10. Horizon.—The Horizon! is a great circle of the celestial

sphere, having the zenith and nadir as its poles: it is therefore half-
way between them, and 90° from each.

A horizontal plane, or the plane of the horizon, is a plane per-
pendicular to the direction of gravity, and the horizon may also be
correctly defined as the intersection of the celestial sphere by this
plane.

Many writers make a distinction between the sensible and ratio-
nal horizons. The plane of the sensible horizon passes through the
observer; the plane of the rational horizon passes through the cen-
tre of the earth, parallel to the plane of the sensible horizon: these
two planes, parallel to each other, and everywhere about 4000 miles
apart, trace out on the sky the two horizons, the sensible and the
rational. It is evident, however, that on the infinitely distant sur-
face of the celestial sphere, the two traces sensibly coalesce into one
single great circle, which is the horizon as first defined. In strict-
ness, therefore, while we can distinguish between the two horizontal
planes, we get but one horizon circle in the sky.

11. The Visible Horizon is the line where sky and earth
meet. On land it is an irregular line, broken by hills and trees,
and of no astronomical value; but at sea it is a true circle, and of
great importance in observation. It is not, however, a great circle,
but, technically speaking, only a small circle; depressed below the
true horizon by an amount depending upon the observer’s elevation
above the water. This depression is called the Dip of the Horizon,
and will be discussed further on.

12. Vertical Circles.—These are great circles passing through
the zenith and nadir, and therefore necessarily perpendicular to the
horizon—secondaries to it, to use the technical term.

Parallels of Altitude, or Almucantars.—These are small cir-
cles parallel to the horizon: the term Almucantar is seldom used.

The points and circles thus far defined are determined entirely
by the direction of gravity at the station occupied by the observer.

!Beware of the common, but vulgar, pronunciation, Hérizon.
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13. The Diurnal Rotation of the Heavens.—If one watches
the sky for a few hours some night, he will find that, while certain
stars rise in the east, others set in the west, and nearly all the con-
stellations change their places. Watching longer and more closely, it
will appear that the stars move in circles, uniformly, in such a way
as not to disturb their relative configurations, but as if they were
attached to the inner surface of a revolving sphere, turning on its
axis once a day. The path thus daily described by a star is called
its “diurnal circle.”

It is soon evident that in our latitude the visible “pole” of this
sphere—the point about which it turns—is in the north, not quite
half-way up from the horizon to the zenith, for in that region the
stars hardly move at all, but keep their places all night long.

14. The Poles.—The Poles may be defined as the two points
in the sky, one in the northern hemisphere and one in the southern,
where a star’s diurnal circle reduces to zero; i.e., points where, if a
star were placed, it would suffer no apparent change of place during
the whole twenty-four hours. The line joining these poles is, of
course, the axis of the celestial sphere, about which it seems to
rotate daily.

The exact place of the pole may be found by observing some
star very near the pole at two times 12 hours apart, and taking the
middle point between the two observed places of the star.

The definition of the pole just given is independent of any theory
as to the cause of the apparent rotation of the heavens. If, however,
we admit that it is due to the earth’s rotation on its axis, then we
may define the poles as the points where the earth’s azis produced
pierces the celestial sphere.

15. The Pole-star (Polaris).—The place of the northern pole
is very conveniently marked by the Pole-star, a star of the second
magnitude, which is now only about 1%" from the pole: we say
now, because on account of a slow change in the direction of the
earth’s axis, called “precession” (to be discussed later), the distance
between the pole-star and the pole is constantly changing, and has
been for several centuries gradually decreasing.

The pole-star stands comparatively solitary in the sky, and may
easily be recognized by means of the so-called “pointers,”—two stars
in the “dipper” (in the constellation of Ursa Major)—which point
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very nearly to it, as shown in The pole is very nearly on the
line joining Polaris with the star Mizar (¢ Urs. Maj., at the bend in
the handle of the dipper), and at a distance just about one-quarter
of the distance between the pointers, which are nearly 5° apart.

The southern pole, unfortunately, is not so marked by any con-
spicuous star.

F1c. 3.—The Pole Star and the Pointers.

16. The Celestial Equator, or Equinoctial Circle.—This
is a great circle midway between the two poles, and of course 90°
from each. It may also be defined as the intersection of the plane
of the earth’s equator with the celestial sphere. It derives its name
from the fact that, at the two dates in the year when the sun crosses
this circle—about March 20 and Sept. 22—the day and night are
equal in length.

17. The Vernal Equinox, or First of Aries.—The Equinox,
strictly speaking, is the time when the sun crosses the equator, but
the term has come by accommodation to denote also the point where
it crosses, though in strictness it should be called the “FEquinoctial
Point.” This crossing occurs twice a year, once in September and
once in March, and the Vernal Equinox is the point on the equator
where the sun crosses it in the spring. It is sometimes called the
Greenwich of the Celestial Sphere, because it is used as a reference
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point in the sky, much as Greenwich is on the earth. Its position is
not marked by any conspicuous star.

Why this point is also called the “First of Aries” will appear
later, when we come to speak of the zodiac and its “signs.”

18. Hour-Circles.—Hour-circles are great circles of the celes-
tial sphere passing through its poles, and consequently perpendicu-
lar to the celestial equator. They correspond exactly to the meridi-
ans of the earth, and some writers call them “Celestial Meridians”;
but the term is objectionable, as likely to lead to confusion with the
Meridian, to be noted immediately.

19. The Meridian and Prime Vertical.—The Meridian is
the great circle passing through the pole and the zenith. Since it
is a great circle, it must necessarily pass through both poles, and
through the nadir as well as the zenith, and must be perpendicular
both to the equator and to the horizon.

It may also be correctly defined as the Vertical Clircle which
passes through the pole; or, again, as the Hour-Circle which passes
through the zenith, since all vertical circles must pass through the
zenith, and all hour-circles through the pole.

The Prime Vertical is the Vertical Circle (passing through the
zenith) at right angles to the meridian; hence lying east and west
on the celestial sphere.

20. The Cardinal Points.—The North and South Points are
the points on the horizon where it is intersected by the meridian.
The East and West Points are where it is cut by the prime vertical,
and also by the equator. The North Point, which is on the horizon,
must not be confounded with the North Pole, which is not on the
horizon, but at an elevation equal (see to the latitude of
the observer.

With these circles and points of reference we have now the means
to describe intelligibly the position of a heavenly body, in several
different ways.

We may give its altitude and azimuth, or its declination and
hour-angle; or, if we know the time, its declination and right ascen-
sion. Either of these pairs of co-ordinates, as they are called, will
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define its place in the sky.
21. Altitude and Zenith Distance (Fig. 4).—The Altitude

of a heavenly body is its angular elevation above the horizon, and is
measured by the arc of the vertical circle passing through the body,
and intercepted between it and the horizon.

The Zenith Distance of a body is simply its angular distance
from the zenith, and is the complement of the altitude. Altitude +
Zenith Distance = 90°.

22. Azimuth and Amplitude (Fig. 4).—The Azimuth of a
body is the angle at the zenith, between the meridian and the vertical
circle, which passes through the body. It is measured also by the arc
of the horizon intercepted between the north or south point, and
the foot of this vertical. The word is of Arabic origin, and has the
same meaning as the true bearing in surveying and navigation.

Fi1G. 4.—The Horizon and Vertical Circles.
O, the place of the Observer. | M, some Star.
0OZ, the Observer’s Vertical. | ZM H, arc of the Star’s Vertical Circle.
Z, the Zenith; P, the Pole. |TMR, the Star’s Almucantar.
SENW , the Horizon. Angle TZM, or arc SWNEH, Star’s Azimuth.
SZ PN, the Meridian. Arc HM, Star’s Altitude.
EZW , the Prime Vertical. Arc ZM, Star’s Zenith Distance.

The Amplitude of a body is the complement of the azimuth.
Azimuth + Amplitude = 90°.

There are various ways of reckoning azimuth. Many writers express
it in the same manner as the bearing is expressed in surveying; i.e., SO
many degrees east or west of north or south; N. 20° E., etc. The more
usual way at present is, however, to reckon it in degrees from the south
point clear round through the west to the point of beginning: thus an
object in the SW. would have an azimuth of 45°; in the NW., 135°; in
the N., 180°; in the NE., 225°; and in the SE., 315°. For example, to
find a star whose azimuth is 260°, and altitude 60°, we must face N. 80°
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E., and then look up two-thirds of the way to the zenith. The object
in this case has an amplitude of 10° N. of W., and a zenith distance of
30°. Evidently both the azimuth and altitude of a heavenly body are
continually changing, except in certain very special cases.

In [Fig. 4 SENW represents the horizon, S being the south
point, and Z the zenith. The angle SZ M, which numerically equals
the arc SH, is the Azimuth of the star M; while EZM, or EH is
its Amplitude. M H is its Altitude, and ZM its Zenith Distance.

23. Declination and Polar Distance (Fig. 5).—The Decli-
nation of a heavenly body is its angular distance north or south of
the celestial equator, and is measured by the arc of the hour-circle
passing through the object, intercepted between it and the equa-
tor. It is reckoned positive (4) north of the celestial equator, and
negative (—) south of it. Evidently it is precisely analogous to the
latitude of a place on the earth. The north-polar distance of a star
is its angular distance from the North Pole, and is simply the com-
plement of the declination. Declination 4+ North-Polar Distance =
90°.

The declination of a star remains always the same; at least,
the slow changes that it undergoes need not be considered for our
present purpose. “Parallels of Declination” are small circles parallel
to the celestial equator.

24. The Hour-Angle (Fig. 5).—The Hour-Angle of a star is
the angle at the pole between the meridian and the hour-circle pass-
ing through the star. It may be reckoned in degrees; but it also may
be, and most commonly is, reckoned in hours, minutes, and seconds
of time; the hour being equivalent to fifteen degrees, and the minute
and second of time being equal to fifteen minutes and seconds of
arc respectively.

Of course the hour-angle of an object is continually changing,
being zero when the object is on the meridian, one hour, or fifteen
degrees, when it has moved that amount westward, and so on.

25. Right Ascension (Fig. 5).—The Right Ascension of a star
is the angle at the pole between the star’s hour-circle and the hour-
circle (called the Equinoctial Colure), which passes through the ver-
nal equinox.

It may be defined also as the arc of the equator, intercepted
between the vernal equinox and the foot of the star’s hour-circle.
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It is always reckoned from the equinox toward the east; some-
times in degrees, but usually in hours, minutes, and seconds of time.
The right ascension, like the declination, remains unchanged by the
diurnal motion.

26. Sidereal Time (Fig. 5).—For many astronomical purposes
it is convenient to reckon time, not by the sun’s position in the sky,
but by that of the vernal equinox.

FiG. 5.—Hour-Circles, etc.

O, place of the Observer; Z, his | PX P’ the Equinoctial Colure, or Zero
Zenith. Hour-Circle.

SENW, the Horizon. m, some Star.

POP’, line parallel to the Axis of the | Ym, the Star’s Declination; Pm, its
Earth. North-polar Distance.

P and P’, the two Poles of the Heav- | Angle mPR = arc QY, the Star’s
ens. (eastern) Hour-Angle; = 24® mi-

EQWT, the Celestial Equator, or nus Star’s (western) Hour-Angle.
Equinoctial. Angle XPm = arc XY, Star’s Right

X, the Vernal Equinox, or “First of Ascension, Sidereal time at the
Aries.” moment = 24" minus angle

XPQ.

The Sidereal Time at any moment may be defined as the hour-
angle of the vernal equinoz. 1t is sidereal noon, when the equinoctial
point is on the meridian; 1 o’clock (sidereal) when its hour-angle is
15°; and 23 o’clock when its hour-angle is 345°, i.e., when the vernal
equinox is an hour east of the meridian; the time being reckoned
round through the whole 24 hours. On account of the annual motion
of the sun among the stars, the Solar Day, by which time is reckoned
for ordinary purposes, is about 4 minutes longer than the sidereal
day. The exact difference is 3™ 56°.394 (sidereal), or just one day in
a year; there being 366}l sidereal days in the year, as against 365%
solar days.
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27. Observatory Definition of Right Ascension.—lIt is ev-
ident from the above definition of sidereal time, that we may also
define the Right Ascension of a star as the sidereal time taken the
star crosses the meridian. The Star and the Vernal Equinox are
both of them fixed points in the sky, and do not change their rel-
ative position during the sky’s apparent daily revolution; a given
star, therefore, always comes to the meridian of any observer the
same number of hours after the vernal equinox has passed; and this
number of hours is the sidereal time at the moment of the star’s
transit, and measures its right ascension. In the observatory, this
definition of right ascension is the most natural and convenient.

It is obvious that the right ascension of a star corresponds in the
sky exactly with the longitude of a place on the earth; terrestrial
longitude being reckoned from Greenwich, just as right ascension is
reckoned from the vernal equinox.

N.B.  We shall find hereafter that the stars have latitudes and
longitudes of their own; but unfortunately these celestial latitudes
and longitudes do not correspond to the terrestrial, and great care

is necessary to prevent confusion. (See|Art. 179|)

28. An armillary sphere, or some equivalent apparatus, is al-
most essential to enable a beginner to get correct ideas of the points,
circles, and co-ordinates defined above, but the figures will perhaps
be of assistance.

The first of them ([Fig. 4f) represents the horizon, meridian, and
prime vertical, and shows how the position of a star is indicated
by its altitude and azimuth. This framework of circles, depending
upon the direction of gravity, of course always remains apparently
unchanged in position, as if attached directly to the earth, while
the sky apparently turns around outside it.

The other figure represents the system of points and cir-
cles which depend upon the earth’s rotation, and are independent
of the direction of gravity. The vernal equinox and the hour-circles
apparently revolve with the stars while the pole remains fixed upon
the meridian, and the equator and parallels of declination, revolving
truly in their own planes, also appear to be at rest in the sky. But
the whole system of lines and points represented in the figure (hori-
zon and meridian alone excepted) may be considered as attached
to, or marked out upon, the inner surface of the celestial vault and
whirling with it.
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It need hardly be said that the “appearances are deceitful”—that
which is really carried around by the earth’s rotation is the observer,
with his plumb-line and zenith, his horizon and meridian; while the
stars stand still—at least, their motions in a day are insensible as
seen from the earth.

At the poles of the earth, which are, mathematically speaking, “sin-
gular” points, the definitions of the Meridian, of North and South, etc.,
break down.

There the pole (celestial) and zenith coincide, and any number of
circles may be drawn through the two points, which have now become
one. The horizon and equator coalesce, and the only direction on the
earth’s surface is due south (or north)—east and west have vanished.

A single step of the observer will, however, remedy the confusion:
zenith and pole will separate, and his meridian will again become deter-
minate.

29. To recapitulate: The direction of gravity at the point where
the observer stands determines the Zenith and Nadir, the Horizon,
and the Almucantars (parallel to the Horizon), and all the vertical
circles. One of the verticals, the Meridian, is singled out from the
rest by the circumstance that it passes through the pole of the sky,
marking the North and South Points where it cuts the horizon.

Altitude and Azimuth (or their complements, Zenith Distance
and Amplitude) are the co-ordinates which designate the position
of a body by reference to the Zenith and the Meridian.

Similarly, the direction of the earth’s axis (which is indepen-
dent of the observer’s place on the earth) determines the Poles, the
Equator, the Parallels of Declination, and the Hour-Circles. Two of
these Hour-Circles are singled out as reference lines; one of them, the
Meridian, which passes through the Zenith, and is a purely local ref-
erence line; the other, the Equinoctial Colure, which passes through
the Vernal Equinox, a point chosen from its relation to the sun’s
annual motion. Declination and Hour-Angle are the co-ordinates
which refer the place of a star to the Pole and the Meridian; while
Declination and Right Ascension refer it to the Pole and Equinoc-
tial Colure. The latter are the co-ordinates usually employed in
star-catalogues and ephemerides to define the positions of stars and
planets, and correspond exactly to Latitude and Longitude on the
earth, by means of which geographical positions are designated.
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30. Relation of the Apparent Diurnal Motion of the Sky
to the Observer’s Latitude.—Evidently the apparent motions
of the stars will be considerably influenced by the station of the
observer, since the place of the pole in the sky will depend upon
it. The Altitude of the pole, or its height in degrees above the
horizon, is always equal to the Latitude of the observer. Indeed, the
German word for latitude (astronomical) is Polhéhe; i.e., simply
“Pole-height.”

This will be clear from [Fig. 6] The latitude of a place is the angle
between its plumb-line and the plane of the equator; the angle ON(Q)
in the figure. [If the earth were truly spherical, N would coincide
with C| the centre of the earth. The ordinary definition of latitude
given in the geographies disregards the slight difference.]

z P ”

P/
\
H 0 \¢ H /

V3

N___E

(»)
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F1G. 6.—Relation of Latitude to the Elevation of the Pole.

Now the angle H'OP” is equal to ONQ), because their sides
are mutually perpendicular; and it is also the altitude of the pole,
because the line H H' is horizontal at O, and OP" is parallel to PP,
the earth’s axis, and therefore points to the celestial pole.

This fundamental relation, that the altitude of the celestial pole
is the Latitude of the observer, cannot be too strongly impressed on
the student’s mind. The usual symbol for the latitude of a place is

o.

31. The Right Sphere.—If the observer is situated at the
earth’s equator, i.e., in latitude zero (¢ = 0), the pole will be in the
horizon, and the equator will pass vertically overhead through the
zenith.

The stars will rise and set vertically, and their diurnal circles will
all be bisected by the horizon, so that they will be 12 hours above it
and 12 below. This aspect of the heavens is called the Right Sphere.
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32. The Parallel Sphere.—If the observer is at the pole of
the earth (¢ = 90°), then the celestial pole will be in the zenith,
and the equator will coincide with the horizon. If he is at the North
Pole, all stars north of the celestial equator will remain permanently
above the horizon, never rising or falling at all, but sailing around
on circles of altitude (or Almucantars) parallel to the horizon. Stars
in the Southern Hemisphere, on the other hand, would never rise to
view. As the sun and the moon move in such a way that during half
the time they are alternately north and south of the equator, they
will be half the time above the horizon and half the time below it.
The moon would be visible for about a fortnight at a time, and the
sun for six months.

Fi1G. 7.—The Oblique Sphere and Diurnal Circles.

33. The Oblique Sphere .—At any station between
the pole and equator the stars will move in circles oblique to the
horizon, SENW in the figure. Those whose distance from the ele-
vated pole is less than the latitude of the place will, of course, never
sink below the horizon,—the radius of the “Clircle of Perpetual Ap-
parition,” as it is called (the shaded cap around P in the figure),
being just equal to the height of the pole, and becoming larger as
the latitude increases. On the other hand, stars within the same
distance of the depressed pole will lie within the “Circle of Perpetual
Occultation,” and will never rise above the horizon.

A star exactly on the celestial equator will have its diurnal circle
EQW Q' bisected by the horizon, and will be above the horizon just
as long as below it. A star north of the equator (if the North Pole
is the elevated one) will have more than half of its diurnal circle
above the horizon, and will be visible more than half the time; as,
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for instance, a star at A: and of course the reverse will be true of
stars on the other side of the equator.! Whenever the sun is north
of the equator, the day will therefore be longer than the night for
all stations in northern latitude: how much longer will depend both
on the latitude of the place and the sun’s distance from the celestial
equator.

LA Celestial Globe will be of great assistance in studying these diurnal
circles. The north pole of the globe must be elevated to an angle equal to the
latitude of the observer, which can be done by means of the degrees marked
on the brass meridian. It will then at once be easily seen what stars never set,
which ones never rise, and during what part of the 24 hours any heavenly body
at a known distance from the equator is above or below the horizon.
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CHAPTER II.

ASTRONOMICAL INSTRUMENTS.

34. ASTRONOMICAL observations are of various kinds: some-
times we desire to ascertain the apparent distance between two bod-
ies at a given time; sometimes the position which a body occupies
at a given time, or the moment it arrives at a given circle of the
sky, usually the meridian. Sometimes we wish merely to examine
its surface, to measure its light, or to investigate its spectrum; and
for all these purposes special instruments have been devised.

We propose in this chapter to describe very briefly a few of the
most important.

35. Telescopes in General.—Telescopes are of two kinds, re-
fracting and reflecting. The former were first invented, and are
much more used, but the largest instruments ever made are reflec-
tors. In both the fundamental principle is the same. The large lens,
or mirror, of the instrument forms at its focus a real image of the
object looked at, and this image is then examined and magnified by
the eye-piece, which in principle is only a magnifying-glass.

In the form of telescope, however, introduced by Galileo,! and still
used as the “opera-glass,” the rays from the object-glass are intercepted
by a concave lens which performs the office of an eye-piece before they
meet at the focus to form the “real image.” But on account of the
smallness of the field of view, and other objections, this form of telescope
is never used when any considerable power is needed.

'In strictness, Galileo did not invent the telescope. Its first invention seems
to have been in 1608, by Lipperhey, a spectacle-maker of Middleburg, in Hol-
land; though the honor has also been claimed for two or three other Dutch
opticians. Galileo, in his “Nuncius Sydereus,” published in March, 1610, him-
self says that he had heard of the Dutch instruments in 1609, and by so hearing
was led to construct his own, which, however, far excelled in power any that had
been made previously; and he was the first to apply the telescope to Astronomy.
See Grant’s “History of Astronomy,” pp. 514 and seqq.
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36. Simple Refracting Telescope.—This consists essentially
as shown in the figure (Fig. 8), of a tube containing two lenses:
a single convex lens, A, called the object-glass; and another, of
smaller size and short focus, B, called the eye-piece. Recalling the
principles of lenses the student will see that if the instrument be
directed at a distant object, the moon, for instance, all the rays,
apaias, which fall upon the object-glass from a point at the top of
the moon, will be collected at a in the focal plane, at the bottom of
the image. Similarly rays from the bottom of the moon will go to b
at the top of the image; moreover, since the rays that pass through
the optical centre of the lens, o, are undeviated,! the angle agob
will equal boa; or, in other words, if the focal length of the lens
be five feet, for instance, then the image of the moon, seen from a
distance of five feet, will appear just as large as the moon itself does
in the sky,—it will subtend the same angle. If we look at it from
a smaller distance, say from a distance of one foot, the image will
look larger than the moon; and in fact, without using an eye-piece at
all, a person with normal eyes can obtain considerable magnifying
power from the object-glass of a large telescope. With a lens of ten
feet focal length, such as is ordinarily used in an 8-inch telescope,
one can easily see the mountains on the moon and the satellites of
Jupiter, by taking out the eye-piece, and putting the eye in the line
of vision some eight or ten inches back of the eye-piece hole.

F1Gc. 8. —Path of the Rays in the Astronomical Telescope.

The image is a real one; i.e., the rays that come from different
points in the object actually meet at corresponding points in the
image, so that if a photographic plate were inserted at ab, and
properly exposed, a picture would be obtained.

'In this explanation, we use the approximate theory of lenses (in which their
thickness is neglected), as given in the elementary text-books. The more exact
theory of Gauss and later writers would require some slight modifications in our
statements, but none of any material importance. For a thorough discussion,
see Jamin, “Traité de Physique,” or Encyc. Britannica,—Optics.
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If we look at the image with the naked eye, we cannot come
nearer to the image (unless near-sighted) than eight or ten inches,
and so cannot get any great magnifying power; but if we use a
magnifying-glass, we can approach much closer.

37. Magnifying Power.—If the eye-piece B is set at a dis-
tance from the image equal to its principal focal distance, then any
pencil of rays from any point of the image will, after passing the
lens, be converted into a parallel beam, and will appear to the eye
to come from a point at an infinite distance, as if from an object
in the sky. The rays which came from the top of the moon, for
instance, and are collected at a in the image, will reach the eye
as a beam parallel to the line ac, which connects a with the opti-
cal centre of the eye-piece. Similarly with the rays which meet at
b. The observer, therefore, will see the top of the moon’s disc in
the direction ck, and the bottom in the direction cl. It will appear
to him inverted, and greatly magnified; its apparent diameter, as
seen by the naked eye and measured by the angle aob (or its equal
booay); having been increased to acb. Since both these angles are
subtended by the same line ab, and are small (the , of course,
is much out of proportion), they must be inversely proportional to
the distance ob and cb; i.e., boa : bca = cb : ob; or, putting this
into words: The ratio between the natural apparent diameter of the
object, and its diameter as seen through the telescope, is equal to
the ratio between the focal lengths of the eye-lens and object-glass.
This ratio is called the magnifying power of the telescope, and is

therefore given by the simple formula M = —, where F' is the focal

length of the object-glass and f that of eye-piece,! while M is the
magnifying power.

If, for example, the object-glass have a focal length of thirty feet,
and the eye-piece of one inch, the magnifying power will be 360; the
power may be changed at pleasure by substituting different eye-
pieces, of which every large telescope has an extensive stock.

LA magnifying power of 1 is no magnifying power at all. Object and image
subtend equal angles. A magnifying power denoted by a fraction, say i would
be a minifying power, making the object look smaller, as when we look at an
object through the wrong end of a spy-glass.
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38. Brightness of Image.—Since all the rays from a star
which fall upon the large object-glass are transmitted to the ob-
server’s eye (neglecting the losses by absorption and reflection), he
obviously receives a quantity of light much greater than he would
naturally get: as many times greater as the area of the object-lens
is greater than that of the pupil of the eye. If we estimate this latter
as having a diameter of one-fifth of an inch, then a 1-inch telescope
would increase the light twenty-five times, a 10-inch instrument 2500
times, and the great Lick telescope, of thirty-six inches’ aperture,
32,400 times, the amount being proportional to the square of the
diameter of the lens.

It must not be supposed, however, that the apparent brightness
of an object like the moon, or a planet which shows a disc, is in-
creased in any such ratio, since the eye-piece spreads out the light
to cover a vastly more extensive angular area, according to its mag-
nifying power; in fact, it can be shown that no optical arrangement
can show an extended surface brighter than it appears to the naked
eye. But the total quantity of light utilized is greatly increased by
the telescope, and in consequence, multitudes of stars, far too faint
to be visible to the unassisted eye, are revealed; and, what is practi-
cally very important, the brighter stars are easily seen by day with
the telescope.

39. Distinctness of Image.—This depends upon the exact-
ness with which the lens gathers to a single point in the focal image
all the rays which emanate from the corresponding point in the
object. A single lens, with spherical surfaces, cannot do this very
perfectly, the “aberrations” being of two kinds, the spherical aber-
ration and the chromatic. The former could be corrected, if it were
worth while, by slightly modifying the form of the lens-surfaces; but
the latter, which is far more troublesome, cannot be cured in any
such way. The violet rays are more refrangible than the red, and
come to a focus nearer the lens; so that the image of a star formed
by such a lens can never be a luminous point, but is a round patch
of light of different color at centre and edge.

40. Long Telescopes.—By making the diameter of the lens very
small as compared with its focal length, the aberration becomes less
conspicuous; and refractors were used, about 1660, having a length of
more than 100 feet and a diameter of five or six inches. The object-
glass was mounted at the top of a high pole and the eye-piece was on
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a separate stand below. With such an “aerial telescope,” of six inches
aperture and 120 feet focus, Huyghens discovered the rings of Saturn.
His object-glass still exists, and is preserved in the collection of the Royal
Society in London.

41. The Achromatic Telescope.—The chromatic aberration
of a lens, as has been said, cannot be cured by any modification of
the lens itself; but it was discovered in England about 1760 that it
can be nearly corrected by making the object-glass of two (or more)
lenses, of different kinds of glass, one of the lenses being convex and
the other concave. The convex lens is usually made of crown glass,
the concave of flint glass. At the same time, by properly choosing
the curves, the spherical aberration can also be destroyed, so that
such a compound object-glass comes reasonably near to fulfilling
the condition, that it should gather to a mathematical point in the
image all the rays that reach the object-glass from a single point in
the object.

These object-glasses admit of

considerable variety of forms. ' ,(
Formerly they were generally S

made, as in No. 3, having Clark Gauss Littrow
the two lenses close together, and FiG. 9.—Different Forms of the
the adjacent surfaces of the same, Achromatic Object-glass.

or nearly the same, curvature. In

small object-glasses the lenses are often cemented together with Canada
balsam or some other transparent medium. At present some of the best
makers separate the two lenses by a considerable distance, so as to ad-
mit a free circulation of air between them; in the Pulkowa and Princeton
object-glasses, constructed by Clark, the lenses are seven inches apart,
and in the Lick telescope six and a half inches; as in No. 1. In a form
devised by Gauss (No. 2), which has some advantages, but is difficult
of construction, the curves are very deep, and both the lenses are of
watch-glass form—concave on one side and convex on the other. In all
these forms the crown glass is outside; Steinheil, Hastings, and others
have constructed lenses with the flint-glass lens outside. Object-glasses
are sometimes made with three lenses instead of two; a slightly better
correction of aberrations can be obtained in this way, but the gain is too
small to pay for the extra expense and loss of light.

42. Secondary Spectrum.—It is not, however, possible with
the kinds of glass at present available to secure a perfect correction
of the color. Our best achromatic lenses bring the yellowish green
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rays to a focus nearer the lens than they do the red and violet. In
consequence, the image of a bright star is surrounded by a purple
halo, which is not very noticeable in a good telescope of small size,
but is very conspicuous and troublesome in a large instrument.

This imperfection of achromatism makes it unsatisfactory to use an
ordinary lens (visually corrected) for astronomical photography. To fit
it to make good photographs, it must either be specially corrected for
the rays that are most effective in photography, the blue and violet (in
which case it will be almost worthless visually), or else a subsidiary lens,
known as a “photographic corrector,” may be provided, which can be
put on in front of the object-glass when needed. A new form of object-
glass, devised independently by Pickering in this country and Stokes
in England, avoids the necessity of a third lens by making the crown-
glass lens of such a form that when put close to the flint lens, with the
flatter side out, it makes a perfect object-glass for visual purposes; but
by simply reversing the crown lens, with the more convex side outward,
and separating the lenses an inch or two, it becomes a photographic
object-glass. A 13-inch object-glass of this construction at Cambridge
performs admirably.

Much is hoped from the new kind of glass now being made at Jena.
In combination with crown glass it produces lenses almost free from
chromatic aberration, and if it can be produced in homogeneous pieces
of sufficient size, it will revolutionize the art of telescope making.

43. Diffraction and Spurious Disc.—Even if a lens were
perfect as regards the correction of aberrations, the “wave” nature
of light prevents the image of a luminous point from being also a
point; the image must necessarily consist of a central disc, bright-
est in the centre and fading to darkness at the edge, and this is
surrounded by a series of bright rings, of which, however, only the
smallest one is generally easily seen. The size of this disc-and-ring
system can be calculated from the known wave-lengths of light and
the dimensions of the lens, and the results agree very precisely with
observation. The diameter of the “spurious disc” wvaries inversely
with the aperture of the telescope. According to Dawes, it is about
4”5 for a 1-inch telescope; and consequently 1” for a 4%—inch instru-
ment, 0”.5 for a 9-inch, and so on.

This circumstance has much to do with the superiority of large in-
struments in showing minute details. No increase of magnifying power
on a small telescope can exhibit things as sharply as the same power on
the larger one; provided, of course, that the larger object-glass is equally
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perfect in workmanship, and the air in good optical condition.

If the telescope is a good one, and if the air is perfectly steady,—
which unfortunately is seldom the case,—the apparent disc of a star
should be perfectly round and well defined, without wings or tails of
any kind, having around it from one to three bright rings, separated by
distances somewhat greater than the diameter of the disc. If, however,
the magnifying power is more than about 50 to the inch of aperture, the
edge of the disc will begin to appear hazy. There is seldom any advantage
in the use of a magnifying power exceeding 75 to the inch, and for most
purposes powers ranging from 20 to 40 to the inch are most satisfactory.

44. Eye-Pieces.—For many purposes, as for instance the ex-
amination of close double stars, there is no better eye-piece than
the simple convex lens; but it performs well only when the object
is exactly in the centre of the field. Usually it is best to employ for
the eye-piece a combination of two or more lenses which will give a
more extensive field of view.

Eye-pieces belong to two classes, the positive and the negative.
The former, which are much more generally useful, act as simple
magnifying-glasses, and can be used as hand magnifiers if desired.
The focal image formed by the object-glass lies outside of the eye-
piece.

In the negative eye-pieces, on the other hand, the rays from
the object-glass are intercepted before they come to the focus, and
the image is formed between the lenses of the eye-piece. Such an
eye-piece cannot be used as a hand magnifier.

45. The simplest and most common forms of these eye-pieces are
the Ramsden (positive) and Huyghenian (negative). Each is composed
of two plano-convex lenses, but the arrangement and curves differ, as
shown in The former gives a very flat field of view, but is not
achromatic; the latter is more nearly achromatic, and possibly defines a
little better just at the centre of the field; but the fact that it is a negative
eye-piece greatly restricts its usefulness. In the Ramsden eye-piece the
focal lengths of the two component lenses, both of which have their flat
sides out, are about equal to each other, and their distance is about one-
third of the sum of the focal lengths. In the Huyghenian the curved sides
of the lenses are both turned towards the object-glass; the focal distance
of the field lens should be exactly three times that of the lens next the
eye, and the distance between the lenses one-half the sum of the focal
lengths. The peculiarity of the Steinheil “monocentric” eye-piece which
is a triple achromatic positive lens, consisting of a central convex lens of
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crown glass, with a concave meniscus of flint glass cemented to each side,
is that the curves are all struck from the same centre, the thickness of
the lenses being so computed as to produce the needed corrections. It is
free from all internal reflections, which in other eye-pieces often produce
“ghosts,” as they are called.
There are numerous o
. Steinheil

other forms of eye-piece, . -

o Monocentric
each with its own advan- (Positive)
tages and disadvantages.
The erecting eye-piece,
used in spy-glasses, is es-
sentially a compound mi-
croscope, and gives erect "““M “““mm““h
vision by again inverting
the already inverted im- Fig. 10.—Various Forms of Telescope Eye-piece.
age formed by the object-
glass.

Ramsden Huyghenian
(Positive) (Negative)

It is obvious that in a telescope of any size the object-glass is the most
important and expensive part of the instrument. Its cost varies from a
few hundred dollars to many thousands, while the eye-pieces generally
cost only from $5 to $20 apiece.

46. Reticle.—When a telescope is used for pointing, as in most
astronomical instruments, it must be provided with a reticle of some
sort. This is usually a metallic frame with spider lines stretched
across it, placed, not near the object-glass itself (as is often sup-
posed), but at the focus of the object-glass, where the image is

formed, as at a b in

It is usually so arranged that it can be moved in or out a little to get
it exactly into the focal plane, and then, when the eye-piece (positive)
is adjusted for the observer’s eye to give distinct vision of the object,
the “wires,” as they are called, will also be equally distinct. As spider-
threads are very fragile, and likely to get broken or displaced, it is often
better to substitute a thin plate of glass with lines ruled upon it and
blackened. Of course, provision must be made for illuminating either
the field of view or the threads themselves, in order to make them visible
in darkness.

47. The Reflecting Telescope.—When the chromatic aber-
ration of lenses came to be understood through the optical discovery
of the dispersion of light by Newton, the reflecting telescope was in-
vented, and held its place as the instrument for star-gazing until
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well into the present century, when large achromatics began to be
made. There are several varieties of reflecting telescope, all agreeing
in the substitution of a large concave mirror in place of the object-
glass of the refractor, but differing in the way in which they get at
the image formed by this mirror at its focus in order to examine it
with the eye-piece.

48. In the Herschellian form, which is the simplest, but only suited
to very large instruments, the mirror is tipped a little, so as to throw
the image to the side of the tube, and the observer stands with his
back to the object and looks down into the tube. If the telescope is
as much as two or three feet in diameter, his head will not intercept
enough light to do much harm,—mnot nearly so much as would be lost by
the second reflection necessary in the other forms of the instrument. But
the inclination of the mirror, and the heat from the observer’s person, are
fatal to any very accurate definition, and unfit this form of instrument
for anything but the observation of nebulse and objects which mainly
require light-gathering power.

In the Newtonian

telescope, a small plane szioo - A

reflector standing at an 1 E‘:‘_‘T‘:i'-\:i{:;__::;—;)""""—“_B

angle of 45° is placed in —a

the centre of the tube, so i

as to intercept the rays 9 &j‘_‘_‘_‘_‘_‘_:_‘_‘_:?ﬁfg-_—::-_--- -.ﬁ

reflected by the large ﬁ;ﬂ 1

mirror a little before they 0

come to their focus, and 0y | b N ) i

throw them to the side 3 AjL J{==garsr—rremegy

of the tube, where the 4

eye-piece is placed. Fic. 11.—Different Forms of Reflecting
In the Gregorian form Telescope.

(which was the first in- 1. The Herschellian; 2. The Newtonian;

vented), the large mirror 3. The Gregorian.

is pierced through its cen-

tre, and the rays from it are reflected through the hole by a small concave
mirror, placed a little outside of the principal focus at the mouth of the
tube. With this instrument one looks directly at the stars as with a
refractor, and the image is erect.

The Cassegrainian form is very similar, except that the small concave
mirror of the Gregorian is replaced by a convexr mirror, placed a little
inside the focus of the large mirror, which makes the instrument a little
shorter, and gives a flatter field of view.
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Formerly the great mirror was always made of a composition of cop-
per and tin (two parts of copper to one of tin) known as “speculum
metal.” At present it is usually made of glass silvered on the front sur-
face, by a chemical process which deposits the metal in a thin, brilliant
film. These silver-on-glass reflectors, when new, reflect much more light
than the old specula, but the film does not retain its polish so long.
It is, however, a comparatively simple matter to renew the film when
necessary.

The largest telescopes ever made have been reflectors. At the head
of the list stands the enormous instrument of Lord Rosse, constructed in
1842, with a mirror six feet in diameter and sixty feet focal length. Next
in order are a number of instruments of four feet aperture, first among
which is the great telescope of the elder Herschel, built in 1789, followed
by the telescope erected by Lassell at Malta in 1860, the Melbourne
reflector by Grubb in 1870, and the still more recent silver-on-glass re-
flector of the Paris observatory, which, however, has proved a failure,
owing to defective support of the mirror.

49. Relative Advantages of Refractors and Reflectors.
—There has been a good deal of discussion on this point, and each
construction has its partisans.

In favor of the reflectors we may mention,—

First. Fase of construction and consequent cheapness. The concave
mirror has but one surface to figure and polish, while an object-glass has
four. Moreover, as the light goes through an object-glass, it is evident
that the glass employed must be perfectly clear and of uniform density
through and through; while in the case of the mirror, the light does
not penetrate the material at all. This makes it vastly easier to get the
material for a large mirror than for a large lens.

Second (and immediately connected with the preceding). The possi-
bility of making reflectors much larger than refractors. Lord Rosse’s great
reflector is six feet in diameter, while the Lick telescope, the largest of
all refractors, is only three.

Third. Perfect achromatism. This is unquestionably a very great
advantage, especially in photographic and spectroscopic work.

But, on the whole, the advantages are generally considered to lie with
the refractors.

In their favor we mention:—

First. Great superiority in light. No mirror (unless, perhaps, a freshly
polished silver-on-glass film) reflects much more than three-quarters of
the incident light; while a good (single) lens transmits over 95 per cent.
In a good refractor about 82 per cent of the light reaches the eye, after
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passing through the four lenses of the object-glass and eye-piece. In a
Newtonian reflector, in average condition, the percentage seldom exceeds
50 per cent, and more frequently is lower than higher.

Second. Better definition.—Any slight error at a point in the surface
of a glass lens, whether caused by faulty workmanship or by distortion,
affects the direction of the ray passing through it only one-third as much
as the same error on the surface of a mirror would do.

If, for instance, in[Fig. 12| an element of
the surface at P is turned out of its proper Cq
direction, aa’, by a small angle, so as to take
the direction bb’, then the reflected ray will
be sent to f, and its deviation will be twice
the angle aPb. But since the index of re-
fraction of glass is about 1.5 the change in
the direction of the refracted ray from R to @
r will only be about two-thirds of aPb. b

t\\\\\%\\

Moreover, so far as distortions are con-
cerned, when a lens bends a little by its own
weight, both sides are affected in a nearly

Fic. 12.—Effect of Surface
Errors in a Mirror and in a
Lens.

compensatory manner, while in a mirror

there is no such compensation. As a consequence, mirrors very seldom
indeed give any such definition as lenses do. The least fault of workman-
ship, the least distortion by their own weight, the slightest difference
of temperature, between front and back, will absolutely ruin the image,
while a lens would be but slightly affected in its performance by the same
circumstances.

Third. Permanence. The lens, once made, and fairly taken care of,
suffers no deterioration from age; but the metallic speculum or the silver
film soon tarnishes, and must be repolished every few years. This alone
is decisive in most cases, and relegates the reflector mainly to the use of
these who are themselves able to construct their own instruments.

To these considerations we may add that a refractor, though more
expensive than a reflector of similar power, is not only more permanent,
and less likely to have its performance affected by accidental circum-
stances, but is lighter and more convenient to use.

50. Time-Keepers and Time-Recorders.—The Clock,
Chronometer, and Chronograph.—Modern practical astronomy
owes its development as much to the clock and chronometer as to the
telescope. The ancients possessed no accurate instruments for the
measurement of time, and until within 200 years, the only reason-
ably precise method of fixing the time of an important observation,
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as, for instance, of an eclipse, was by noting the altitude of the sun,
or of some known star at or very near the moment.

It is true that the Arabian astronomer Ibn Jounis had made
some use of the pendulum about the year 1000 A.D., more than
500 years before Galileo introduced it to Europeans. But it was
not until nearly a century after Galileo’s discovery that Huyghens
applied it to the construction of clocks (in 1657).

So far as the principles of construction are concerned, there is no
difference between an astronomical clock and any other. As a matter
of convenience, however, the astronomical clock is almost invariably
made to beat seconds (rarely half-seconds), and has a conspicuous
second-hand, while the hour-hand makes but one revolution a day,
instead of two, as usual, and the face is marked for twenty-four
hours instead of twelve. Of course it is constructed with extreme
care in all respects.

The FEscapement, or “Scapement,” is often of the form known as
the “Graham Dead-beat”; but it is also frequently one of the numerous
“gravity” escapements which have been invented by ingenious mechani-
cians. The office of the escapement is to be “unlocked” by the pendulum
at each vibration, so as to permit the wheel-work to advance one step,
marking a second (or sometimes two seconds), upon the clock-face; while,
at the same time, the escapement gives the pendulum a slight impulse,
just equal to the resistance it has suffered in performing the unlocking.
The work done by the pendulum in “unlocking” the train, and the cor-
responding impulse, ought to be perfectly constant, in spite of all changes
in the condition of the train of wheels; and it is desirable, though not
essential, that this work should be as small as possible.

51. The pendulum itself is usually suspended by a flat spring,
and great pains should be taken to have the support extremely firm:
this is often neglected, and the clock then cannot perform well.

Compensation for Temperature.—In order to keep perfect time,
the pendulum must be a “compensation pendulum”; i.e., con-
structed in such a way that changes of temperature will not change
its length.

An uncompensated pendulum, with steel rod, changes its daily
rate about one-third of a second for each degree of temperature
(centigrade). A wooden pendulum rod is much less affected by
temperature, but is very apt to be disturbed by changes of moisture.
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Graham’s mercurial pendulum (Fig. 13)) is the T

one most commonly used. It consists simply of a ‘iT
jar (usually steel), three or four inches in diame-

ter, and about eight inches high, containing forty or
fifty pounds of mercury, and suspended at the end
of a steel rod. When the temperature rises, the rod
lengthens (which would make the clock go slower);
but, at the same time, the mercury expands, from the
bottom upwards, just enough to compensate. This
pendulum will perform well only when not exposed to
rapid changes of temperature. Under rapid changes
the compensation lags. If, for instance, it grows warm
quickly, the rod will expand before the mercury does;
so that, while the mercury is growing warmer, the
clock will run slow, though after it has become warm
the rate may be all right.

A compensation pendulum, constructed on the
principle of the old gridiron pendulum of Harrison,
but of zinc and steel instead of brass and steel, is FIG. 13.

now much used. The compensation is not so eas- Cgm%erisamon
ily adjusted as in the mercurial pendulum, but when 1.egr;hiﬁs’.s
properly made the mechanism acts well, and bears Pendulum.
rapid alterations of temperature much better than 9. Zinc-Steel
the mercurial pendulum. The heavy pendulum-bob, Pendulum.

a lead cylinder, is hung at the end of a steel rod,

which is suspended from the top of a zinc tube, and hangs through the
centre of it. This tube is itself supported at the bottom by three or four
steel rods which hang from a piece attached to the pendulum spring.
The standard clock at Greenwich has a pendulum of this kind.

52. Effect of Atmospheric Pressure.—In consequence of
the buoyancy of the air, and its resistance to motion, a pendulum
swings a little more slowly than it would in vacuo, and every change
in the density of the air affects its rate more or less. With mercurial
pendulums, of ordinary construction, the “barometric coefficient,”
as it is called, is about one-third of a second for an inch of the barom-
eter; i.e., an increase of atmospheric density which would raise the
barometer one inch would make the clock lose about one-third of a
second daily. It varies considerably, however, with different pendu-
lums.

It is not very usual to take any notice of this slight disturbance; but
when the extremest accuracy of time-keeping is aimed at, the clock is
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either sealed in an air-tight case from which the air is partially exhausted
(as at Berlin), or else some special mechanism, controlled by a barometer,
is devised to compensate for the barometric changes, as at Greenwich. In
the Greenwich clock a magnet is raised or lowered by the rise or fall of the
mercury in a barometer attached to the clock-case. When the magnet
rises, it approaches a bit of iron two or three inches above it, fixed to
the bottom of the pendulum, and the increase of attraction accelerates
the rate just enough to balance the retardation due to the air’s increased
density and viscosity. There are several other contrivances for the same
purpose.

53. Error and Rate.—The “error,” or “correction” of a clock
is the amount that must be added to the indication of the clock-face
at any moment in order to give the true time; it is, therefore, plus
(4) when the clock is slow, and minus (—) when it is fast. The rate
of a clock is the amount of its daily gain or loss; plus (+) when the
clock is losing. Sometimes the hourly rate is used, but “hourly” is
then always specified.

A perfect clock is one that has a constant rate, whether that
rate be large or small. It is desirable, for convenience’ sake, that
both error and rate should be small; but this is a mere matter of
adjustment by the user of the clock, who adjusts the error by setting
the hands, and the rate by raising or lowering the pendulum-bob.

The final adjustment of rate is often obtained by first setting the
pendulum-bob so that the clock will run slow a second or two daily, and
then putting on the top of the bob little weights of a gramme or two,
which will accelerate the motion. They can be dropped into place or
knocked off without stopping the clock or perceptibly disturbing it.

The very best clocks will run three or four years without being
stopped for cleaning, and will retain their rate without a change of more
than one-fifth of a second, one way or the other, during the whole time.
But this is exceptional performance. In a run as long as that, most clocks
would be liable to change their rate as much as half a second or more,
and to do it somewhat irregularly.

54. The Chronometer.—The pendulum-clock not being
portable, it is necessary to provide time-keepers that are. The
chronometer is merely a carefully made watch, with a balance wheel
compensated to run, as nearly as possible, at the same rate in differ-
ent temperatures, and with a peculiar escapement, which, though
unsuited to watches exposed to ordinary rough usage, gives better
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results than any other when treated carefully.

The bozx-chronometer used on ship-board is usually about twice the
diameter of a common pocket watch, and is mounted on gimbals, so
as to keep horizontal at all times, notwithstanding the motion of the
vessel. It usually beats half-seconds. It is not possible to secure in
the chronometer-balance as perfect a temperature correction as in the
pendulum. For this and other reasons the best chronometers cannot
quite compete with the best clocks in precision of time-keeping; but
they are sufficiently accurate for most purposes, and of course are vastly
more convenient for field operations. They are simply indispensable at
sea. Never turn the hands of a chronometer backward.

F1c. 14.—A Chronograph by Warner and Swasey.

55. Before the invention of the telegraph it was customary to
note time merely “by eye and ear.” The observer, keeping his time-
piece near him, listened to the clock-beats, and estimated as closely
as he could, in seconds and tenths of seconds, the moment when the
phenomenon he was watching occurred—the moment, for instance,
when a star passed across a wire in the reticle of his telescope. At
present the record is usually made by simply pressing a “key” in the
hand of the observer, and this, by a telegraphic connection, makes
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a mark upon a strip or sheet of paper, which is moved at a uniform
rate by clock-work, and graduated by seconds-signals from the clock
or chronometer.

56. The Chronograph.—This is the instrument which carries
the marking-pen and moves the paper on which the time-record is
made. The paper is wrapped upon a cylinder, six or seven inches in
diameter, and fifteen or sixteen inches long. This cylinder is made
to revolve once a minute, by clock-work, while the pen rests lightly
upon the paper and is slowly drawn along by a screw-motion, so that
it marks a continuous spiral. The pen is carried on the armature of
an electro-magnet, which every other second (or sometimes every
second) receives a momentary current from the clock, causing it to

make a mark like those which break the lines in the annexed.
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FiG. 15.—Part of a Chronograph Record.

The beginning of a new minute (the 60th sec.) is indicated either
by a double mark as shown, or by the omission of a mark. When
the observer touches his key he also sends a current through the
magnet, and thus interpolates a mark of his own on the record, as
at X in thelfigure} the beginning of the mark is the instant noted—
in this case 54.9°. Of course the minutes when the chronograph was
started and stopped are noted by the observer on the sheet, and
so enable him to identify the minutes and seconds all through the
record.

Many European observatories use chronographs in which the record
is made upon a long fillet of paper, instead of a sheet on a cylinder. The
instrument is lighter and cheaper than the American form, but much less
convenient.

The regulator of the clock-work must be a “continuous” regulator,
working continuously, and not by beats like a clock-escapement. There
are various forms, most of which are centrifugal governors, acting either
by friction (like the one in the or by the resistance of the air; or
else “spring-governors,” in which the motion of a train, with a pretty
heavy fly-wheel, is slightly checked at regular intervals by a pendulum.

57. Clock-Breaks.—The arrangements by which the clock is
made to send regular electric signals are also various. One of the earliest



ASTRONOMICAL INSTRUMENTS. 37

and simplest is a fine platinum wire attached to the pendulum, which
swings through a drop of mercury at each vibration. All of the arrange-
ments, however, in which the pendulum itself has to make the electric
contact are objectionable, and for clocks using the Graham dead-beat
scapement no absolutely satisfactory means of giving the signals has yet
been devised. Clocks with the gravity escapements have a decided advan-
tage in this respect. Their wheel-work has no direct action in driving the
pendulum, and so may be made to do any reasonable amount of outside
work in the way of “key-manipulation” without affecting the clock-rate
in the least. Usually a wheel on the axis of the scape-wheel is made to
give the electric signals by touching a light spring with one of its teeth
every other second.

Chronometers are now also fitted up in the same way, to be used
with the chronograph.

The signals sent are sometimes “breaks” in a continuous current,
and sometimes “makes” in an open circuit. Usage varies in this respect,
and each method has its advantages. The break-circuit system is a little
simpler in its connections, and possibly the signals are a little more sharp,
but it involves a much greater consumption of battery material, as the
current is always circulating, except during the momentary breaks.

58. Meridian Observations.—A large proportion of all as-
tronomical observations are made at the time when the heavenly
body observed is crossing the meridian, or very near it. At that
moment the effects of refraction and parallax (to be discussed here-
after) are a minimum, and as they act only in a vertical plane, they
do not have any influence on the time at which the body crosses
the meridian.

59. The Transit Instrument is the instrument used, in con-
nection with a clock or chronometer, and often with a chronograph
also, to observe the time of a star’s “transit” across the meridian.

If the error of the (sidereal) clock is known at the moment, this
observation will determine the right ascension of the body, which, it
will be remembered, is simply the sidereal time at which it crosses
the meridian; i.e., the number of hours, minutes, and seconds by
which it follows the vernal equinox.

Vice versa, if the right ascension is known, the error or correction
of the clock will be determined.

The instrument consists essentially of a telescope
mounted upon a stiff axis perpendicular to the telescope tube. This
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axis is placed horizontal, east and west, and turns on pivots at its
extremities, in Y-bearings upon the top of two fixed piers or pil-
lars. A small graduated circle is attached, to facilitate “setting” the
telescope at any designated altitude or declination.

F1a. 16.—The Transit Instrument (Schematic).

The telescope carries at the eye-end, in the focal plane of the
object-glass, a reticle of some odd number of vertical wires,—five
or more,—one of which is always in the centre, and the others are
usually placed at equal distances on each side of it. One or two
wires also cross the field horizontally.

If the pivots are true, and the instrument accurately adjusted,
it is evident that the central vertical wire will always follow the
meridian as the instrument is turned; and the instant when a star
crosses this wire will be the true moment of the star’s meridian
transit. The object in having a number of wires is, of course, simply
to gain accuracy by taking the mean of a number of observations
instead of depending upon a single one.

In order to “level” the axis properly, a delicate spirit-level is
an essential adjunct; it is usual, also, (and important) to provide a
convenient “reversing apparatus,” by which the instrument can be
turned half round, making the eastern and western pivots change
places.
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The instrument must be thoroughly stiff
and rigid, without loose joints or shaky screws; / \
and the two pivots must be accurately round, /
precisely in line with each other, free from ta- [ 5
per, and precisely of the same size; all of which \J b ll k
conditions may be summed up by saying that
they must be portions of one and the same ge- AN li/

ometrical cylinder.

Fia. 17.—Reticle of
The proper construction and grinding of these the Transit

pivots, which are usually of hard bell metal (some- Instrument.
times of steel), taxes the art of the most skilful

mechanician. The level, also, is a delicate instrument, and difficult to
construct.

Provision is made, of course, for illuminating the field of view at
night so as to make the reticle wires visible. Usually one (or both) of the
pivots is pierced, and a lamp throws light through the opening upon a
small mirror in the centre of the tube, which reflects it down upon the
reticle.

The Y’s are used instead of round bearings, in order to prevent any
rolling or shake of the pivots as the instrument turns.

Fig. 18 shows a modern transit instrument (portable) as actually
constructed by Fauth & Co.

Another form of the instrument is much used, which is often
designated as the “Broken Transit.” A reflector in the central cube
throws the rays coming from the object-glass, out at right angles
through one end of the axis, where the eye-piece is placed; so that
the observer does not have to change his position at all for different
stars, but simply looks straight forward horizontally. It is very
convenient and rapid in actual work, but the observations require a
considerable correction for flexure of the axis.

60. Adjustments.—(1) Focus and verticality of wires. (2) Collima-~
tion. (3) Level. (4) Azimuth.

First. The first thing to do after the instrument is set on its supports
and the axis roughly levelled, is to adjust the reticle. The eye-piece is
drawn out or pushed in until the wires appear perfectly sharp, and then
the instrument is directed to a star or to some distant object (not less
than a mile away), and without disturbing the eye-piece, the sliding-tube,
which carries the reticle, is drawn out or pushed in until the object is also
distinct at the same time with the wires. If this adjustment is correctly
made, motion of the eye in front of the eye-piece will not produce any
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apparent displacement of the object in the field, with reference to the
wires. To test the verticality of the wires, the telescope is moved up
and down a little, while looking at the object; if the axis is level and
the wires vertical, the wire will not move off from the object sideways.
There are screws provided to turn the reticle a little, so as to effect this
adjustment.

o
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Fia. 18.—A 3-inch Transit, with reversing apparatus. Fauth & Co.

When the wires have been thus adjusted for focus and verticality,
the reticle-slide should be tightly clamped and never disturbed again.
The eye-piece can be moved in and out at pleasure, to secure distinct
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vision for different eyes, but it is essential that the distance between the
object-glass and the reticle remain constant.

Second. Collimation. The line joining the optical centre of the
object-glass with the middle wire of the reticle is called the “line of
collimation,” and this line must be made exactly perpendicular to the
axis of rotation by moving the reticle slightly to one side or the other by
means of the adjusting screws provided for the purpose. The simplest
way of effecting the adjustment is to point the instrument on some well-
defined distant object, like a nail-head or a joint in brickwork, and then
carefully to “reverse” the instrument without disturbing the stand. If
the middle wire, after reversal, points just as it did before, the “collima-
tion” is correct; if not, the middle wire must be moved half way towards
the object by the screws.

Collimator.—It is not always easy to find a distant object on which
to make this adjustment, and a “collimator” may be substituted with
advantage. This is simply a telescope mounted horizontally on a pier
in front of the transit instrument, so that when the transit telescope is
horizontal, it can look straight into the collimator, which ought to be of
about the same size as the transit itself.

In the focus of the collimator object-glass are placed two wires form-
ing an X, and thus placed they can be seen by a telescope looking into
the collimator just as distinctly as if they were at an infinite distance and
really celestial objects. The instrument furnishes us a mark optically ce-
lestial, but mechanically within reach of our finger-ends for illumination,
adjustment, etc. If the pier on which it is mounted is firm, the collimator
cross is in all respects as good as a star, and much more convenient.

Third. Level. The adjustment for level is made by setting a striding
level on the pivots of the axis, reading the level, then reversing the level
(not the transit) and reading it again. If the pivots are round and of the
same size, the difference between the level-readings direct and reversed
will indicate the amount by which one pivot is higher than the other.
One of the Y’s is made so that it can be raised and lowered slightly by
means of a screw, and this gives the means of making the axis horizontal.
If the pivots are not of the same size (and they never are absolutely), the
astronomer must determine and allow for the difference.

Fourth. Azimuth. In order that the instrument may indicate the
meridian truly, its axis must lie exactly east and west; i.e., its azimuth
must be 90°. This adjustment must be made by means of observations
upon the stars, and is an excellent example of the method of successive
approximations, which is so characteristic of astronomical investigation.
(a) After adjusting carefully the focus and collimation of the instrument,
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we set it north and south by guess, and level it as precisely as possible.
By looking at the pole star, and remembering how the pole itself lies
with reference to it, one can easily set the instrument pretty nearly; i.e.,
within half a degree or so. The middle wire will now describe in the sky
a vertical circle, which crosses the meridian at the zenith, and lies very
near the meridian for a considerable distance each side of the zenith.

(b) We must next get an “approximate” time; i.e., set our clock or
chronometer nearly right. To do this, we select from the list of several
hundred stars in the Nautical Almanac (which is to be regarded in about
the same light with the clock and the spirit level, as an indispensable
accessory to the transit) a star which is about to cross the meridian near
the zenith. The difference between the right ascension of the star as
given in the Almanac, and the time shown by the clock-face, will be very
nearly the error of the clock at the time of the observation: not exactly,
unless the declination of the star is such that it passes exactly through
the zenith, but very nearly, since the star crosses the meridian near the
zenith. We now have the time within a second or two.

(¢) Next turn down the telescope upon some Almanac star, which
is soon to cross the meridian within 10° of the pole. It will appear to
move very slowly. A little before the time it should reach the meridian,
move the whole frame of the instrument until the middle wire points
upon it, and then, by means of the “Azimuth Screw,” which gives a
slight horizontal motion to one of the Y’s, follow the star until the in-
dicated moment of its transit; i.e., until the clock (corrected for clock
error) shows on its face the star’s right ascension. If the clock correction
had been known with absolute exactness, the instrument would now be
truly in the meridian; as the clock error, however, is only approximate,
the instrument will only be approximately in the meridian; but—and
this is the essential point—it will be very much more nearly so than at
the beginning of the operation. The supposed incorrectness, amounting
perhaps to one or two seconds, in the time at which the instrument was
set on the circumpolar star will, on account of the slow motion of the
star, make almost no perceptible difference in the direction given to the
axis.

A repetition of the operation may possibly be needed to secure all the
desired precision. The accuracy of this azimuth adjustment can then be
verified by three successive “culminations” or transits of the pole star,
or any other circumpolar. The interval occupied in passing from the
upper to the lower culmination on the west side of the meridian ought,
of course, to be exactly equal to the time on the eastern side; i.e., twelve
sidereal hours.
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61. The final test of all the adjustments, and of the accurate
going of the clock, is obtained by observing a number of Almanac
stars of widely different declination. If they all indicate identically
the same clock correction, the instrument is in adjustment; if not,
and if the differences are not very great, it is possible to deduce from
the observations themselves the true clock error, and the adjustment
errors of the instrument.

It is to be added, in this connection,
that the astronomer can never assume
that adjustments are perfect: even if
once perfect, they would not stay so,
on account of changes of temperature
and other causes. Nor are observations
ever absolutely accurate. The problem
is, from observations more or less in-
accurate but honest, with instruments
more or less maladjusted but firm, to
find the result that would have been ob-
tained by a perfect observation with a
perfect and perfectly adjusted instru-
ment. It can be more nearly done than  Fig. 19.— The Meridian Circle
one might suppose. But the discussion (Schematic).
of the subject belongs to Practical As-
tronomy, and cannot be entered into here.

62. Prime Vertical Instrument.—For certain purposes, a
Transit Instrument, provided with an apparatus for rapid reversal,
is turned quarter-way round and mounted with the axis north and
south, so that the plane of rotation lies east and west, instead of in
the meridian. It is then called a Prime Vertical Transit.

63. The Meridian Circle.—In order to determine the Decli-
nation or Polar Distance of an object, it is necessary to have some
instrument for measuring angles; mere time-observations will not
suffice. The instrument most used for this purpose is the Merid-
ian Clircle, or Transit Circle, which is simply a transit instrument,
with a graduated circle attached to its axis, and revolving with the
telescope. Sometimes there are two circles, one at each end of the
axis.

Fig. 19 represents the instrument “schematically,” showing
merely the essential parts. [Fig. 20|is a meridian circle, with a 4-inch
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telescope, constructed by Fauth & Co.

=.:

F1c. 20.—Meridian Circle.

A, B, C, D, the Reading Microscopes.

K, the Graduated Circle.

H, the Roughly Graduated Setting
Circle.

I, the Index Microscope. This is usu-
ally, however, placed half way be-
tween A and D.

F', the Clamp. G, the Tangent Screw.

LL, the Level, only placed in position
occasionally.

M, the Right Ascension Micrometer.

WW, Counterpoises, which take part
of the weight of the instrument off
from the Y’s.

In observatory instruments the circle is usually from two to four feet
in diameter; larger circles were once used, but it is found that their
weight, and the consequent strains and flexures, render them actually

less accurate than the smaller ones.

The utmost resources of mechanical

art are exhausted in making the graduation as precise as possible and in
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providing for its accurate reading, as well as in securing the maximum
firmness and stability of every part of the instrument. The actual divi-
sions are usually 5" apart (in very large instruments sometimes only 2'),
but the circle is “read” to seconds and tenths of seconds of arc by means
of reading microscopes, from two to six in number, fixed to the pier of
the instrument. In a circle of forty inches diameter, 1” is a little less than
ﬁ of an inch, (% inch), so that the necessity of fine workmanship

is obvious.

64. The Reading Microscope (Fig. 21)).—This consists es-
sentially of a compound microscope, which forms a magnified image
of the graduation at the focus of its object-glass, where this image
is viewed by a positive eye-piece. At the place where the image is
formed a pair of parallel spider-lines or a cross is placed, movable in
the plane of the image by a “micrometer screw”; i.e., a fine screw
with a graduated head, usually divided into sixty parts. One revolu-
tion of the screw carries the wire 1’ of arc, which makes one division
of the screw-head 1”, the tenths of seconds being estimated.

The adjustment of the microscope for
“runs,” as it is called (that is, to make one revo-
lution of the micrometer screw exactly equal to T
1), is effected as follows. By setting the wires l
first on one of the graduation marks visible in
the field of view, and then on the next mark, it
is immediately evident whether five revolutions
of the screw “run” over or fall short of 5 of
the graduation. If they overrun, it shows that
the image of the graduation formed by the mi-
croscope objective is too small to fit the screw,
and vice-versa. Now, by simply increasing or A
decreasing the distance A B between the objec-
tive and the micrometer box, the size of the
image can be altered at will, and the objective FIG. 21.—The Reading
is therefore so mounted that this can be done. Microscope.
Of course, every change in the length of the mi-
croscope tube will also require a readjustment of the distance between
the “limb,” or graduated surface, of the circle and the microscope, in or-
der to secure distinct vision; but by a few trials the adjustment is easily
made sufficiently precise.

MTITTr[ T 7 Irerer

The reading of the circle is as follows: An extra index-microscope,
with low power and large field of view, shows by inspection the degrees
and minutes. The reading-microscopes are only used to give the odd
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seconds, which is done by turning the screw until the parallel spider-
lines are made to include one of the graduation lines half-way between
themselves; the head of the screw then shows directly the seconds and
tenths, to be added to the degrees and minutes shown by the index.

Thus in the reading of the microscope is 3’'22"”.1, the 3’ being
given by the scale in the field, the 22”.1 by the screw-head.

65. Method of observing
a Star.—A minute or two be-
fore the star reaches the meridian /
the instrument is approximately .|| "A'”'VLJ/ '
pointed, so that the star will
come into the field of view. As
soon as it makes its appearance, FIG. 22.—Field of View of Reading
the instrument is moved by the Microscope.
slow-motion tangent-screw until
the star is “bisected” by the fixed horizontal wire of the reticle, and
the star is kept bisected until it reaches the middle vertical wire
which marks the meridian. The microscopes are then read, and
their mean result is the star’s “circle-reading.”

Ill

TI
|
8

h

[

LLAJ

Frequently the star is bisected, not by moving the whole instrument,
but by means of a “micrometer wire,” which moves up and down in the
field of view. The micrometer reading then has to be combined with the
reading of the microscope, to get the true circle-reading.

66. Zero Points.—In determining the declination or meridian
altitude of a star by means of its circle-reading, it is necessary to
know the “zero point” of the circle. For declinations, the “zero
point” is either the polar or the equatorial reading of the circle; i.e.,
the reading of the circle when the telescope is pointed at the pole
or at the equator.

The “polar point” may be found by observing some circumpolar
star above the pole, and again, twelve hours later, below it. When
the two circle-readings have been duly corrected for refraction and
instrumental errors, their mean will be the polar point.

Suppose, for instance, that § Ursee Minoris, at the “upper culmina-

tion,” gives a corrected reading of 52° 18’ 25”.3, while at the lower culmi-
nation the reading is 45° 31’ 35”.7, then the mean of these, 48° 55’ 00”.5,
is the polar point, and of course the equatorial reading is 138° 55’ 00”.5,—
just 90° greater. The polar distance of the star would be the half-
difference of the two readings, or 3° 23’ 24" 8.
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67. Nadir Point.—The determination of the polar point re-
quires two observations of the same star at an interval of twelve
hours. It is often difficult to obtain such a pair; moreover, the
refraction complicates the matter, and renders the result less trust-
worthy. Accordingly it is now usual to use the nadir or the horizon-
tal reading as the zero, rather than the polar point.

The nadir point is determined by pointing the
telescope downwards to a basin of mercury, mov- §==
ing the telescope until the image of the horizontal From Lamp
wire of the reticle, as seen by reflection, coincides
with the wire itself. Since the reticle is exactly

¥ Reticle
in the principal focus of the object-glass, rays of
light emitted by any point in the reticle will be- Fic. 23.
. The Collimating
come a parallel beam after passing the lens, and Eye-Piece.

if this beam strikes a plane mirror perpendicularly

and is returned, the rays will come just as if from a real object in the
sky, and will form an image at the focal plane. When, therefore, the
image of the central wire of the reticle, seen in the mercury basin
by reflection, coincides with the wire itself, we know that the line
of collimation must be exactly perpendicular to the surface of the
mercury; ¢.e., vertical.

To make the image visible it is necessary to illuminate the reticle
by light thrown towards the object-glass from behind the wires, instead
of light coming from the object-glass towards the eye as usual. This
peculiar illumination is commonly effected by means of Bohnenberger’s
“collimating eye-piece,” shown in In the simplest form it is
merely a common Ramsden eye-piece, with a hole in one side, and a thin
glass plate inserted at an angle of 45°. A light from one side, entering
through the hole, will be (partially) reflected towards the wires, and will
illuminate them sufficiently.

The horizontal point of course differs just 90° from the nadir point.
It may also be found independently by noting the circle-readings of some
star observed one night directly, and the next night by reflection in mer-
cury; or, if the star is a close circumpolar, both observations may be
made the same evening, one a few minutes before its meridian passage,
the other just as long after. But the method of the collimating eye-piece
is fully as accurate and vastly more convenient.
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Fic. 24.—Altitude and Azimuth Instrument.

68. Differential Use of the Instrument.—We now know the
places of several hundred stars with so much precision that in many
cases it is quite sufficient to observe one or two of these “standard stars”
in connection with the bodies whose places we wish to determine. The
difference between the declination of the known star and that of any star
whose place is to be determined, will, of course, be simply the difference
of their circle-readings, corrected for refraction, etc. The meridian circle
is said to be used “differentially” when thus treated.

69. Errors of Graduation, etc.—If the circle is from a rep-
utable maker, and has four or six microscopes, and if the observa-
tions are carefully made and all the microscopes read each time,
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results of sufficient precision for most purposes may be obtained by
merely correcting the observations for “runs” and refraction. The
outstanding errors ought not to exceed a second or two. But when
the tenths of a second are in question, the case is different. It
will not then do for the astronomer to assume the accuracy of the
graduation of his circle, but he must investigate the errors of its di-
vistons, the errors of the micrometer screws in the microscopes, the
flezure of the telescope, and the effect of differences of temperature
in shifting the zero points of the circle, by slightly disturbing the
position or direction of the microscopes. Of course this is not the
place to enter into such details, but it is an opportunity to impress
again upon the student the fact that truth and accuracy are only
attainable by immense painstaking and labor.

70. Mural Circle.—This instrument is in principle the same as
the meridian circle, which has superseded it. It consists of a circle,
carrying a telescope mounted on the face of a wall of masonry (as its
name implies) and free to revolve in the plane of the meridian. The wall
furnishes a convenient support for the microscopes.

71. Altitude and Azimuth Instru-
ment.—Since the transit instrument and
meridian circle are confined to the plane of
the meridian, their usefulness is obviously lim-
ited. Meridian observations, when they are to
be had, are better and more easily used than
any others, but are not always attainable. We
must therefore have instruments which will
follow an object to any part of the heavens.

The altitude and azimuth instrument is
simply a surveyor’s theodolite on a large scale.

It has a horizontal circle turning upon a verti- FIG. 95,
cal axis, and read by verniers or microscopes. The Equatorial
Upon this circle, and turning with it, are sup- (Schematic).

ports which carry the horizontal axis of the

telescope with its vertical circle, also read by microscopes. Ob-
viously the readings of these two circles, when the instrument is
properly adjusted and the zero points determined, will give the al-
titude and azimuth of the body pointed on. represents a

small instrument of this kind.
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F1G. 26.—The 23-inch Princeton Telescope.

72. The Equatorial.—The essential characteristic of this in-
strument is that its principal axis, i.e., the axis which rests in fized
bearings, instead of being either horizontal or vertical, is inclined
at an angle equal to the latitude of the place, and directed towards
the pole, thus placing it parallel to the earth’s axis of rotation. This
axis of the instrument is called its polar azis; and the graduated cir-
cle which it carries, and which is parallel to the celestial equator, is
called the hour-circle, because its reading gives the hour-angle of the
body upon which the telescope happens to be pointed. Sometimes,
also, it is called the Right Ascension Circle. Upon this polar-axis
are secured the bearings of the declination axis, which is perpen-
dicular to the polar axis, and carries the telescope itself and the
declination circle.

In the instruments before described, the telescope is a mere
pointer, and wholly subsidiary to the circles; in the equatorial the
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telescope is usually the main thing, and the circles are subordinate,
serving only to aid the observer in finding or identifying the body
upon which the telescope is directed.

Fig. 25 exhibits schematically the ordinary form of equatorial
mounting, of which there are numerous modifications. [Fig. 26| is
the 23-inch Clark telescope at Princeton, and is the 4-foot
Melbourne reflector. The frontispiece is the great Lick telescope of
thirty-six inches diameter.

FIx

F1Gg. 27.—The Melbourne Reflector.

The advantages of the equatorial mounting for a large telescope
are very great as regards convenience. In the first place, when the
telescope is once pointed upon a star or planet, it is only necessary
to turn the polar axis with a uniform motion in order to “follow”
the star, which otherwise would be carried out of the field of view
in a few moments by the diurnal motion. This motion, since it
is uniform, can be, and in all large instruments usually is, given
by clock-work, with a continuous regulator of some kind, similar
to that used in the chronograph. The instrument once directed
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and clamped, and the clock-work started, the object will continue
apparently immovable in the field of view as long as may be desired.
In the next place, it is very easy to find an object, even if in-
visible to the naked eye, like a faint comet or nebula, or a star in
the daytime, provided we know its declination and right ascension,
and have the sidereal time; for which reason a sidereal clock or
chronometer is an indispensable adjunct of the equatorial.

To find an object, the telescope is turned in declination until the
reading of the declination circle corresponds to the declination of the
object, and then the polar axis is turned until the hour-circle of the
instrument (not to be confounded with an hour-circle in the sky) reads
the hour-angle of the object. This hour-angle, it will be remembered, is
simply the difference between the sidereal time and the right ascension
of the object. The hour-angle is east if the right ascension exceeds the
time; west, if it is less. When the telescope is thus set, the object will
be found (with a low magnifying power) in the field of view, unless it is
near the horizon, in which case refraction must be taken into account.

While the instrument cannot give very accurate determinations
of the positions of bodies by the direct readings of its circles, on
account of the irregular flexures of its axes, it may do so indirectly;
that is, it may be used to determine very accurately the difference
between the right ascension and declination of a comet or planet,
for instance, and that of some neighboring star, whose place has
been already determined by the meridian circle; and this is one of
the most important uses of the instrument.

73. The Micrometer.—Micro-
meters of various sorts are employed
for the purpose. The most com-
mon and most generally useful is the
so-called “filar position-micrometer,”
Fig. 28 which is an indispensable
auxiliary of every good telescope.

It is a small instrument, much like
the upper part of the reading micro-
scope, but more complicated. It usu-
ally contains a reticle of fixed wires,
two or three parallel to each other,
and crossed at right angles by a sec-
ond set. Then there are two or three

F1Gc. 28.—The Filar
Position-Micrometer.
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wires parallel to the first set, and movable by an accurately made
screw with a graduated head and a counter, or scale, for indicating
the number of entire revolutions made by the screw. The box con-
taining these wires, and carrying the eye-piece and screw, can itself
be turned around in a plane perpendicular to the optical axis of
the telescope, and set in any desired position; for example, so that
the movable wires shall be parallel to the celestial equator, while
the other set run north and south. This “position angle” is read on
a graduated circle, which forms part of the instrument. Means of
illumination are provided, giving at pleasure either dark wires in a
bright field, or wvice versa.

F1Gc. 29.—Construction of the Micrometer.

With this instrument one can measure the distance (in seconds of
arc), and the direction between any two stars which are near enough
to be seen at once in the same field of view. This range in small tele-
scopes may reach 30’ of arc; while in the larger instruments, which,
with the same eye-pieces have much higher magnifying powers, it is
necessarily less,—not more than from 5" to 10'.

74. A new form of equatorial, known as the Fquatorial Coudé, or
Elbowed Equatorial, has been recently introduced at the Paris Obser-
vatory. With large instruments of the ordinary form a great deal of
inconvenience is encountered by the observer, in moving about to follow
the eye-piece into the various positions into which it is forced by the
inconsiderateness of the heavenly bodies. Moreover, the revolving dome,
which is usually erected to shelter a great telescope, is an exceedingly
cumbrous and expensive affair.

In the Equatorial Coudé, these difficulties are overcome by
the use of mirrors. The observer sits always in one fixed position, looking
obliquely down through the polar axis, which is also the telescope tube.

The Paris instrument has an object-glass about ten inches in diame-
ter, and performs very satisfactorily. The two reflections, however, cause
a considerable loss of light, and some injury to the definition. The mir-
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rors, and the consequent complications, also add heavily to the cost of
the instrument. is from a photograph of this instrument.

Fi1G. 30.—The Equatorial Coudé.

75. All the instruments so far described, except the chronome-
ter, are fized instruments; of use only when they can be set up
firmly and carefully adjusted to established positions. Not one of
them would be of the slightest use on ship-board.

We have now to describe the instrument which, with the help
of the chronometer, is the main dependence of the mariner. It is
an instrument with which the observer measures the angular dis-
tance between two objects; as, for instance, the sun and the visible
horizon, not by pointing first on one and then afterwards on the
other, but by sighting them both, simultaneously and in apparent
coincidence; which can be done even when he has no fixed position
or stable footing.

76. The Sextant.—The graduated limb of the sextant is car-
ried by a light framework, usually of metal, provided with a suitable
handle X. The arc is about one-sixth of a circle, as the name im-
plies, and is usually from five to eight inches radius. It bears a
graduation of half-degrees, numbered as whole degrees, so that it
can measure any angle less than 120°.

An “indez-arm,” MN in the [figure, is pivoted at the centre
of the arc, and carries a vernier which slides along the limb, and
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can be fixed at any point by a clamp and delicately moved by the
attached tangent screw, 7. The reading of this vernier gives the
angle measured by the instrument. The best instruments read to
10”.

Just over the centre of motion, the “index-mirror” M, about
two inches by one and one-half in size, is fastened securely to the
index-arm, so as to be perpendicular to the plane of the limb. At
H, the “horizon-glass,” about an inch wide and of the same height
as the index-glass, is secured firmly to the frame of the instrument,
in such position that, when the vernier of the index-arm reads zero,
the index-mirror and horizon-glass will be parallel to each other.
Only half of the horizon-glass is silvered, the upper half being left
transparent. £ is a small telescope.

F1G. 31.—The Sextant.

If the vernier stands near, but not at zero, the observer looking
into the telescope will see together in the field of view two separate
images of the object; and if, while still looking, he slides the vernier
a little, he will see that one of the images remains fixed, while the
other moves. The fixed image is due to the rays which reach the
object-glass of the telescope directly, coming through the unsilvered
half of the horizon-glass; the movable image, on the other hand, is
produced by rays which have suffered two reflections,—first, from
the index-mirror to the horizon-glass; and second, at the lower half
of the horizon-glass. When the two mirrors are parallel, and the
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vernier reads zero, the two images coincide, provided the object is
at a considerable distance.

If now the vernier does not stand at or near zero, the observer,
looking at any object directly through the horizon-glass, will see, not
only that object, but also whatever other object is so situated as to
send its rays to the telescope by reflection upon the mirrors; and the
reading of the vernier will give the angle at the instrument between
the two objects whose images thus coincide; the angle between the
planes of the two mirrors being just half that between the objects,
and the half-degrees on the limb being numbered as whole ones.

77. The principal use of the instrument is in measuring the
altitude of the sun. At sea the observer, holding the instrument with
his right hand and keeping the plane of the arc vertical, looks directly
towards the visible horizon at the point under the sun, through the
horizon-glass (whence its name); then by moving the vernier with
his left hand, he inclines the index-glass upwards until one edge of
the reflected image of the sun is brought just to touch the horizon-
line, noting the exact time by the chronometer, if necessary. The
reading of the vernier, after correcting for the semi-diameter of the
sun, the dip of the horizon, the refraction, and the parallax (and for
the “index-error” of the sextant, if the vernier does not read strictly
zero when the mirrors are parallel) gives the sun’s true altitude at
the moment.

78. On land the wvisible horizon is of no
use, and we have recourse to an “artificial
horizon,” as it is called. This is merely a
shallow basin of mercury, covered, when nec-
essary to protect it from the wind, with a
roof made of glass plates having their sides
plane and parallel.

In this case we measure the angle be-
tween the sun’s image reflected in the mer-
cury and the sun itself. The reading of the '
instrument, corrected for index-error, gives
twice the sun’s apparent altitude; which ap- FiG. 32.—Principle of the
parent altitude, corrected as before for re- Sextant.
fraction and parallax, but not for dip of the
horizon, gives the true altitude. The skilful use of the sextant requires
steadiness of hand and considerable dexterity, and from the small size of
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the telescope the angles measured are of course less precise than if deter-
mined by large fixed instruments. But its portability and applicability
at sea render it absolutely invaluable.

79. The principle that the true angle between the objects whose
images coincide is twice the angle between the mirrors (or between their
normals) is easily demonstrated as follows (Fig. 32]):—

The ray SM coming from an object, after reflection first at M (the
index-mirror), and then at H (the horizon-glass), is made to coincide
with the ray OH coming from the horizon. We must prove that the
angle SEO, between the object and the horizon, as seen from the point
F in the instrument, is double the angle Q, between M) and H (), which
are normals to the mirrors, and therefore double @', which is the angle
between the planes of the mirrors.

First, from the law of reflection, we have,

SMP=HMP, or SMH=2x PMH.

Similarly, MHE =2x MHQ.

From the geometric principle that the exterior angle SMH of the
triangle HM FE is equal to the sum of the opposite interior angles at H
and F, we get

HEM =SMH - MHE =2PMH —-2MHQ =2(PMH — MHQ).
Similarly, from the triangle HMQ, we have
HQM = PMH - MHQ,

which is half the value just found for H EM, and proves the proposition.

Of course with the sextant, as with all other instruments, it is
necessary for the observer who aims at the utmost precision to inves-
tigate, and take into account its errors of graduation, construction
and adjustment; but their discussion does not belong here.

80. DBesides the instruments we have described, there are many
others designed for special work, some of which, as the zenith tele-
scope, and heliometer, will be mentioned hereafter as it becomes
necessary. There is also a whole class of physical instruments,
photometers, spectroscopes, heat-measuring appliances, and pho-
tographic apparatus, which will have to be considered in due time.

But with clock, meridian circle, and equatorial and their usual
accessories, all the fundamental observations of theoretical and
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spherical astronomy can be supplied. The chronometer and sex-
tant are practically the only astronomical instruments of any use at
sea.
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CHAPTER IIIL

CORRECTIONS TO ASTRONOMICAL OBSERVATIONS, DIP OF
THE HORIZON, PARALLAX, SEMI-DIAMETER, REFRAC-
TION, AND TWILIGHT.

81. Dip of the Horizon.—In observations of the altitude of a
heavenly body at sea, where the measurement is made from the sea-
line, a correction is needed on account of the fact that this visible
horizon does not coincide with the true astronomical horizon (which
is 90° from the zenith), but falls sensibly below it by an amount
known as the Dip of the Horizon. The amount of this dip depends
upon the size of the earth and the height of the observer’s eye above
the sea-level.

In[Fig. 33| C is the centre of the earth, AB a
portion of its level surface, and O the observer,
at an elevation h above A. The line OH is truly
horizontal, while the tangent line, OB, corre-
sponds to the line drawn from the eye to the vis-
ible horizon. The angle HOB is the dip. This is
obviously equal to the angle OC'B at the centre
of the earth, if we regard the earth as spherical,
as we may do with quite sufficient accuracy for
the purpose in hand.

From the right-angled triangle O BC we have

Fia. 33.—Dip of
the Horizon.

directly
BC
OCB = —-.
oS o0
Putting R for the radius of the earth, and A for the dip, this be-
comes R
A=——-r.
o8 R+h

This formula is exact, but inconvenient, because it gives the small
angle A by means of its cosine. Since, however, 1 — cos A = 2sin? %A,
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we easily obtain the following:—

h
2(R+h)’

This gives the true depression of the sea horizon, as it would be if
the line of sight, drawn from the eye to the horizon line, were straight.
On account of refraction it is not straight, however, and the amount of
this “terrestrial refraction” is very variable and uncertain. It is usual
to diminish the dip computed from the formula by one-eighth its whole
amount.

An approximate formula! for the dip is

A (in minutes of arc) = \/h (feet);

L This approximate formula may be obtained thus:—

h h h
2sin?(1A) = —— = ( = 1+—).
sin“(5A) Rih (R>+<+R>
But since — is a very small fraction, it may be neglected in the divisor

h
<1 + R>’ and the expression becomes simply,

h [ h
in2 . ; —
2sin %A = —; whence sin %A =\3g"

Since A is a very small angle,

A =sin A = 2sin %A, so that

: . | h | h
A (in radians) = 2 Y %—R

To reduce radians to minutes, we must multiply by 3438, the number of
minutes in a radian. Accordingly,

h
A’ (in minutes of arc) = 3438 Iy
2
If we express h in feet, we must also use the same units for R. The mean
radius of the earth is about 20,884,000 feet, one-half of which is 10,442,000, and

the square root of this is 3231; so that the formula becomes
, 3438
3231

which is near enough to that given in the text.
In fact, the refraction makes so much difference that after taking the nu-

h (feet),

343
merical factor, 3931’ as unity, the formula still gives A’ about % part too
large.

The formula A’ = /3h (metres) is yet more nearly correct.
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or, in words, the square root of the elevation of the eye (in feet) gives
the dip in minutes. This gives a value about % part too large.

Since the dip is applicable only to sextant observations made at
sea, where, from the nature of the instrument, and the rising and
falling of the observer with the vessel’s motion, it is not possible to
measure altitudes more closely than within about 15”, there is no
need of any extreme precision in its calculation.

82. Parallax.—In the most general sense, “parallax” is the
change of a body’s direction resulting from the observer’s displace-
ment. In the restricted and technical sense in which we are to
employ it now, it may be defined as the difference between the di-
rection of a body as actually observed and the direction it would have
if seen from the earth’s centre. Thus in the figure, [Fig. 34 where
the observer is supposed to be at O, the position of P in the sky (as
seen from O) would be marked by the point where OP produced
would pierce the celestial sphere. Its position as seen from C' would
be determined in the same way by producing C'P to which OX is
drawn parallel. The angle POX, therefore, or its equal, OPC, is
the parallax of P for an observer at O.

Obviously, from the [figurd, we may

also give the following definition of the —] X/

parallax. It s the angular distance /S £
(number of seconds of arc) between the /A

observer’s station and the centre of the //

earth’s disc, as seen from the body ob- 7P

served. The moon’s parallax at any mo- oY B,
ment for me is my angular distance from %% Lo

the earth’s centre, as seen by “the man o
in the moon.” F1G. 34.— Diurnal Parallax.

When a body is in the zenith its par-
allax is zero, and it is a maximum at the horizon. In all cases
it depresses a body, diminishing the altitude without changing the
azimuth.

The “law” of the parallax is, that it varies as the sine of the
zenith distance directly, and inversely as the linear distance (in
miles) of the body.

This follows easily from the triangle COP, where we have PC':
OC =sinCOP : sin CPO.

Put D for PC, the distance of the body from the earth; R for the
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earth’s radius, CO; C'PO, the parallax; ¢ for ZOP, the apparent
zenith distance, and remember that the sine of ( is equal to the
sine of its supplement, COP: we then have as the translation of the
above proportion,

D : R =sin( :sinp.

This gives us sinp = o sin (;
or, since p is always a small angle,
R
" = 206265" = - sin (.
P D sin ¢

83. Horizontal Parallax.—When a body is at the horizon (P,
in the , then ¢ becomes 90°, and sin( = 1. In this case the
parallax reaches its maximum value, which is called the horizontal
parallax of the body. Taking p;, as the symbol for this, we have

R R
sin pp, = o or nearly enough, p, = 206265" D

Comparing this with the formula above, we see that the parallax of a
body at any zenith distance equals the horizontal parallax multiplied
by the sine of the zenith distance; i.e., p = ppsin (.

N.B. A glance at the will show that we may define the
horizontal parallax, OPC, of any body, as the angular semi-diameter
of the earth seen from that body. To say, for instance, that the sun’s
horizontal parallax is 8”.8, amounts to saying that, seen from the
sun, the earth’s apparent diameter is twice 8”.8, or 17”.6.

84. Relation between Horizontal Parallax and Distance.
—Since we have

) R
sinph = 7,

it follows of course that D = R =+ sin py;
206265"
or, (nearly) D=———xR
Dp

If the sun’s parallax equals 8".8,

206265

R — 23439 R.
g8

its distance =
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85. Equatorial Parallax.—Owing to the “ellipticity” or
“oblateness” of the earth the horizontal parallax of a body varies
slightly at different places, being a maximum at the equator, where
the distance of an observer from the earth’s centre is greatest. It is
agreed to take as the standard the equatorial horizontal parallax;
i.e., the earth’s equatorial semi-diameter as seen from the body.

86. Diurnal Parallax.—The parallax we have been discussing
is sometimes called the diurnal parallaz, because it runs through all
its possible changes in one day.

When the sun, for instance, is rising, its parallax is a maximum,
and by throwing it down towards the east, increases its apparent right
ascension. At noon, when the sun is on the meridian, its parallax is
a minimum, and affects only the declination. At sunset it is again a
maximum, but now throws the sun’s apparent place down towards the
west. Although the sun is invisible while below the horizon, yet the par-
allax, geometrically considered, again becomes a minimum at midnight,
regaining its original value at the next sunrise.

The qualifier, “diurnal,” is seldom used except when it is nec-
essary to distinguish between this kind of parallax and the annual
parallax of the fixed stars, which is due to the earth’s orbital mo-
tion. The stars are so far away that they have no sensible diurnal
parallax (the earth is an infinitesimal point as seen from them); but
some of them do have a slight and measurable annual parallax, by
means of which we can roughly determine their distances. (Chap.|

XIX)

87. Smallness of Parallax.—The horizontal parallaz of even
the nearest of the heavenly bodies is always small. In the case of the
moon the average value is about 57’, varying with her continually
changing distance. Excepting now and then a stray comet, no other
heavenly body ever comes within a distance a hundred times as
great as hers. Venus and Mars approach nearest, but the parallax
of neither of them ever reaches 40”.

88. Semi-Diameter.—In order to obtain the true altitude of
an object it is necessary, if the edge, or “limb,” as it is called,
has been observed, to add or deduct the apparent semi-diameter
of the object. In most cases this will be sensibly the same in all
parts of the sky, but the moon is so near that there is quite a
perceptible difference between her diameter when in the zenith and
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in the horizon.

A glance at[Fig. 34 shows that in the zenith the moon’s distance is less
than at the horizon, by almost exactly the earth’s radius—the difference
between the lines OZ and OP,,. Now this is very nearly one-sixtieth part
of the moon’s distance, and consequently the moon, on a night when its
apparent diameter at rising is 30’, will be 30” larger when near the
zenith. Since the semi-diameter given in the almanac is what would be
seen from the centre of the earth, every measure of the moon’s distance
from stars or from the horizon will require us to take into account this
“augmentation of the semi-diameter,” as it is technically called.

The formula, easily deduced from thel[figure] by remembering that the
angle PCO = ( — p (zenith distance — parallax), and that the appar-
ent and “almanac” diameters will be inversely proportional to the two
distances OP and CP, is

sin ¢

apparent semi-diameter = almanacs. d. x —————.
sin (¢ — p)

This measurable increase of the moon’s angular diameter at high
altitudes has nothing to do with the purely subjective illusion which
makes the disc look larger to us when near the horizon. That it is
a mere illusion may be made evident by simply looking through
a dark glass just dense enough to hide the horizon and intervening
landscape. The moon or sun then seems to shrink at once to normal
dimensions.

89. Refraction.—
Rays of light have their direc- z
tion changed by refraction in
passing through the air, and as
the direction in which we see a BER

body s that in which its light g
reaches the eye, it follows that s’
this refraction apparently dis- it - =
places the stars and all bodies % ,/ = =

seen through the atmosphere. ,/L =

So far as the action is regular, ) )

the effect is to bend the rays di-
rectly downwards, and thus to
make the objects appear higher in the sky. Refraction increases
the altitude of a celestial object without altering the azimuth. Like
parallax, it is zero at the zenith and a maximum at the horizon; but

Fi1G. 35.—Atmospheric Refraction.
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it follows a different law. It is entirely independent of the distance
of the object, and its amount varies (nearly) as the tangent of the
zenith distance—mnot as the sine, as in the case of parallax.

90. This approximate law of the refraction is easily proved.

Suppose in that the observer at O sees a star in the direction
OS, at the zenith distance ZOS or (. The light has reached him from
S’ by a path which was straight until the ray met the upper surface of
the air at A, but afterwards curved continually downwards as it passed
from rarer to denser regions.

We know that the atmosphere is very shallow as compared with the
size of the earth, and it is exceedingly rare in the upper portions, so that,
as far as concerns refraction, we may assume that the point A, where the
first perceptible bending of the ray occurs, is not more than fifty miles
high, and that the vertical AZ' is sensibly parallel to OZ; consequently,
also, that all the successive “strata of equal density” are parallel to each
other and to the upper surface of the air.

[This amounts to neglecting the earth’s curvature between O and B.]

The true zenith distance (as it would be if there were no refraction) is
ZDS’, which equals Z'’AS’; and since the retraction, r, may be defined
as the difference between the true and apparent zenith distances, this
true zenith distance will = ¢ +r.

Now from optical principles, when a ray of light passes through a
medium composed of parallel strata, the final direction of the ray is the
same as if the medium had throughout the density of the last stratum,
and therefore the final direction, SO, will be the same as if all the air,
from A down, had the same density as at O, with the same index of
refraction, n. We may therefore apply the law of refraction directly at
A, and write sin Z’AS" = nsin BAC (= ZOS), or sin (( +r) = nsin(;
AC being drawn parallel to OS.

Developing the first member, we have

sin ( cosr 4 cos( sinr = nsin (.

But r is always a small angle, never exceeding 40’; we may therefore
take cosr = 1. Doing this and transposing the first term, we get

cos(sinr =nsin¢ —sin¢ = (n — 1) sin (.
Whence, sinr = (n — 1) tan (;
or, 7" = (n — 1)206265 tan ¢ (nearly).
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The index of refraction for air, at zero centigrade and a barometric
pressure of 760™™, is 1.000294; whence,

r” = .000294 x 206265 x tan ¢ = 60”.6 tan (.

This equation holds very nearly indeed down to a zenith distance
of 70°, but fails as we approach the horizon. For rays coming nearly
horizontal, the points A and B are so far from O that the normal AZ’ is
no longer practically parallel to OZ; and many of the other fundamental
assumptions on which the formula is based also break down.

At the horizon, where ( = 90° and tan{ = infinity, the formula
would give sinr = infinity also; an absurdity, since no sine can exceed
unity. The refraction there is really about 37/, under the circumstances
of temperature and pressure above indicated.

91. Effect of Temperature and Barometric Pressure.—
The index of refraction of air depends of course upon its temper-
ature and pressure. As the air grows warmer, its refractive power
decreases; as it grows denser, the refraction increases. Hence, in all
precise observations of the altitude (or zenith distance), it is neces-
sary to note both the thermometer and the barometer, in order to
compute the refraction with accuracy. For rough work, like ordinary
sextant observations, it will answer to use the “mean refraction,”
corresponding to an average state of things.

Tables of Refraction.—The computation of the refraction is best
effected by special tables made for the purpose; of these, Bessel’s tables
are the most convenient, best known, and probably even yet the most
accurate. It must be always borne in mind, however, that from the action
of wind and other causes the condition of the air along the path of the
ray is seldom perfectly normal; in consequence, the actual refraction in
any given case is liable to differ from the computed by as much as one
or even two per cent. No amount of care in observation can evade this
difficulty; the only remedy is a sufficient repetition of observations under
varying atmospheric conditions. Observations at an altitude below 10°
or 15° are never much to be trusted.

Lateral Refraction.—When the air is much disturbed, sometimes
objects are displaced horizontally as well as vertically. Indeed, as a
general rule, when one looks at a star with a large telescope and high
power, it will seem to “dance” more or less—the effect of the varying
refraction which continually displaces the image.
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92. Effect on the Time of Sunrise and Sunset.—The hor-
izontal refraction, ranging as it does from 34’ to 39’, according to
temperature, is always somewhat greater than the diameter of ei-
ther the sun or the moon. At the moment, therefore, when the sun’s
lower limb appears to be just rising, the whole disc is really below
the plane of the horizon; and the time of sunrise in our latitudes is
thus accelerated from two to four minutes, according to the incli-
nation of the sun’s diurnal circle to the horizon, which inclination
varies with the time of the year. Of course, sunset is delayed by the
same amount, and thus the day is lengthened by refraction from
four to eight minutes, at the expense of the night.

93. Effect on the Form and Size of the Discs of the Sun
and Moon.—Near the horizon the refraction changes very rapidly.
While under ordinary summer temperature it is about 35" at the
horizon, it is only 29" at an elevation of half a degree; so that, as
the sun or moon rises, the bottom of the disc is lifted 6’ more than
the top, and the vertical diameter is thus made apparently about
one-fifth part shorter than the horizontal. This distorts the disc into
the form of an oval, flattened on the under side. In cold weather
the effect is much more marked. As the horizontal diameter is not
at all increased by the refraction, the apparent area of the disc is
notably diminished by it; so that it is evident that refraction cannot
be held in any way responsible for the apparent enlargement of the
rising luminary.

94. Determination of the Refraction.—1. Physical Method.
Theory furnishes the law of astronomical refraction, though the
mathematical expression becomes rather complicated when we at-
tempt to make it exact. In order, therefore, to determine the as-
tronomical refraction under all possible circumstances, it is only
necessary to determine the index of refraction of air, and its vari-
ations with temperature and pressure, by laboratory experiments,
and to introduce the constants thus obtained into the formulee. It is
difficult, however, to make these determinations with the necessary
precision. In fact, at present our knowledge of the constants of air
rests mainly on astronomical work.

2. By Observations of Circumpolar Stars. At an observatory
whose latitude exceeds 45° select some star which passes through
the zenith at the upper culmination. (Its declination must equal
the latitude of the observatory.) It will not be affected by refraction
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at the zenith, while at the lower culmination, twelve hours later,
it will. With the meridian circle observe its polar distance in both
positions, determining the “polar point” of the circle as described on
pp. 46-47. If the polar point were not itself affected by refraction,
the simple difference between the two results for the star’s polar
distance, obtained from the upper and lower observations, would
be the refraction at the lower point.

As a first approximation, however, we may neglect the refraction
at the pole, and thus obtain a first approximate lower refraction. By
means of this we may compute an approrimate polar refraction, and
so get a first “corrected polar point.” With this compute a second
approximate lower refraction, which will be much more nearly right
than the first; this will give a second “corrected polar point”; this
will in turn give us a third approximation to the refraction; and so
on. But it would never be necessary to go beyond the third, as the
approximation is very rapid. If the star does not go exactly through
the zenith, it is only necessary to compute each time approximate
refractions for its upper observation, as well as for the polar point.

At present, however, the refraction is so well known that the
method actually used is to form “equations of condition” from the
observations of the altitude of known stars under varying circum-
stances, and from these to deduce such corrections to the star places
and refraction constants as will best harmonize the whole mass of
material.

95. 3. By Observations of the Altitudes of Fquatorial Stars made
at an Observatory near the Equator. For an observer so situated, stars
that are on the celestial equator (6 = 0) will come to the meridian at the
zenith, and will rise and fall vertically, with a motion strictly proportional
to the time; the true zenith distance of the star at any moment being
just equal to its hour-angle in degrees. We have only, then, to observe
the apparent zenith distance of a star with the corresponding time, and
the refraction comes out directly.

If the station is not exactly on the equator, and if the star’s decli-
nation is not exactly zero, it is only necessary to know the latitude and
declination approzximately in order to get the refraction very accurately;
a considerable error in either latitude or declination will affect the result
but slightly.

4. The French astronomer Loewy has recently proposed a method
which promises well. He puts a pair of reflectors, inclined to each other
at a convenient angle of from 45° to 50° (a glass wedge with silvered
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sides), in front of the object-glass of an equatorial. This will bring to the
eye two rays which make a strictly constant angle with each other, and
there is no difficulty in finding pairs of stars so situated that their images
will come into the field of view together. Now, were it not for refrac-
tion, these images would always keep their relative position unchanged,
notwithstanding the diurnal motion; but on account of the changes in
the refraction, as one star rises and the other falls, they will shift in the
field, and micrometric measures will determine the shifting, and so the
refraction, with great precision.

96. Twilight.—(Although this subject is outside the main purpose of
this chapter, which deals with corrections to be applied to astronomical ob-
servations, we treat it here because, like refraction, it is a purely atmospheric

phenomenon, and finds no other more convenient place.)

Twilight, the illumination of the sky which begins before sunrise,
and continues after sunset, is caused by the reflection of light to the
observer from the upper regions of the earth’s atmosphere. It is not
yet certain whether this is due to reflection from foreign matter in
the air, such as minute crystals of ice and salt, particles of dust of
various kinds, and infinitesimal drops of water, or whether the pure
gases themselves have some power of reflecting light. There is no
doubt, however, that air, under the ordinary conditions, possesses
considerable power of reflection; so that, as long as any air upon
which the sun is shining is visible to the observer, it will send him
more or less light, and appear illuminated.

Fia. 36.—Twilight.

Suppose the atmosphere to have the depth indicated in the [fig-]
lurel Then, if the sun is at S, [Fig. 30 it will just have set to an
observer at 1, but all the air within his range of vision will still
be illuminated. When, by the earth’s rotation, he has been trans-
ported to 2, he will see the “twilight bow” rising in the east, a faintly
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reddish arc separating the illuminated part of the sky from the dark-
ened part below, which lies in the shadow of the earth. When he
reaches 3, the western half of the sky alone remains bright, but the
arc of separation between the light and darkness has become vague
and indefinite; when he reaches 4, only a glow remains in the west;
and when he comes to 5, night closes in on him. Nothing remains
in sight on which the sun is shining.

97. Duration of Twilight.—This depends upon the height of the
atmosphere, and the angle at which the sun’s diurnal circle cuts the
horizon. It is found as a matter of observation, not admitting, however,
of much precision, that twilight lasts until the sun has sunk about 18°
below the horizon; that is to say, the angle 1C'5 in the is about
18°.

The time required to reach this point in latitude 40° varies from two
hours at the longest days in summer, to one hour thirty minutes about
Oct. 12 and March 1, when it is least. At the winter solstice it is about
one hour and thirty-five minutes.

In higher latitudes the twilight lasts longer, and the variation is more
considerable; the date of the minimum also shifts.

Near the equator the duration is shorter, hardly exceeding an hour
at the sea-level; while at high elevations (where the amount of air above
the observer’s level is less) it becomes very brief. At Quito and Lima it is
said not to last more than twenty minutes. Probably, also, in mountain
regions the clearness of the air, and its purity contribute to the effect.

98. Height of the Atmosphere.—It is evident from the [fig-]
that at the moment twilight ceases, the last visible portion of
illuminated air is at the top of the atmosphere, and just half-way
between the observer and the nearest point where the sun is set-
ting. If the whole arc 1, 5 is 18°, 1, 3 is 9°: then calling the height
of the atmosphere H and the earth’s radius R, and neglecting re-
fraction (i.e., supposing the lines 1m and 5m to be straight), we
have from the right-angled triangle 1C'm, C'm = 1C x sec9°, or
R+H = Rxsec9°; whence H = R (sec9°—1) = 0.0125 R, or almost
exactly fifty miles. This must be diminished about one-fifth part
on account of the curvature of the lines 1 m and 5m by refraction,
making the height of the atmosphere about forty miles.

The result must not, however, be accepted too confidently. It
only proves that we get no sensible twilight illumination from air at
a greater height: above that elevation the air is either too rare, or
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too pure from foreign particles, to send us any perceptible reflection.
There is abundant evidence from the phenomena of meteors that the
atmosphere extends to a height of 100 miles at least, and it cannot
be asserted positively that it has any definite upper limit.

99. Aberration.—There is yet one more correction which has to
be applied in order to get the true direction of the line which at the
instant of observation joins the eye of the observer to the star he is
pointing at. The aberration of light is an apparent displacement of the
object observed, due to the combination of the earth’s orbital motion
with the progressive motion of light. It can be better discussed, however,
in a different connection (see , and we content ourselves with

merely mentioning it here.
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CHAPTER IV.

PROBLEMS OF PRACTICAL ASTRONOMY, LATITUDE, TIME,
LONGITUDE, AZIMUTH, AND THE RIGHT ASCENSION AND
DECLINATION OF A HEAVENLY BODY.

100. THERE are certain problems of Practical Astronomy
which have to be solved in obtaining the fundamental facts from
which we deduce our knowledge of the earth’s form and dimensions,
and other astronomical data.

The first of these problems is that of the

LATITUDE.

The latitude (astronomical) of a place (Art. 30) is simply the
altitude of the celestial pole (Polhéhe), or, what comes to the same

thing, as is evident from [Fig. 7| (Art. 33)), it is the declination of
the zenith. It may also be defined, from the mechanical point of
view, as the angle between the plane of the earth’s equator and the
observer’s plumb-line or vertical.

Neither of these definitions assumes anything as to the form of the
earth, and we shall find farther on that this astronomical latitude is sel-
dom identical with the geocentric, nor even with the geodetic latitude
of a place. It is, however, the only kind of latitude which can be di-
rectly determined from astronomical observations, and its determination
is one of the most important operations of what may be called Economic
Astronomy.

101. Determination of Latitude.—First: By Circumpolars.
The most obvious method of determining the latitude is to observe,
with the meridian circle or some analogous instrument, the altitude
of a circumpolar star at its upper culmination, and again, twelve
hours later, at its lower. Each of the observations must be corrected
for refraction, and then the mean of the two corrected altitudes will
be the latitude.

This method has the advantage of being an independent one; i.e., it
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does not require any data (such as the declination of the stars used) to
be accepted on the authority of previous observers. But to obtain much
accuracy it requires considerable time and a large fixed instrument. In
low latitudes the refraction is also very troublesome.

102. Second: By the meridian altitude or zenith distance of a
body of known declination.

In[Fig. 37 the semi-circle AQPB is the meridian, @ and P being
respectively the equator and the pole, and Z the zenith. Q)7 is the
declination of the zenith, or the observer’s latitude (= PB = ¢).
Suppose now that we observe Zs (= (), the zenith distance of a
star s (south of the zenith), as it crosses the meridian, and that its
declination Qs (= ds) is known; then evidently ¢ = 5 + (.

In the same way, if the star were at n, between zenith and pole,
¢ = 0p — Cn

If we use the meridian circle, we can always select stars that pass
near the zenith where the refraction will be small; moreover, we can
select them in such a way that some will be as much north of the zenith
as others are south, and thus eliminate the refraction errors. But we
have to get our star declinations out of catalogues made by previous
observers, and so the method is not an independent one.

103. At Sea the latitude is usually ob-
tained by observing with the sextant the
sun’s mazimum altitude, which of course
occurs at noon. Since at sea it is seldom
that one knows beforehand precisely the
moment of local noon, the observer takes
care to begin to observe the sun’s altitude
some ten or fifteen minutes earlier, repeat-
ing his observations every minute or two. At first the altitude
will keep increasing, but immediately after noon it will begin to
decrease. The observer uses therefore the mazimum!® altitude ob-
tained, which, corrected for refraction, parallax, semi-diameter, and

FiG. 37.—Determination
of Latitude.

1On account of the sun’s motion in declination, and the northward or south-
ward motion of the ship itself, the sun’s maximum altitude is usually attained
not precisely on the meridian, but a few seconds earlier or later. This requires
a slight correction to the deduced latitude, explained in books on Navigation
or Practical Astronomy.
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dip of the horizon, will give him the true latitude of his ship, by the
formula ¢ = 9 £ (.

104. Third: By Circum-meridian Altitudes.—If the observer
knows his time with reasonable accuracy, he can obtain his latitude from
observations made when the body is near the meridian, with practically
the same precision as at the moment of meridian passage. It would take
us a little too far to explain the method of reduction, which is given
with the necessary tables in all works on Practical Astronomy. The
great advantage of this method is that the observer is not restricted to
a single observation at each meridian-passage of the sun or of the se-
lected star, but can utilize the half-hours preceding and following that
moment. The meridian-circle cannot be used, as the instrument must
be such as to make extra-meridian observations possible. Usually the
sextant or universal instrument is employed. This method is much used
in the French and German geodetic surveys.

105. Fourth: The Zenith Telescope Method.—(Sometimes known
as the American method, because first practically introduced by Captain Tal-
cott of the United States Engineers, in a boundary survey in 1845.)

The essential characteristic of the
method is the micrometric measurement
of the difference between the nearly equal
zenith distances of two stars which culmi-
nate within a few minutes of each other,
one north and the other south of the zenith,
and not very far from it: such pairs of stars
can always be found. When the method
was first introduced, a special instrument, .
known as the zenith telescope, was gener-
ally employed, but at present a simple tran-
sit instrument, with declination microme-
ter, and a delicate level attached to the tele- g 38.— Principle of
scope tube, is ordinarily used. the Zenith Telescope.

The telescope is set at the proper alti-
tude for the star which first comes to the meridian, and the “latitude
level,” as it is called, is set horizontal; as the star passes through
the field of view its distance north or south of the central wire is
measured by the micrometer. The instrument is then reversed, and
so set by turning the telescope up or down (without, however, dis-

turbing the angle 0 (Fig. 38) between the level and telescope), that
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the level is again horizontal. After this reversal and adjustment, the
telescope tube is then evidently elevated at exactly the same angle,
(, as before, but on the opposite side of the zenith. As the second
star passes through the field, we measure with the micrometer its
distance north or south of the centre of the field; the comparison of
the two micrometer measures gives the difference of the two zenith
distances.

From we have

for star south of zenith, ¢ = d, + (;
for star north of zenith, ¢ =9, — (,.

Adding the two equations and dividing by 2, we have

_ 5S+5n Cs Cn
= (55)+(557)

The star catalogue gives us the declinations of the two stars
(0s + 6,); and the difference of the zenith distances (s — () is
determined with great accuracy by the micrometer measures.

The great advantage of the method consists
in its dispensing with a graduated circle, and
in avoiding almost wholly the errors due to re- S/;_ Zs\s'
fraction; it virtually utilizes the circles of the
fixed observatories by which the star declina-
tions have been measured, without requiring
them to be brought into the field. Forty years P
ago 1.t Wa.ns not always e.asy jco find accurate de- g1, 39 Latitude by
terminations of the declinations of the stars em-  pyime Vertical Transits.
ployed, but at present the star catalogues have
been so extended and improved that this difficulty has practically disap-
peared, so that this method of determining the latitude is now not only
the most convenient and rapid, but is quite as precise as any, if the level
is sufficiently sensitive. Evidently the limit of accuracy depends upon
the exactness with which the level measures the slight, but inevitable,
difference between the inclinations of the instrument when pointed on
the two stars.

106. Fifth: By the Prime Vertical Instrument (p.[44).—We ob-
serve simply the moment when a known star passes the prime vertical on
the eastern side, and again upon the western side. Half the interval will
give the hour-angle of the star when on the prime vertical; i.e., the angle
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ZPS in where Z is the zenith, P the pole, and SZS’ the prime
vertical. The distance P.S of the star from the pole is the complement
of the star’s declination; and PZ is the complement of the observer’s
latitude. Since the prime vertical is perpendicular to the meridian at the
zenith, the triangle PZS will be right-angled at Z, and from Napier’s
rule of circular parts (taking ZPS as the middle part) we shall have

cos ZPS = tan PZ cot PS,
or cost = cot ¢ tan d;

whence tan ¢ = tand sect.

If § nearly equals ¢, t will be small, and a considerable error in the
observation of ¢ will then produce very little change in its secant or in
the computed latitude.

The observations are not so convenient and easy as in the case of the
zenith telescope, and the number of stars available is less; but the method
presents the great advantage of requiring nothing but an ordinary transit
instrument, without any special outfit of micrometer and latitude level.
It also entirely evades the difficulties caused by refraction.

107. Sixth: By the
Gnomon.—The  ancients  had
no instruments such as we have
hitherto described, and of course
could not use any of the preceding
methods of finding the latitude.
They were, however, able to make
a very respectable approximation
by means of the simplest of all

astronomical instruments, the A ¢ E D
gnomon. This is merely a vertical Fic. 40— Latitude by the
shaft or column of known height Gnomon.

erected on a perfectly horizontal
plane; and the observation consists in noting the length of the
shadow cast at noon at certain times of the year.

Suppose, for instance, that on the day of the summer solstice,
at noon, the length of the shadow is AC, [Fig. 40l The height AB
being given, we can easily compute in the right-angled triangle the
angle ABC', which equals SBZ, the sun’s zenith distance when far-
thest north. Again observe the length AD of the shadow at noon of
the shortest day in winter, and compute the angle ABD, which is
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the sun’s corresponding zenith distance when farthest south. Now,
since the sun travels equal distances north and south of the ce-
lestial equator, the mean of the two results will give the angular
distance between the equator and the zenith; i.e., the declination of

the zenith, which (Art. 100]) is the latitude of the place.

The method is an independent one, like that by the observation of
circumpolar stars, requiring no data except those which the observer
determines for himself. Evidently, however, it does not admit of much
accuracy, since the penumbra at the end of the shadow makes it impos-
sible to measure its length very precisely.

It should be noted that the ancients, instead of designating the po-
sition of a place by means of its latitude, used its climate instead; the
climate (from k\{ua) being the slope of the plane of the celestial equator,
the angle AFE B, which is the complement of the latitude.

It is supposed, indeed known, that many of the Egyptian obelisks
were erected primarily to serve as gnomons, and were used for that pur-
pose.

108. Possible Variations of the Latitude.—It is an inter-
esting question whether the position of the earth’s axis is fized with
reference to its mass and surface. Theoretically it is hardly possible that
it should be, because any change in the arrangement of the matter of the
earth, by denudation, subsidence, or elevation, would almost necessarily
disturb it. If so disturbed, the latitudes of places toward which the pole
approached would be increased, and those on the opposite side would
be decreased. At present we can only say that if such disturbance has
occurred, it must have been extremely slight for the last 200 years, not
exceeding 40 or 50 feet at most; but there are suspicions of a minute and
progressive change of the latitude of some of the observatories (notably
Pulkowa), which have drawn attention to the matter, and the subject is
under investigation.

TIME AND ITS DETERMINATION.

109. One of the most important problems presented to the as-
tronomer is the determination of Time. By universal consent the
apparent rotation of the heavens is made to furnish the standard,
and the determination of time is effected by ascertaining by obser-
vation the hour-angle of the object selected to mark the beginning of
the day by its transit across the meridian. In practice, three kinds
of time are now recognized, viz., sidereal time, apparent solar time,
and mean solar time.
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110. Sidereal Time.—As has already been explained ,
the sidereal time at any moment is the hour-angle of the vernal
equinox at that moment,; or, what comes to the same thing, though
it sounds differently, it is the time marked by a clock which is so
set and adjusted as to show noon, or 0" 00™ 00°, at each transit
of the vernal equinox. The sidereal day, thus defined, is the time
intervening between two successive transits of the same star; at
least, it is so within the hundredth part of a second, though on
account of the precession of the equinoxes (and the proper motions
of the stars) the agreement is not absolute, the difference amounting
to about one day in twenty-six thousand years.

111. Apparent Solar Time.—Just as sidereal time is the hour-
angle of the vernal equinox, so at any moment the apparent solar
time is the hour-angle of the sun. It is the time shown by the sun-
dial, and its noon is when the sun crosses the meridian. On account
of the annual eastward motion of the sun among the stars (due to
the earth’s orbital motion), this day is about four minutes longer
than the sidereal; and moreover, because the sun’s motion in right
ascension is not uniform, the apparent solar days are not all of
the same length, nor, consequently, its hours, minutes, or seconds.
December 23d is fifty-one seconds longer from (apparent) noon to
noon than Sept. 16th. For this reason, apparent solar time is not
satisfactory for scientific use, and has long been discarded in favor
of mean solar time. Until within about a hundred years, however,
it was the only kind of time commonly employed, and its use in the
city of Paris was not discontinued until the year 1816.

112. Mean Solar Time.—A “fictitious sun” is therefore imag-
ined, which moves uniformly and in the celestial equator, completing
its annual course in exactly the same time as that in which the ac-
tual sun makes the circuit of the ecliptic. It is mean noon when
this “fictitious sun” crosses the meridian, and at any moment the
hour-angle of this “fictitious sun” is the mean time for that moment.

Sidereal time will not answer for business purposes, because its noon
(the transit of the vernal equinox) occurs at all hours of night and day-
light in different seasons of the year. Apparent solar time is scientifically
unsatisfactory, because of the variation in the length of its days and
hours. And yet we have to live by the sun; its rising and setting, daylight
and night, control our actions. In mean solar time we find a satisfactory
compromise, an invariable time unit, and still an agreement with sun-
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dial time close enough for convenience. It is the time now used for all
purposes except in certain astronomical work. The difference between
apparent time and mean time, never amounting to more than about a
quarter of an hour, is called the equation of time, and will be discussed
hereafter in connection with the earth’s orbital motion,

The nautical almanac furnishes data by means of which the sid-
ereal time may be deduced from the corresponding solar, or wvice
versa, by a very brief and simple calculation.

113. In practice the problem of determining the time always
takes the form of ascertaining the error of a time-piece; that is, the
amount by which a clock or watch is fast or slow of the time it
ought to show. The methods most in use by astronomers are the
following:—

First. By means of the transit instrument. Since the right ascen-
sion of a star is the sidereal time of its passage across the meridian
(Art. 26)), it is obvious that the difference between the right ascen-
sion of a known star and the time shown by a sidereal clock at the
instant when the star crosses the middle wire of an accurately ad-
justed transit instrument, is the error of the clock at that moment.
Practically, it is usual to observe a number of stars (from eight to
ten), reversing the instrument once at least, so as to eliminate the
collimation error (Art. 60). With a good instrument a skilled ob-
server can determine this clock error or “correction” within about
one-thirtieth of a second of time, provided proper means are taken
to ascertain and allow for his “personal equation.”

114. Personal Equation.—It is found that every observer has
his own peculiarities of time observation with a transit, and his
“personal equation” is the amount to be added (algebraically) to
the time observed by him, in order to get the actual moment of
transit as it would be recorded by some supposable arrangement,
which should automatically register the moment when the star’s
image was bisected by the wire.

This personal equation differs for different observers, but is reason-
ably (though never strictly) constant for one who has had much practice.
In the case of observations with the chronograph, it is usually less than
+0%.2. It can be determined by an apparatus in which an artificial star,
resembling the real stars as much as possible in appearance, is made to
traverse the field of view and to telegraph its arrival at certain wires,
while the observer notes the moments for himself.
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One of the most important problems of practical astronomy now
awaiting solution is the contrivance of some practical method of time
observation free from this annoying human element, the personal equa-
tion, which is always more or less uncertain and variable.

If mean time is wanted, it can be deduced from the sidereal time
by the data of the almanac.

The sun can also be observed instead of the stars, the moment
of the sun’s transit being that of apparent noon; but this obser-
vation, for many reasons, is far less accurate and satisfactory than
observations of the stars.

115. Second. The method of equal altitudes—If we observe
with a sextant in the forenoon the time shown by the chronome-
ter when the sun attains the height indicated by a certain reading
of the sextant, and then in the afternoon, the time when the sun
again reaches the same altitude, the moment of apparent noon will
be half-way between the two observed times; provided, of course,
that the chronometer runs uniformly during the interval, and also
provided that proper correction is made for the sun’s slight motion
in declination—a correction easily computed.

The advantage of this method is that the errors of graduation
of the sextant have no effect, nor is it necessary for the observer to
know his latitude except approximately.

Per contra, there is, of course,
danger that the afternoon obser-
vations may be interfered with by
clouds; and, moreover, both obser-
vations must be made at the same
place.

A modification of this method
is now coming into extensive use, in  F1G. 41.—Determination of Time
which two different stars of known by a Single Altitude.
right ascension and of nearly the
same declination are used, at equal altitudes east and west of the
meridian.

EH

116. Third. By a single altitude of the sun, the observer’s lat-
itude being known.—This is the method usual at sea. The altitude
of the sun having been measured with the sextant, and the corre-
sponding time shown by the chronometer having been accurately
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noted, we compute the hour-angle of the sun, P, from the trian-
gle ZPS (Fig. 41), and this hour-angle corrected for the equation
of time, gives the true mean time at the observed moment. The
difference between this and that shown by the chronometer is the
error of the chronometer. In the triangle Z PSS all three of the sides
are given, viz.: PZ is the complement of the latitude ¢, which is
supposed to be known; PS is the complement of the declination 9,
which is found in the almanac, as is also the equation of time; while
Z S or (, is the complement of the sun’s altitude, as measured by the
sextant, and corrected for semi-diameter, refraction, and parallax.
The formula is

sin}P = (sin%[<+<¢—5>]sin%[<—<¢—a>]>2.

COS ¢ oS O

In order to accuracy, it is desirable that the sun should be on the
prime vertical, or as near it as practicable. It should not be near
the meridian. Any slight error in the assumed latitude produces no
sensible effect upon the result, if the sun is exactly east or west at
the time the observation is taken. The disadvantage of the method
is that any error of graduation of the sextant enters into the result
with its full effect.

In some cases a person is so situated that it is necessary to determine
his time roughly, without instruments; and this can be done within about
a half a minute by establishing a noon-mark, which is nothing but a line
drawn exactly north and south, with a plumb-line, or some vertical edge,
like the edge of a door-frame or window-sash, at its southern extremity.
The shadow will then always fall upon the meridian line at apparent
noon.

117. The Civil and the Astronomical Day.—The astro-
nomical day begins at mean noon. The civil day begins at midnight,
twelve hours earlier. Astronomical mean time is reckoned round
through the whole twenty-four hours, instead of being counted in
two series of twelve hours each. Thus, 10 A.M. of Wednesday, May 2,
civil reckoning, is Tuesday, May 1, 22" by astronomical reckoning.
Beginners need to bear this in mind in using the almanac.

LONGITUDE.

118. Having now methods of obtaining the true local time, we
can attack the problem of longitude, which is perhaps the most
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important of all the economic problems of astronomy. The great
observatories at Greenwich and at Paris were established simply for
the purpose of furnishing the observations which could be made the
basis of the accurate determination of longitude at sea.

The longitude of a place on the earth is the angle at the pole be-
tween the meridian of Greenwich and the meridian passing through
the observer’s place; or it is the arc of the equator intercepted be-
tween these meridians; or, what comes to the same thing, since this
arc is measured by the time required for the earth to turn suffi-
ciently to bring the second meridian into the same position held by
the first, it is simply the difference of their local times,—the amount
by which the noon at Greenwich is earlier or later than at the ob-
server’s place. It is now usually reckoned in hours, minutes, and
seconds, instead of degrees.

Since it is easy for the observer to find his own local time by
the methods which have been given, the knot of the problem is
really this: being at any place, to find the corresponding local time
at Greenwich without going there.

The methods of finding the longitude may be classed under three
different heads:

First, By means of signals simultaneously observable at the
places between which the difference of longitude is to be found.

Second, By making use of the moon as a clock-hand in the sky.

Third, By purely mechanical means, such as chronometers and
the telegraph.

119. Under the first head we may make use of

[A] A Lunar Eclipse—When the moon enters the shadow of
the earth, the phenomenon is seen at the same moment, no matter
where the observer may be. By noting, therefore, his own local
time at the moment, and afterwards comparing it with the time at
which the phenomenon was observed at Greenwich, he will obtain
his longitude from Greenwich. Unfortunately, the edge of the earth’s
shadow is so indistinct that the progress of events is very gradual,
so that sharp observations are impossible.

[B] Eclipses of the satellites of Jupiter may be used in the same
way, with the advantage that they occur very frequently,—almost
every night, in fact; but the objection to them is the same as to the
lunar eclipses,—they are not sudden.
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[C] The appearance and disappearance of meteors may be and
has been used to determine the difference of longitude between
places not more than two or three hundred miles apart, and gives
very accurate results. (Now superseded by the telegraph.)

[D] Artificial signals, such as flashes of powder and rockets, can
be used between two stations not too far distant. FEarly in the
century the difference of longitude between the Black Sea and the
Atlantic was determined by means of a chain of signal stations on
the mountain tops; so also, later, the difference of longitude between
the eastern and western extremities of the northern boundary of
Mexico. This method is now superseded by the telegraph.

120. SECOND, the moon regarded as a clock.

Since the moon revolves around the earth once a month, it is, of
course, continually changing its place among the stars; and as the
laws of its motion are now well known, and as the place which it
will occupy is predicted for every hour of every Greenwich day three
years in advance in the nautical almanac, it is possible to deduce
the corresponding Greenwich time by any observation which will
determine the place of the moon among the stars. The almanac
place, however, is the place at which the moon would be seen by
an observer at the centre of the earth, and consequently the actual
observations are in most cases complicated with very disagreeable
reductions for parallax before they can be made available.

The simplest lunar method is,

[A] That of Moon Culminations.—We merely observe with a
transit instrument the time when the moon’s bright limb crosses the
meridian of the place; and immediately after the moon we observe
one or more stars with the same instrument, to give us the error of
our clock. As the moon is observed on the meridian, its parallax
does not affect its right ascension, and accordingly, by a simple
reference to the almanac, we can ascertain the Greenwich time at
which the moon had the particular right ascension determined by
the observation. The method has been very extensively used, and
would be an admirable one were it not for the effects of personal
equation.

It seldom happens that the personal equation of an observer is the
same for such an object as the limb of the moon as it is for a star; and
since the moon’s motion among the stars is very slow, the effect of such
a difference is multiplied by about 30 (roughly the number of days in a
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month) in its effect upon the longitude deduced.

[B] Lunar-Distances—At sea it is, of course, impossible to ob-
serve the moon with a transit instrument, but we can observe its
distance from the stars near its path by means of a sextant. The
distance observed will not be the same that it would be if the ob-
server were at the centre of the earth, but by a mathematical process
called “clearing a lunar” the distance as seen from the centre of the
earth can be easily deduced, and compared with the distance given
in the almanac. From this the longitude can be determined. Any
error, however, in measuring a lunar-distance entails an error about
thirty times as great in the resulting longitude, and the method is
at present very little used, the moon having been superseded by the
chronometer for such purposes.

[C] Occultations—Occasionally, in its passage through the sky,
the moon over-runs a star, or “occults” it. The star vanishes in-
stantaneously, and, of course, at the moment of its disappearance
the distance from the centre of the moon to the star is precisely
equal to the apparent semi-diameter of the moon; we thus have a
“lunar-distance” self-measured.

Observations of this kind furnish one of the most accurate meth-
ods of determining the difference of longitude between widely sepa-
rated places, the only difficulty arising from the fact that the edge
of the moon is not smooth, but more or less mountainous, so that
the distance of a star from the moon’s centre is not always the same
at the moment of its disappearance.

[D] In the same way a solar eclipse may be employed by observing
the moment when the moon’s limb touches that of the sun.

It will be noticed that these two last methods (the methods of occul-
tation and solar eclipse) do not belong in the same class with the method
of lunar eclipse, because the phenomena are not seen at the same instant
at different places, but the calculation of longitude depends upon the
determination of the moon’s place in the sky at the given time, as seen
from the earth’s centre.

There are still other methods, depending upon measurements of
the moon’s position by observations of its altitude or azimuth. In
all such cases, however, every error of observation entails a vastly
greater error in the final results. Lunar methods (excepting occul-
tations) are only used when better ones are unavailable.
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121. Finally we have what may be called the mechanical meth-
ods of determining the longitude.

[A] By the chronometer; which is simply an accurate watch that
has been set to indicate Greenwich time before the ship leaves port.
In order to find the longitude by the chronometer, the sailor has
to determine its “error” upon local time by an observation of the
altitude of the sun when near the prime vertical, as indicated on
page 80l If the chronometer indicates true Greenwich time, the
error deduced from the observation will be the longitude. Usually,
however, the indication of the chronometer face requires correction
for the rate and run of the chronometer since leaving port.

Chronometers are only imperfect instruments, and it is important,
therefore, that several of them should be used to check each other. It
requires three at least, because if only two chronometers are carried and
they disagree, there is nothing to indicate which one is the delinquent.

On very long voyages the errors of chronometers are cumulative, and
the error is found to accumulate, not merely in proportion to the time,
but more nearly in proportion to the square of the time; i.e., if the error
to be feared in the use of a chronometer in longitude determinations at
the end of a week is about two seconds of time, at the end of the month
it would be, not eight seconds, but about thirty-two seconds.

If, therefore, a ship is to be at sea, without making port, more than
three or four months at a time, the method becomes untrustworthy, and
it may be necessary to recur to lunar distances; for voyages of less than
a month the method is now, practically, all that could be desired.

[B] But the method which, wherever it is applicable, has super-
seded all others, is that of The Telegraph. When we wish to find the
longitude between two stations connected by telegraph, the process
is usually as follows: The observers at both stations, after ascer-
taining that they both have clear weather, proceed to determine
their own local time by extensive series of star observations with
the transit instrument. Then, at a agreed-upon time, the observer
at Station A “switches his clock” into the telegraphic circuit, so
that its beats are communicated along the line and received upon
the chronograph of the other, say the western station. After the
eastern clock has thus sent its signals, say for two minutes, it is
switched out of the circuit, and the western observer now switches
his clock into the circuit, and its beats are received upon the east-
ern chronograph. The operation is closed by another series of star
observations.
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We have now upon each chronograph sheet an accurate compar-
ison of the two clocks, showing the amount by which the western
clock is slow of the eastern. If the transmission of electric signals
were instantaneous, the difference shown upon the two chronograph
sheets would agree precisely. Practically, however, there will always
be a small discrepancy amounting to twice the time occupied in the
transmission of the signals; but the mean of the two differences will
be the true difference of longitude of the places after the proper
corrections have been applied. Especial care must be taken to deter-
mine with accuracy, or to eliminate, the personal equations of the
observers.

It is customary to make observations of this kind on not less than five
or six evenings in cases where it is necessary to determine the difference
of longitude with the highest accuracy. The astronomical difference of
longitude between two places can thus be telegraphically determined
within about the one-hundredth part of a second of time; i.e., within
about ten feet or so, in the latitude of the United States.

It may be noted here that the time occupied by the transmission
of electric signals in longitude operations is not to be taken as the real
measure of “the velocity of the electric fluid” upon the wires, as was once
supposed. The time apparently consumed in the transmission is simply
the time required for the current at the receiving station (which current
probably begins at the very instant the key is touched at the other end
of the line) to become strong enough to do its work in making the signal,
and this time depends upon a multitude of circumstances.

122. Local and Standard Time.—In connection with time and
longitude determinations, a few words on this subject will be in place.
Until recently it has always been customary to use only local time, each
observer determining his own time by his own observations. Before the
days of the telegraph, and while travel was comparatively slow and in-
frequent, this was best; but the telegraph and railway have made such
changes that, for many reasons, it is better to give up the old system
of local times in favor of a system of standard time. It facilitates all
railway and telegraphic business in a remarkable degree, and makes it
practically easy for every one to keep accurate time, since it can be daily
wired from some observatory to every telegraph office.

According to the system that is now established in this country, there
are five such standard times in use,—the colonial, the eastern, the cen-
tral, the mountain, and the Pacific,—which differ from Greenwich time
by exactly four, five, six, seven, and eight hours respectively, the minutes
and seconds being identical everywhere. At most places only one of these
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times is employed; but in cities where different systems join each other,
there are two standard times in use, differing from each other by exactly
one hour, and from the local time by about half an hour. In some such
places the local time also maintains its place.

In order to determine the standard time by observation, it is only
necessary to determine the local time by one of the methods given, and
correct it according to the observer’s longitude from Greenwich.

123. Where the Day Begins.—If we imagine a traveller start-
ing from Greenwich on Monday noon, and journeying westward as swiftly
as the earth turns to the east under his feet, he would, of course, keep
the sun exactly on the meridian all day long, and have continual noon.
But what noon? It was Monday when he started, and when he gets
back to London, twenty-four hours later, it is Tuesday noon there, and
there has been no intervening sunset. When does Monday noon become
Tuesday noon? The convention is that the change of date occurs at the
180th meridian from Greenwich. Ships crossing this line from the east
skip one day in so doing. If it is Monday forenoon when the ship reaches
the line, it becomes Tuesday forenoon the moment it passes it, the in-
tervening twenty-four hours being dropped from the reckoning on the
log-book. Vice versa, when a vessel crosses the line from the western
side, it counts the same day twice, passing from Tuesday forenoon back
to Monday, and having to do its Tuesday over again.

This 180th meridian passes mainly over the ocean, hardly touching
land anywhere. There is a little irregularity in the date upon the differ-
ent islands near this line. Those which received their earliest European
inhabitants via the Cape of Good Hope have, for the most part, the Asi-
atic date, belonging to the west side of the 180th meridian; while these
that were approached via Cape Horn have the American date.

When Alaska was transferred from Russia to the United States, it
was necessary to drop one day of the week from the official dates.

THE PLACE OF A SHIP AT SEA.

124. The determination of the place of a ship at sea is com-
mercially of such importance that, at the risk of a little repetition,
we collect together here the different methods available for its de-
termination. The methods employed are necessarily such that ob-
servations can be made with the sextant and chronometer, the only
instruments available under the circumstances.

The Latitude is usually obtained by observations of the sun’s
altitude at noon, according to the method explained in [Art. 103|
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The Longitude is usually found by determining the error upon
local time of the chronometer, which carries Greenwich time. The
necessary observations of the sun’s altitude should be made when
the sun is near the prime vertical, as explained in [Art. 116]

In the case of long voyages, or when the chronometer has for
any reason failed, the longitude may also be obtained by measuring
a lunar-distance and comparing it with the data of the nautical
almanac.

By these methods separate observations are necessary for the
latitude and for the longitude.

125. Sumner’s Method.—Recently a new method, first pro-
posed by Captain Sumner, of Boston, in 1843, has been coming
largely into use. In this method, each observation of the sun’s alti-
tude, with the corresponding chronometer time, is made to define
the position of the ship upon a certain line, called the circle of po-
sitton. Two such observations will, of course, determine the exact
place of the vessel at one of the intersections of the two circles.

At any moment the sun is vertically over some point upon the
earth’s surface, which may be called the sub-solar point. An ob-
server there would have the sun directly overhead. Moreover, if at
any point on the earth an observer measures the altitude of the
sun with his sextant, the zenith distance of the sun (which is the
complement of this altitude) will be his distance from the sub-solar
point at the moment of observation, reckoned in degrees of a great
circle.

If, then, I take a terrestrial globe, and, opening the dividers so as
to cover an arc equal to this observed zenith distance of the sun, put
one foot of the dividers upon the sub-solar point, and sweep a circle
on the surface of the globe around that point, the observer must
be somewhere on the circumference of that circle; and moreover, if
to the observer the sun is in the southwest, he himself must be in
the opposite direction from this sub-solar point; i.e., northeast of
it. In other words, the azimuth of the sun at the time of observation
informs him upon what part of the circle he is situated.

Suppose a similar observation made at the same place a few
hours later. The sub-solar point, and the zenith distance of the
sun, will have changed; and we shall obtain a new circle of position,
with its centre at the new sub-solar point. The observer must be
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at one of its two intersections with the first circle—which of the
two intersections is easily determined from the roughly observed
azimuth of the sun.

If the ship moves between the two observations, the proper al-
lowance must be made for the motion. This is easily done by shift-
ing upon the chart that part of the first circle of position where the
ship was situated, carrying the line forward parallel to itself, by an
amount just equal to the ship’s run between the two observations,
as shown by the log. The intersection with the second circle then
gives the ship’s place at the time of the second observation.

The only problem remaining is to find the position of the “sub-
solar point” at any given moment. Now, the latitude of this point is
obviously the declination of the sun (which is found in the almanac).
If the sun’s declination is zero, the sun is vertically over some point
upon the equator. If its declination is +20°, it is vertically over
some point on the twentieth parallel of north latitude, etc.

In the next place, its longitude is equal to the Greenwich appar-
ent solar time at the moment of observation; and this is given by the
chronometer (which keeps Greenwich mean solar time), by simply
adding or subtracting the equation of time; so that, by looking in
his almanac and at his chronometer, the observer has the position
of the sub-solar point immediately given him. (See note, page [93])
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F1G. 42.—Sumner’s Method.

Suppose, for example, that on May 20 (the sun’s declination being
420°), at 11 A.M., Greenwich apparent time (i.e., May 19, 23" by astro-
nomical reckoning), according to the chronometer, the sun is observed
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to have an altitude of 40° by a ship in the North Atlantic. The sub-solar
point will then be at a point in Africa having a latitude of
+20°, and an east longitude of 15°—at A in the And the radius
of the “circle of position,” i.e., the distance from A to C—will be 50°.

Again, a second observation is made three hours later, when the
sun’s altitude is found to be 65°. The sub-solar point will then be at B,
latitude 20°, longitude 30° W., and the radius of the circle of position
BC be 25°, C being the ship’s place.

Of course it would be impracticable to carry on a vessel a terrestrial
globe large enough for the accurate working out of the graphical opera-
tion indicated, but tables are provided, by which the necessary portions
of the position circles can be easily drawn upon the ordinary charts.

126. The peculiar advantage of the method is, that a single ob-
servation is used for all it is worth, giving accurately the position
of a line upon which the ship is somewhere situated, and approz-
imately (by the rough observation of the sun’s azimuth) the part
of that line upon which its place will be found. In approaching
the American coast, for instance, if an observation be taken in the
forenoon when the sub-solar point is over the continent of Africa,
the ship’s position circle will lie nearly parallel to the coast, and
then a single observation will give approximately the distance of
the ship from land, which may be all the sailor wishes to know.
The observations need not be taken at any particular time. We
are not limited to observations at noon, or to the time when the
sun is on the prime vertical. It is to be noted, however, that ev-
erything depends upon the chronometer, as much as in the ordinary
chronometric determination of longitude.

127. Determination of Azimuth.—A problem, important,
though not so often encountered as that of latitude and longitude
determinations, is that of determining the azimuth, or true bear-
ing, of a line upon the earth’s surface. The process is this: With
a theodolite having an accurately graduated horizontal circle the
observer points alternately upon the pole star and upon a distant
signal erected for the purpose; the signal being an artificial star con-
sisting of a small hole in a plate of metal, with a bull’s-eye lantern
or other light behind it. It is desirable that it should be at least
a mile away from the observer, so that any small displacement of
the instrument will be harmless. The theodolite must be carefully
adjusted for collimation, and especial pains must be taken to have
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the telescope perfectly level.

The next morning by daylight the ob-
server measures the angle or angles between
the night-signal and the objects whose az-
imuth is required. :

If the pole star were exactly at the pole, S’Q s’
the mere difference between the two readings
of the circle, obtained when the telescope is
pointed on the star and on the signal, would
directly give the azimuth of the signal, As this N HE
is not the case, however, the time at which Fre. 43
each observation of the pole star is made must Determination of
be noted, and the azimuth of the star must be Azimuth.
computed for that moment. This can easily
be done, as the right ascension and declination of this star are given
in the almanac for every day of the year.

Recurring to the Z.P.S. [zenith-pole-star] triangle, N being
the north point of the horizon, P the pole, and N Z the meridian, we at
once see that the side PS is the complement of the star’s declination;
the side PZ is the complement of the observer’s latitude (which must be
known); and the angle at P is the difference between the right ascension
of the pole star and the sidereal time of the observation; [(t — a) if the
star is west of the meridian at the time, and (a — ¢) if it is east.] This
will come out in hours, of course, and must be reduced to degrees before
making the computation. We thus have two sides of the triangle, viz.,
PS and PZ, with the included angle at P, from which to compute the
angle Z at the zenith. This is the star’s azimuth.

The pole star is used because, being so near the pole, any slight
error in the assumed latitude of the place or in the sidereal time of the
observation will hardly produce any effect upon the result, especially if
the star be caught between five and six hours before or after its upper
culmination, at a time when it changes its azimuth very slowly (near
S or " in the [figure). The sun, or any other heavenly body whose
position is given in the almanac, can also be used as a reference point in
the same way, provided sufficient pains are taken to secure an accurate
observation of the time at the instant when the pointing is made. The
altitude should not exceed thirty degrees or so. But the results are
usually rough compared with these obtained by means of the pole star.
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DETERMINATION OF THE POSITION OF A HEAVENLY
BODY.

128. The position of a heavenly body is defined by its right
ascension and declination. These quantities may be determined—

(1) By the meridian circle, provided the body is bright
enough to be seen by the instrument and comes to the meridian
in the night-time. If the instrument is in exact adjustment, the sid-
ereal time when the object crosses the middle wire of the reticle of
the instrument is directly (according to the right ascension
of the object.

The reading of the circle of the instrument, corrected for refrac-
tion and parallax if necessary, gives the polar distance of the object,
if the polar point of the circle has been determined ; or it
gives the zenith distance of the object if the nadir point has been
determined ([Art. 67). In either case the declination can be imme-
diately deduced, being the complement of the polar distance, and
equal to the latitude of the observer, minus the distance of the
star south of the zenith. One complete observation, then, with the
meridian circle, determines both the right ascension and declination
of the object.

If a body (a comet, for instance) is too faint to be observed by
the telescope of the meridian circle, which is seldom very powerful,
or if it does not come to the meridian during the night, we usually
accomplish our object—

129. (2) By the Equatorial, determining the position of the
body by measuring the difference of right ascension and declination
between it and some neighboring star, whose place is given in a star
catalogue, and of course has been determined by the meridian circle
of some observatory.

In measuring this difference of right ascension and declination, we
usually employ a filar micrometer fitted like the reticle of a meridian
circle. It carries a number of wires which lie north and south in the field
of view, and these are crossed at right angles by one or more wires which
can be moved by the micrometer screw. The difference of right ascension
between the star and the object to be determined is measured by simply
observing with the chronograph the transits of the two objects across
the north and south wires; the difference of declination, by bisecting
each object with one of the micrometer wires as it crosses the middle of
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the field of view. The observed difference must be corrected for refraction
and for the motion of the body, if it is appreciable.

Other less complicated micrometers are also in use. One of them,
called the ring micrometer, consists merely of an opaque ring supported
in the field of view either by being cemented to a glass plate or by slender
arms of metal. The observations are made by noting the transits of the
comparison star and of the object to be determined across the outer and
inner edges of the ring. If the radius of the ring is known in seconds of
arc, we can from these observations deduce the differences both of right
ascension and declination. The results are less accurate than those given
by the wire micrometer, but the ring micrometer has the advantage that
it can be used with any telescope, whether equatorially mounted or not,
and requires no adjustment.

There are also many other methods of effecting the same object.

130. To Compute the Time of Sunrise or Sunset.—To
solve this problem, it is only necessary to work out the Z.P.S. triangle
and find the hour-angle P, having given precisely the same data as in
finding the time by a single altitude of the sun . PZ is the
observer’s co-latitude, PS is the complement of the sun’s declination
(given by the almanac); and the true distance from the zenith to the
centre of the sun at the moment when its upper edge is at the horizon
is 90° 50", which is made up of 90°, +16’ (the mean semi-diameter of
the sun), plus 34’ (the mean refraction at the horizon). The resulting
hour-angle P, corrected for the equation of time, gives the mean time
(local) at which the sun’s upper limb touches the horizon, under the
average circumstances of temperature and barometric pressure. If it is
very cold, with the barometer standing high, sunrise will be accelerated,
or sunset retarded, by a considerable fraction of a minute. If the sun rises
or sets over the sea-horizon, and the observer’s eye is at any considerable
elevation above the sea-level, the dip of the horizon must also be added
to the 90° 50" before making the computation.

The beginning and end of twilight may be computed in the same way
by merely substituting 108° for 90° 50’.

131. Note to[Art. 125 —In the explanation of Sumner’s method
it is assumed that the earth is a perfect sphere. In the actual application
of the method certain corrections are therefore necessary to take into
account the earth’s ellipticity.
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CHAPTER V.
THE EARTH AS AN ASTRONOMICAL BODY.

APPROXIMATE DIMENSIONS—PROOFS OF ITS ROTATION—
ACCURATE DETERMINATION OF ITS FORM AND SIZE BY
GEODETIC OPERATIONS AND PENDULUM OBSERVATIONS—
ASTRONOMICAL, GEODETIC AND (GEOCENTRIC LATITUDE—
DETERMINATION OF THE EARTH’S MASS AND DENSITY.

132. HAVING discussed the methods of making astronomical
observations, we are now prepared to consider the earth in its as-
tronomical relations; i.e., those facts relating to the earth which are
ascertained by astronomical methods, and are similar to the facts
which we shall have to consider in the case of the other planets.
The facts are broadly these:—

1. The earth is a great ball, about 7918 miles in diameter.

2. It rotates on its axis once in twenty-four sidereal hours.

3. It is flattened at the poles, the polar diameter being nearly
twenty-seven miles, or one two hundred and ninety-fifth part less
than the equatorial.

4. It has a mean density of about five and six-tenths times that
of water, and a mass represented in tons by six with twenty-one
ciphers after it (or siz sextillions of tons, according to the French
numeration).

5. It is flying through space in its orbital motion around the sun,
with a velocity of about nineteen miles a second; i.e., about seventy-
five times as swiftly as any cannon-ball.

L.

133. The Earth’s Approximate Form and Size.—It is not
necessary to dwell upon the ordinary proofs of its globularity. We
merely mention them. 1. It can be circumnavigated. 2. The ap-
pearance of vessels coming in from sea indicates that the surface is
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everywhere convex. 3. The fact that the sea-horizon, as seen from
an eminence, is everywhere depressed to the same extent below the
level line, shows that the surface is approximately spherical. 4. The
fact that as one goes from the equator toward the north, the ele-
vation of the pole increases proportionally to the distance from the
equator, proves the same thing. 5. The shadow of the earth, an seen
upon the moon at the time of a lunar eclipse, is that which only a
sphere could cast.

We may add as to the smoothness and globularity of the earth,
that if the earth be represented by an 18-inch globe, the difference
between the polar and equatorial diameter would only be about
one-sixteenth of an inch, the highest mountains upon the earth’s
surface would be represented by about one-eightieth of an inch, and
the average elevation of the continents would be hardly greater than
that of a film of varnish. The earth is really relatively smoother and
rounder than most of the balls in a bowling-alley.

134. An approximate
measure of the diameter is
easily obtained. FErect upon
a level plain three rods in
line, a mile apart, and cut

off their tops at the same
level, carefully determined F1G. 44.—Curvature of the Earth’s
Surface.

with a surveyor’s levelling
instrument. It will then be
found that the line AC, Fig. 44, joining the extremities of the two
terminal rods, passes about eight inches below B, the top of the middle
rod.

Suppose the circle ABC completed, and that E is the point on the
circumference opposite B, so that BE equals the diameter of the earth

(=2R).

By geometry, BD: BA=DBA: BE,
BA? BA?
——, or R= .
BD 2BD

whence BE =

Now BA is one mile, and BD = % of a foot, or ﬁ of a mile.
2
Hence 2R = ——, or 7920 miles: a very fair approximation.
7920
On account of refraction, however, the result cannot be made ezxact

by any care in observation. The line of sight, AC is not strictly straight,
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but curves slightly towards the earth, and differently as the weather
changes.

135. The best method of ascertaining the size of the earth—
in fact the only one of real value—is by measuring the arcs of the
meridian in order to ascertain the number of miles or kilometers
in one degree, from which we immediately get the circumference of
the earth. This measure involves two distinct operations. One—the
measure of the number of miles—is purely geodetic; the other—
the determination of the number of degrees, minutes, and seconds
between the two stations—is purely astronomical.

We have to find by astronomical observation the angle between
two radii drawn from the centre of the earth to the two stations
(regarding the earth as spherical); or, what is the same thing, the
angular distance in the sky between their respective zeniths. The
two stations being on the same meridian, all that is necessary is
to measure their latitudes by any of the methods which have been
given in and take the difference. This will be the angle
wanted. If, for instance, the distance between the two stations
was found by measurement to be 120 miles, and the difference of
latitude was found by astronomical observations to be 1°44’.2, we
should get 69.27 miles for one degree. Three hundred and sixty
times this would be the circumference of the earth, a little less than
25,000 miles, and the diameter would be found by dividing this by
7, which would give 7920 miles.

136. Eratosthenes of Alexandria seems to have understood the mat-
ter as early as 250 B.C. His two stations were Alexandria and Syene in
Upper Egypt. At Syene he observed that at noon of the longest day in
summer there was no shadow at the bottom of a well, the sun being then
vertically overhead. On the other hand, the gnomon at Alexandria, on
the same day, by the length of the shadow, gave him % of a circumfer-
ence, or 7° 12’ as the distance of the sun from the zenith at that place,
which, therefore, is the difference of latitude between Alexandria and
Syene.

The weak place in his work was in the measurement of the distance
between the two places. He states it as 5000 stadia, thus making the
circumference of the earth 250,000 stadia; but we do not know the length
of his stadium, nor does he give any account of the means by which he
measured the distance, if he measured it at all. There seem to have been
as many different stadia among the ancient nations as there were kinds
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of “feet” in Europe at the beginning of this century.

The first really valuable measure of the arc of a meridian was that
made by Picard in Northern France in 1671—the measure which served
Newton so well in his verification of the idea of gravitation.

IT.

137. The Rotation of the Earth.—At the time of Coper-
nicus the only argument in favor of the earth’s rotation! was that
the hypothesis was more probable than that the heavens themselves
revolved. All phenomena then known would be sensibly the same
on either supposition. A little later, analogy could be adduced, for
when the telescope was invented, we could see that the sun, moon,
and several of the planets are rotating globes.

At present we are able to adduce experimental proofs which
absolutely demonstrate the earth’s rotation, and some of them even
make it visible.

138. 1. The Fastward Deviation of Bodies ,
falling from a Great Height—The idea that such A A
a deviation ought to occur was first suggested E
by Newton. Evidently, since the top of a tower,  D/| J 4]
situated anywhere but at the pole of the earth, —
describes every day a larger circle than its base,
it must move faster. A body which is dropped
from the top, retaining its excess of eastward mo-
tion as it descends, must therefore strike to the
east of the point which is vertically under its
starting-point, provided it is not deflected in its
fall by the resistance of the air or by air-currents.
illustrates the principle. A body starting
from A, the top of the tower, reaches the earth at
D (BD being equal very approximately to AA"), FIG. 45.
while during its fall the bottom of the tower has Eastward Deviation
only moved from B to B’. The experiments are ©f @ Falling Body.

IThe word rotate denotes a spinning motion like that of a wheel on its
axis. The word revolve is more general in its application, and may be applied
either to describe such a spinning motion, or (and this is the more usual use in
astronomy) to describe the motion of one body around another, as that of the
earth around the sun.
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delicate, since the deviation is very small, and it is not easy to avoid
the effect of air-currents. It is also extremely difficult to get balls
so perfectly spherical that they will not sheer off to one side or the
other in falling.

The best experiments of this kind so far have been these of Benzen-
berg, performed at Hamburg in 1802, and those of Reich, performed in
1831, in an abandoned mine shaft near Freiberg, in Saxony. The latter
obtained a free fall of 520 feet, and from the mean of 160 trials, the
eastern deviation observed was 1.12 inches, while theory would make it
1.08. The experiment also gave a southern deviation of 0.17 of an inch,
unexplained by theory. It seems to indicate the probable error of obser-
vation. The balls in falling sometimes deviated two or three inches one
side or the other from the average.

The formula given by Worms in his
treatise on “The Earth and its Mecha-
nism,” is

Amt(H — 3A) cos ¢
v 3T ’
where z is the deviation, t is the number of
seconds occupied in falling, T the number
of seconds in a sidereal day, H the height
fallen through, and A the difference be-
tween H and the height through which a
body would fall in ¢ seconds if there were
no resistance (so that A = Zgt* — H).
Finally, ¢ is the latitude of the place of
observation. In latitude 45° a fall of 576
feet should give, neglecting the resistance
of the air, a deviation of 1.47 inches. The Fig. 46.—Foucault’s
resistance would increase it a little. Pendulum Experiment.
It will be noted that at the pole, where

the cosine of the latitude equals zero, the experiment fails. The largest
deviation is obtained at the equator.

139. 2. Foucault’s Pendulum Experiment.—In 1851 Foucault,
that most ingenious of French physicists, devised and first executed
an experiment which actually shows the earth’s rotation to the eye.
From the dome of the Pantheon in Paris he suspended a heavy iron
ball about a foot in diameter by a wire more than 200 feet long
. A circular rail some twelve feet across, with a little ridge
of sand built upon it, was placed under the pendulum in such a way
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that a pin attached to the swinging ball would just scrape the sand
and leave a mark at each vibration. The ball was drawn aside by a
cotton cord and allowed to come absolutely to rest; then the cord
was burned, and the pendulum set to swinging in a true plane; but
this plane seemed to deviate slowly towards the right, cutting the
sand in a new place at each swing and shifting at a rate which would
carry it completely around in about thirty-two hours if the pendu-
lum did not first come to rest. In fact, the floor of the Pantheon was
soon turning under the plane of the pendulum’s vibration. The ex-
periment created great enthusiasm at the time, and has since been
very frequently performed and always with substantially the same
results.

140. The approximate theory of the experiment is very simple.
Such a pendulum, consisting of a round ball hung by a round wire
or else suspended on point, so as to be equally free to swing in any
plane (unlike the common clock pendulum in this freedom), being
set up at the pole of the earth, would appear to shift around in
twenty-four hours. Really, the plane of vibration remains invariable
and the earth turns under it, the plane of vibration in this case being
unaffected by the motion of the earth. This can be easily shown by
setting up a similar apparatus, consisting of a ball hung by a thread,
upon a table, and then turning the table around with as little jar
as possible. The plane of the swing will remain unchanged by the
motion of the table.

It is easy to see, further, that at the equa-
tor there would be no such tendency to shift.
In any other latitude the effect will be inter-
mediate, and the time required for the pendu-
lum to complete the revolution of its plane will
be twenty-four hours divided by the sine of the
latitude. The northern edge of the floor of a
room (in the northern hemisphere) is nearer the
axis of the earth than its southern edge, and
therefore is carried more slowly eastward by the
earth’s rotation. Hence it must skew around Fic. 47.
continually, like a postage stamp gummed upon Explanation of the
a whirling globe anywhere except at the globe’s Fou]caault Pendulum
equator. The southern extremity of every north Kpermment.
and south line on the floor continually works toward the east faster
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than the northern extremity, causing the line itself to shift its direc-
tion accordingly, compared with the direction it had a few minutes
before. A free pendulum, set at first to swing along such a line,
must therefore apparently deviate continually at the same rate in
the opposite direction. In the northern hemisphere its plane moves
dextrorsum; i.e., with the hands of a watch: in the southern, its
motion is sinistrorsum.

141. Suppose a parallel of latitude drawn
through the place in question, and a series of tan-
gent lines drawn toward the north at points an
inch or so apart on this parallel. All these tan-
gents would meet at some point, V, which
is on the earth’s axis produced; and taken together
these tangents would form a cone with its point at
V. Now if we suppose this cone cut down upon one
side and opened up (technically, “developed”), it
would give us a sector of a circle, as in[Fig. 48] and FIG. 48.—Developed
the angle of the sector would be the sum total of Cone.
the angles between all the adjacent meridians tan-
gent to the earth on that parallel. Now it is easy to prove that the angle
of this sector equals 360° x sin ¢ (¢ being the latitude). (1) The circum-
ference of the parallel AB (Fig. 47)) = 27 x R cos ¢, since Rxcos ¢ = AD,
which is the radius of the parallel, R being AC', the radius of the globe,
and the angle AC'D equal to 90° —¢. (2) The side AV of the cone (which
will be the radius of the sector when the cone is developed) = R cot ¢;
so that the circumference of the circle which has V' A for its radius would
be 27 x Rcot ¢.

Hence (ABA’ being the circumference of the parallel forming the edge
of the developed sector ABA'V in[Fig. 48)), the angle of the sector AV A’
(greater than 180° in the: 360° = arc ABA’: whole circumference
ABA’'m; or angle V : 360° = Rcos ¢ : Rcot ¢;

cos ¢

whence V = 360°
cot ¢

= 360° sin ¢.

V' is the total angle described by the plane of the pendulum in a day.

At the pole the cone produced by the tangent lines becomes a little
“button,” a complete circle. At the equator it becomes a cylinder, and
the angle is zero.

In order to make the experiment successfully, many precautions must
be taken. It is specially important that the pendulum should vibrate in
a true plane, without any lateral motion. To secure this end, it must
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be carefully guarded against all jarring motion and air-currents. To
diminish the effect of all such disturbances, which will always occur to a
certain extent, the pendulum should be very heavy and very long, and
of course the suspended ball must be truly round and smooth. Ordinary
clock-work cannot be used to keep the pendulum in vibration, since it
must be free to swing in every plane. Usually, the apparatus once started
is left to itself until the vibrations cease of their own accord; but Foucault
contrived a most ingenious electrical apparatus, which we have not space
to describe, by means of which the vibration could be kept up for days
at a time without producing any hurtful disturbance whatever.

It will be noticed that this experiment is most effective precisely
where the experiment of the falling bodies fails. This is best near the
pole, the other at the equator.

142. 3. By the Gyroscope, an ex-
periment also due to Foucault and pro-
posed and executed soon after the pen-
dulum experiment.

The instrument shown in
consists of a wheel so mounted in gim-
bals that it is free to turn in every
direction, and so delicately balanced
that it will stay in any position if
undisturbed. If the wheel be set to
rotating rapidly, it will maintain the
direction of its axis invariable, unless
acted upon by extraneous force. If,
then, we set the axis horizontal and
arrange a microscope to watch a mark
upon one of the gimbals, it will appear FIG. 49 — Foucault’s
slowly to shift its position as the earth Gyroscope.
revolves, in the same way as the plane
of the pendulum behaves.

143. 4. There are many other phenomena which depend upon and
really demonstrate the earth’s rotation. We merely mention them:—

a. The Deviation of Projectiles. In the northern hemisphere a pro-
jectile always deviates towards the right; in the southern hemisphere
toward the left.

b. The Trade Winds.

c. The Vorticose Revolution of the Wind in Cyclones. In the north-
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ern hemisphere the wind in a cyclone moves spirally towards the centre
of the storm, whirling counter clock-wise, while in the southern, the spi-
ral motion is with the hands of a watch. The motion is explained in
either case by the fact that currents of air, setting out for the centre of
disturbance where the cyclone is formed, deviate like projectiles, to the
right in the northern hemisphere, and towards the left in the southern
hemisphere, so that they do not meet squarely in the centre of distur-
bance.

d. The Ordinary Law of Wind-change; that is, in the northern hemi-
sphere the north wind, under ordinary circumstances, changes to a north-
east, a northeast wind to an east, east to southeast, etc. When the wind
changes in the opposite direction, it is said to “back” around. In the
southern hemisphere it of course usually backs around, much to the dis-
concertment of the early Australian settlers.

It might seem at first time the rotation of the earth, which occu-
pies twenty-four hours, is not a very rapid motion. A point on the
equator, however, has to move nearly one thousand miles an hour,
which is about fifteen hundred feet per second, and very nearly the
speed of a cannon-ball.

144. Invariability of the Earth’s Rotation.—It is a ques-
tion of great importance whether the day changes its length. Theo-
retically it must almost necessarily do so. The friction of the tides,
and the deposits of meteoric matter upon the earth both tend to
lengthen it; while on the other hand, the earth’s loss of heat by
radiation and consequent shrinkage must tend to shorten it. Then
geological changes, the elevation and subsidence of continents, and
the transportation of matter by rivers, act, some one way, some the
other. At present it can only be said that the change, if any has
occurred since astronomy became accurate, has been too small to
be detected. The day is certainly not longer or shorter by ﬁ of a
second than in the days of Ptolemy, and probably has not changed
by Wloo of a second. The criterion is found in comparing the times
at which celestial phenomena, such as eclipses, transits of Mercury,

etc., occur.

I1I.

145. The Earth’s Form, more accurately stated, is that of
a spheroid of revolution, having an equatorial radius of 6,377,377
metres, and a polar radius of 6,355,270 metres, according to Listing
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(1873); or of 6,378,206.4 and 6,356,583.8 respectively, according to
Clarke.® Tt must be understood, also, that this statement is only
a second approzimation (the first being that the earth is a globe).
Owing to mountains and valleys, etc., the earth’s surface does not
strictly correspond to that of any geometrical solid whatever.

The flattening at the poles is the necessary consequence of the
earth’s rotation, and might have been cited in the preceding section
as proving it.

146. There are two ways of determining the
form of the earth: one, by measurement of dis-
tances upon its surface in connection with the lat-
itudes and longitudes of the points of observation.
This gives not only the form, but the dimen-
stons. The other method is by the observation
of the varying force of gravity at various points,—
observations which are made by means of a pendu-
lum apparatus of some kind, and determine only
the form, but not the size of the earth.

147. 1. Measurements of Arcs of Meridian in Fic. 50.—A
Different Latitudes.—To determine the size of the = Triangulation.
earth regarded as a sphere, a single arc of meridian
in any latitude is sufficient. Assuming, however, that the earth is not
a sphere, but a spheroid with elliptical meridians, we must measure
at least two such arcs, one of which should be near the equator, the
other near the pole.

The astronomical work consists simply in finding with the great-
est possible accuracy the difference of latitude between the terminal
stations of the meridian arc. The geodetic work consists in measur-
ing their distance from each other in miles, feet, or metres, and it
is this part of the work which consumes the most time and labor.
The process is generally that known as triangulation.

Two stations are selected for the extremities of a base line six or seven
miles long, and the ground between them is levelled as if for a railroad.
The distance between these stations (A and B in[Fig. 50)) is then carefully
measured by an apparatus especially designed for the purpose and with
an error not to exceed half an inch or so in the whole distance. A third

!This is Clarke’s spheroid of 1866, and is adopted by the United States
Coast and Geodetic Survey. See for his spheroid of 1878.
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station, 1, is then chosen, so situated that it will be visible from both
A and B, and all the angles of the triangle AB1 are measured with
great care by a theodolite. A fourth station, 2, is then selected, such
that it will be visible from A and 1 (and if possible from B also), and
the angles of the triangle A12 are measured in the same way. In this
manner the whole ground between the two terminal stations is covered
with a network of triangulation, the two terminal stations themselves
being made two of the triangulation points. Knowing one distance and
all the angles in this system, it is possible to compute with great accuracy
the exact length of the line 15 and its direction.

The sides of the triangles are usually from twenty-five to thirty
miles in length, though in a mountainous country not infrequently
much longer ones are available. Generally speaking, the fewer the
stations necessary to connect the extremities of the arc, and the
longer the lines, the greater will be the ultimate accuracy. In this
way it is possible to measure distances of 200 or 300 miles with a
probable error not exceeding two or three feet.

Many arcs of meridians have been measured in this way,—mnot less
than twenty or thirty in different parts of the earth, the most extensive
being the so-called Anglo-French arc, extending more than twelve degrees
in length; the Indian arc, nearly eighteen degrees long; and the great
Russo-Scandinavian arc, more than twenty-five degrees in length, and
reaching from Hammerfest to the mouth of the Danube. One short arc
has been measured in South America and one in South Africa.

In a general way, it appears that the higher the latitude the
longer the arc. Thus, near the equator the length of a degree has
been found to be 362,800 feet in round numbers, while in northern
Sweden, in latitude 66°, it is 365,800 feet; in other words, the earth’s
surface is flatter near the poles. It is necessary to travel 3000 feet
further in Sweden than in India to increase the latitude one degree,
as measured by the elevation of the celestial pole.

148. The deduction of the exact form of the earth from such
measurements is an abstruse problem. Owing to errors of observa-
tion and local deviations in the direction of gravity, the different arcs
do not give strictly accordant results, and the best that can be done
is to find the result which most nearly satisfies all the observations.

If we assume that the form is that of an exact spheroid of rev-
olution, with all the meridians true ellipses and all exactly alike,
the problem is simplified somewhat, though still too complicated
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for discussion here. Theory indicates that the form of a revolv-
ing mass, fluid enough to yield to the forces acting in such a case,
might, and probably would, be such a spheroid; but other forms are
also theoretically possible, and some of the measurements rather in-
dicate that the equator of the earth is not a true circle, but an oval
flattened by nearly half a mile. On the whole, however, astronomers
are disposed to take the ground that since no regular geometrical
solid whatsoever can absolutely represent the form of the earth, we
may as well assume a regular spheroid for the standard surface, and
consider all variations from it as local phenomena, like hills and
valleys.

149. Each measurement of a degree
of latitude gives the “radius of curvature,”
as it is called, of the meridian at the de-
gree measured. The length of a degree ¢
from 44° 30" to 45° 30/, multiplied by 57.29
(the number of degrees in a radian), gives
the radius of the “osculatory circle,” which X
would just fit the curve of the meridian at
that point, Having a table giving the actual
length of each degree of latitude, we could
construct the earth’s meridian graphically Fic. 51.
as follows:— Radii of Curvature of the

Draw the line AX, On it lay off Meridian.

Aa, equal to the radius of curvature of the first measured degree (that
is, 57.3 times the length of the degree), and with a as centre, describe an
arc AB, making the angle AaB just one degree. Next produce the line
Ba to b, making Bb the radius of curvature of the second degree, and
draw this second degree-arc; and so proceed until the whole ninety have
been drawn. This will give one quarter of the meridian, and of course
the three other quarters are all just like it. a, b, ¢, etc., are called the
“centres of curvature” of the different degrees.

If we assume the curve to be an ellipse, then the equatorial semi-
diameter AQO, and the polar, PO, are given respectively by the two
formulas, AO = W and PO = f/qT, q and p being the radii of
curvature (Aa and Pe in the [figure) at the equator and pole.

150. The “ellipticity” or “oblateness” of an ellipse is the frac-
tion found by dividing the difference of the polar and equatorial
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diameters by the equatorial, and is expressed by the equation

A—-B

In the case of the earth this is ﬁ, according to Clarke’s spheroid, of
1866. Until within the last few years Bessel’s smaller value, viz.
was generally adopted. Listing’s larger value

by some.

1
) 2997
, ﬁ, is now preferred

The ellipticity of an ellipse must not be confounded with its
eccentricity. The latter is

VA2 — B2

e=—
A

and is always a much larger numerical quantity than the ellipticity.

In the case of the earth’s meridian, it is % as against ﬁ. Its

symbol is usually e.

151. Arcs of longitude are also available for determining the earth’s
form and size. On a spherical earth a degree of longitude measured
along any parallel of latitude would be equal to one degree of the equator
multiplied by the cosine of the latitude. On an oblate or orange-shaped
spheroid (the surface of which lies wholly within the sphere having the
same equator) the degrees of longitude are evidently everywhere shorter
than on the sphere, the difference being greatest at a latitude of 45°.

In fact, arcs in any direction between stations of which both the lati-
tude and longitude are known can be utilized for the purpose; and thus
the extensive surveys that have been made in different countries have
given us a pretty accurate knowledge of the earth’s dimensions. It is very
desirable, that in some way the chain of actual measurements should be
extended from the eastern continent to the western, but the immense
difficulties of so doing are obvious.

At present the distance from a point on the earth’s surface (say the
observatory at Washington) to any other point in the opposite hemi-
sphere (say the observatory at the Cape of Good Hope) is uncertain to
perhaps the extent of a quarter of a mile.

152. 2. Pendulum FExperiments.—Since

2
P W\/g (Physics, p. 72), g = 7;_21;
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we can therefore measure the variations of the force of gravity, g, at
different parts of the earth, either by taking a pendulum of invari-
able length and determining ¢, the time of its vibration; or by mea-
suring the length, [, of a pendulum which will vibrate seconds. Ex-
tensive surveys of this sort have been made, and are still in progress,
and it is found that the force of gravity at the pole exceeds that at
the equator by about ﬁ part. In other words, a person who weighs
190 pounds at the equator (by a spring balance) would, if carried to
the pole, show 191 pounds by the same balance.

The apparatus most used at present for the purpose of measuring
the force of gravity is a modification of the so-called Kater’s pendulum.
The pendulum itself usually consists of a brass tube about an inch in
diameter and about four feet long, carrying a ball three or four inches
in diameter at each end, both balls being eractly of the same size, but
one solid while the other is hollow. Two knife edges are inserted through
the rod at right angles, one near the heavy ball and the other at just
the same distance from the lighter one, and the weights and dimensions
of the apparatus are so adjusted that the time of vibration will be very
approzimately the same whether the pendulum is swung heavy end up or
light end up, and will be not far from one second. The distance between
the knife edges will then, according to the theory of the pendulum, be
very nearly equal to the length of a simple pendulum vibrating in the
same time; and the small difference can be accurately calculated when
we know the exact time of vibration, each end up. The knife edges swing
on agate planes which are fastened upon a firm support; and great pains
must be taken to have the support really firm. Professor Peirce of our
Coast Survey a few years ago detected important errors in a majority of
the earlier pendulum observations, due to insufficient care in this respect.

153. The observations consist in comparing the pendulum with a
clock, either by noting the “coincidences,” or by an electrical record au-
tomatically made on a chronograph. A pin attached to the end of the
pendulum touches a globule of mercury (which is momentarily raised for
the purpose once in eight or ten minutes), and so records the swing upon
the chronograph sheet. The observations need to be carefully corrected
for temperature (which, of course, affects the distance between the knife
edges), for the length of arc through which the pendulum is swinging,
and for the resistance of the air. The observations determine the “force
of gravity” (French “pesanteur”) at the station. This “force of gravity,”
however, thus determined, is not simply the earth’s attraction, but in-
cludes also the effects of the centrifugal force, due to the earth’s rotation,
which we must consider and allow for.
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154. At the equator the centrifugal force acts vertically in direct
opposition to gravity, and is given by the well-known formula
V2

C=%

(see Physics, p. 62), in which V' is the velocity of the earth’s surface
at the equator, and R the earth’s radius. Since V is equal to the
earth’s circumference divided by the number of seconds in a sidereal

day, we have
2rR 4R

V=——and(C=
t 12
Now R, the radius of the earth, equals n
20,926,000 feet; and t equals 86,164 mean- P
time seconds. C', therefore, comes out to s

. . 1 . 1
0.111 feet, which is 555 of g, g being 32 feet.

We may remark in passing that if the rate of '
rotation were seventeen times as great, C' would < 9 "
be 172, or 289 times greater than now, and would
equal gravity; so that on that supposition bodies Fic. 52.
at the equator would weigh absolutely nothing, The Earth’s
and any greater velocity of rotation would send Centrifugal Force.
them flying.

At any other latitude, since MN = OQ cos MOQ),* the centrifu-
gal force, ¢, equals C cos ¢, acting at right angles to the axis of the
earth and parallel to the plane of the equator. Now, this centrifugal
force c is not wholly effective in diminishing the weight of a body,
but only that portion of it (MR in which is directed ver-
tically. ¢ is MT in the and MR is equal to ¢ multiplied by
the cosine of ¢, which finally gives us C' x cos? ¢ for the amount
by which the centrifugal force diminishes gravity at a station whose
latitude is ¢.

Every observation, therefore, of the “force of gravity,” obtained
by the pendulum, needs to be increased by the quantity

I« cos? 0,

289

in order to get the real value of the earth’s gravitational attraction
at the point of observation.

IThis is not ezact, since MN in an oblate spheroid is less than OQ x
cos MOQ); but the difference is unimportant in the case of the earth.
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The other component of ¢ (viz. MS) acts at right angles to gravity
and parallel to the earth’s surface, and is given by the formula

C cos ¢sin¢p = %C’ sin 2¢.

The direction of still water is determined by the resultant of the earth’s
attraction combined with this deflecting force acting towards the equator;
so that this surface is not perpendicular to a line drawn towards the
centre of the earth anywhere excepting at the equator and the poles.

155. Having a series of pendulum observations, we can then
form a table showing the force of gravity at each station; and cor-
recting this by adding the amount of the centrifugal force at each
place, we shall have the force of the earth’s attraction. This is
greater the nearer each station is to the centre of the earth; but
unfortunately there is no simple relation connecting the force with
the distance. The attraction depends not only on the distance from
the centre of the earth, but also upon the form of the earth and
the constitution of its interior, and the arrangement of its strata of
different density. We may safely assume, however, that the earth
is made up concentrically, so to speak; the strata of equal den-
sity being arranged like the coats of an onion. On this hypothesis
Clairaut, in 1742, demonstrated the relation given below, which is
always referred to as Clairaut’s equation.

Let w be the loss of weight between the equator and the pole,
and C' the centrifugal force at the planet’s equator, both being ex-
pressed as fractions of the equatorial force of gravity, and let d be
the ellipticity of the planet.

Then, as Clairaut proved,

d—l—w:Z%xC;

whence d= 2%0 —w.

In the case of the earth we have

1 1

d=21x — — —
27289 190
1

hich gi = —.
which gives d 5023

Considering all the data, the most that can safely be said as to

d is that it lies between the fractions glo and 2%95. (Clarke’s later

values for d are larger than that adopted by the Coast Survey.)



THE EARTH. 110

156. Astronomical, Geographical, and Geocentric Lati-
tudes.—The astronomical latitude of a place has been defined as
the elevation of the pole, or, what comes to the same thing, it is the
angle between the plane of the equator and the direction of gravity at
that place, however that direction may be affected by local causes.

The geocentric latitude, on the other hand, is the angle made at
the centre of the earth (as the word implies) between the plane of
the equator and a line drawn from the observer to the centre of the
earth, which line of course does not coincide with the direction of
gravity, since the earth is not spherical.

The geographical or geodetic latitude of a station is the angle
formed with the plane of the equator by a line drawn from the
station perpendicular to the surface of the standard spheroid.

If the earth’s surface were strictly spheroidal,
and there were no local variations of gravity, the p
astronomical latitude and the geographical lati-
tude would coincide—and they never differ greatly;
but the geocentric latitude differs from them by a
very considerable quantity—as much as 11’ in lati-
tude 45°. The geocentric latitude is but little used 0 N Q
except in certain astronomical calculations where Fla. 53,
parallax is involved. Astronomical and

In the angle MOQ is the geocentric Geocentric Latitude.
latitude of M, while M N@ is the geographical lat-
itude. M NQ is also the astronomical latitude, unless there is some local
disturbance of the direction of gravity. The angle OM N, which is the
difference between the geocentric and astronomical latitudes, is called
“the angle of the vertical.”

157. It will be noticed that the astronomical latitude of a place
is the only one of these three latitudes which is determined directly
by observation. In order to know the geocentric and geographical
latitudes of a place, we must know the form and dimensions of the
earth, which are ascertained only by the help of observations made
elsewhere.

The geocentric degrees are longer near the equator than near
the poles, and it is worth noticing that if we form a table giving
the length of each degree of geographical latitude from the equator
to the pole, the same table, read backwards, gives the length of
geocentric degrees.
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Since the earth is ellipsoidal instead of spherical, it is evident
that lines of “level” on the earth’s surface are affected by the earth’s
rotation. If this rotation were to cease, the direction of gravity
would be so much changed that the Gulf of Mexico would run up
the Mississippi River, because the distance from the centre of the
earth to the head of the river is less by some thousands of feet than
the distance from the mouth of the river to the centre of the earth.

158. Station Errors.—The irregularities in the direction of grav-
ity are by no means insensible as compared with the accuracy of modern
astronomical observation, and the difference between the astronomical
latitude and longitude of a place and the geographical latitude and lon-
gitude of the same place constitute what is called the “station error.” In
the eastern part of the United States these station errors, according to
the Coast Survey observations, average about 1%”. Errors of from 4” to
6" are not uncommon, and in mountainous countries, as for instance in
the Caucasus and in Northern India, these errors occasionally amount
to 30" or 40”. They are not “errors” in the sense that the astronomical
latitude of the place has not been determined correctly, but are merely
the effects of the irregular distribution of matter in the crust of the earth
in altering the direction of gravity. Pendulum observations show local
variations in the force of gravity quite proportional to the deviations
which the station-errors show in its direction.

IV.

159. The Earth’s Mass and Density.—The ‘mass’ of a body
is the quantity of matter that it contains, the unit of mass being
the quantity of matter contained in a certain arbitrary body which
is taken as a standard. For instance, a “kilogram” is the quantity
of matter contained in the block of platinum preserved at Paris as
the standard of mass.! A pound is similarly defined by reference to
the prototypes at Washington and London.

Two masses of matter are defined as equal which require the
same expenditure of energy to give them the same velocity; or vice
versa, those are equal which, when they have the same velocity, pos-
sess the same energy, and, in giving up their motion and coming to
rest, do the same amount of work.

!This was meant to be just equal to the mass contained in a cubic decimeter
of water at its maximum density, and is so very nearly indeed.
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Masses can therefore be compared by placing them in the same field
of force and comparing the energies developed in them when they have
moved equal distances under the action of the force. This method, how-
ever, is seldom convenient.

160. Proportionality of Mass to Weight.—Newton showed
by his experiments with pendulums of different substances, that at
any given point the attraction of the earth for a body of any kind
of matter is proportional to the mass of that body; the attraction
being measured as a pull or “stress” in this case, and called “the
weight” of the body. In other and more common language, the
mass of a body is proportional to its weight (we must not say it is its
weight), provided the weighing of the bodies thus compared is done,
in cases where scientific accuracy is essential, at the same place
on the earth’s surface. Practically, therefore, we wusually measure
the masses of bodies by simply weighing them. It is to be carefully
observed, however, that the words “kilogram,” “pound,” “ton,” etc.,
have also a secondary meaning, as denoting units of pull and push,—
of “stress” speaking strictly and technically,—or of “force,” as that
much abused word is very generally used.

It is, from a literary point of view, just as proper to speak of a stress
or a pull of a hundred pounds® as of a mass of a hundred pounds, but
the word “pound” means an entirely different thing in the two cases.
At the surface of the earth the relation between the ideas, however, is
so close that the way in which the ambiguity came about is perfectly
obvious, and it is hardly probable that language will ever change so as
to remove it. To a certain extent it is admittedly unfortunate, and the
student must always be on his guard against it. At the earth’s surface
a mass of 100 pounds always “weighs” very nearly 100 pounds; but, to
anticipate slightly, at an elevation of 4000 miles above the surface, the
same mass would “weigh” only 25 pounds; at the distance of the moon
about half an ounce; while on the surface of the sun it would “weigh”
nearly 2800 pounds.

161. Gravity.—The law of gravitation discovered by Newton
declares that any particle of matter attracts any other particle with
a force (“stress,” if the bodies are prevented from moving) pro-
portional inversely to the square of the distance between them, and

LOf course the student will remember that we have a unit of stress,—the
dyne,—which is wholly free from this objection of ambiguity.
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directly to the product of their masses; or, as a formula, we may
write,
My x M,

az
in which M; and M, are the two masses, and d the distance between
them, while k is a constant numerical factor depending upon the
units employed.!

F=k

We must not imagine the word “attract” to mean too much. It
merely states the fact that there is a tendency for the bodies to move
toward each other, without including or implying any explanation of
the fact. So far, no explanation has appeared which is less difficult to
comprehend than the fact itself. Whether bodies are drawn together by
some outside action, or pushed together; or whether they themselves can
act across space with mathematical intelligence,—in what way it is that
“attraction” comes about, is still unknown,—apparently as inscrutable
as the very nature and constitution of an atom of matter itself; it is
simply a fundamental fact.

162. When the distance between attracting bodies is large as
compared with their own magnitude, then reckoning the distance
between their centres of mass as their true distance, the formula is
sensibly true for them as it would be for mere particles. When, how-
ever, the distance is not thus great, the calculation of the attraction
becomes a very serious problem, involving what is known as a “dou-
ble integration.” We must find the attraction of each particle of the
first body upon each particle of the other body, and take the sum
of all these infinitesimal stresses. Newton, however, showed that if
the bodies are spheres, either homogeneous or of concentric struc-
ture, then they attract and are attracted precisely as if the matter in
them were wholly collected at their centres. The earth, for instance,
attracts a body at its surface very nearly as if it were all collected

1t will not do to write the formula

7M1XM2

F 7

(omitting the k), unless the units are so chosen that the unit of force shall be
equal to the attraction between two masses each of one unit, at a distance of
one unit. It is not true that the attraction between two particles, each having
a mass of one pound, at a distance of one foot, is equal to a stress of one pound
(of force), as would rather naturally be inferred if we should write the equation
without the constant factor.
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at its own centre, 4000 miles distant; not exactly so, because the
earth is not strictly spherical; but in what follows we shall neglect
this slight inaccuracy.

163. In order, then, to find the mass of the earth in kilograms,
pounds, or tons, we must find some means of accurately comparing
its attraction for some object on its own surface with the attraction
of the same object by some body of known mass, at a measured
distance. The difficulty lies in the fact that the attraction produced
by any body, not too large to be handled conveniently, is so exces-
sively small that only the most delicate operations serve to detect
and measure it.

The first successful attack upon the problem was made in 1774
by Maskelyne, the Astronomer Royal, by means of what is now
usually referred to as,—

164. 1. “THE MOUNTAIN METHOD,” because, in fact, the
earth in this operation is weighed against a mountain.
Two stations were chosen on the same

meridian, one north and one south of the \L\I ’ 7
mountain Schehallien, in Scotland. In A /B
the first place, a careful topographical M N
survey was made of the whole region, giv- Fic. 54.

ing the precise distance between the sta-  The Mountain Method of
tions, as well as the exact dimensions of =~ Determining the Earth’s
the mountain, which is a “hog-back” of Density.

very regular contour. From the known dimensions of the earth and
the measured distance, the difference of the geographical latitudes
of the two places M and N can be accurately computed;
i.e., the angle which the plumb lines at M and N would have made
if there were no mountain there.

In this case it was 41”. The next operation was to
observe the astronomical latitude at each station. This
astronomical difference of latitude, i.e., the angle which
the plumb lines actually do make, was found to be 53", 43
the plumb lines at M and N being drawn inward out of
their normal position by the attraction of the mountain
to the extent of 6” on each side; so that the astronom- 4
ical difference of latitude was increased by 12” over the g 55
geographical.
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Now, in such a case the ratio of gravity to the deflecting force, ac-
cording to the laws of the composition of forces, is that of aM to aA’ in
the figure (Fig. 55|), or the ratio of 1 to the tangent of the deflection, J;

that is, calling the deflecting force f, we have 9 — cot J,= cot 6” in this

f

By the law of gravitation, the earth’s attracting force at its surface
is given by the formula

case.

E

g:]{;ﬁa

where F is the mass of the earth (the unknown quantity of our problem),
and R its radius, 4000 miles. Similarly, if C' in the is the centre of
attraction of the mountain, we have
m
f = kﬁa
m being the mass of the mountain, and d the distance from C to the
station. Combining this with the preceding, we get

E (g R\?
(@)

2
%zco‘cﬁ” <§> .

We thus get the ratio of the earth’s mass to that of the mountain;
and provided we can find the mass of the mountain in tons or any
other known unit of mass, the problem will be completely solved. By
a careful geological survey of the mountain, with deep borings into
its strata, the mass of the mountain was determined as accurately
as it could be (though here is the weakest point of the method), and
thus the mass of the earth was finally computed.

Now, knowing the diameter of the earth, its volume in cubic
feet is easily found, and from the volume and the known number
of mass-pounds, (62% nearly) in a cubic foot of water, the weight
the earth would have, if composed of water, follows. Comparing
this with the mass actually found, we get the density, which in this
experiment came out 4.71.

A repetition of the work in 1832 at Arthur’s Seat, near Edin-
burgh, gave 5.32.

or, in this case,
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165. 2. Much more trustworthy re-
sults, however, are obtained by the method
of the TORSION BALANCE, first devised by
Michell, but first employed by Cavendish
in 1798. A light rod, carrying two small
balls at its extremities, is suspended hori-
zontally at its centre by a long fine metal-
lic wire. If it be allowed to come to rest,
and then a very slight deflecting force be
applied, the rod will be pulled out of posi-
tion by an amount depending on the stiff-
ness and length of the wire, as well as the
force itself. When the deflecting force is re-
moved, the rod will vibrate back and forth
until brought to rest by the resistance of
the air. The “torsional coefficient,” as it is called (i.e., the stress
corresponding to a torsion of one revolution), can be accurately de-
termined by observing the time of vibration when the dimensions
and weight of the rod and balls are known. If, now, two large balls
A and B are brought near the smaller ones, as in Fig. 56, a deflec-
tion will be produced by their attraction, and the small balls will
move from a and b to o’ and ¥'. By shifting the large balls to the
other side at A" and B’, we get an equal deflection in the opposite
direction, i.e., to a” and b”, and the difference between the two po-
sitions assumed by the small balls, i.e., a’a” and 0", will be twice
the deflection.

It is not necessary, nor even best, to wait for the balls to come to
rest. We note the extremities of their swing. The middle point of the
swing gives the point of rest, and the time occupied by the swing is the
time of vibration, which we need in determining the coefficient of torsion.
We must also measure accurately the distance, Aa’ and Bb' between the
centre of each of the large balls and the point of rest of the small ball
when deflected.

F1G. 56.—Plan of the
Torsion Balance.

The earth’s attraction on each of the small balls of course equals
the ball’s weight. The attractive force of the large ball on the small
one near it is found directly from the experiment. If the deflection,
for instance, is 1° and the coefficient of torsion is such that it takes
one grain to twist the wire around one whole revolution, then the
deflecting force, which we will call f as before, will be =i of a grain.

360
Call the mass of the large ball B, and let d be the measured distance
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from its centre to that of the deflected ball. We shall then have

B

f:kﬁa

also, w being the weight of the small ball,

E

w:kﬁ,

whence we get, very much as in the preceding case,

E  w /(R 2
57 (1)

which gives the mass of the earth in terms of B.

The method differs from the preceding in that we use a large ball
of metal instead of a mountain, and measure its deflecting force by
a laboratory experiment instead of comparing astronomical obser-
vations with geodetic measurements.

166. In the earlier experiments by this method the small balls were
of lead, about two inches in diameter, at the extremities of a light wooden
rod, five or six feet long, enclosed in a case with glass ends, and their
position and vibration was observed by a telescope looking directly at
them from a distance of several feet. The attracting masses, B, were balls
also of lead, about one foot in diameter, mounted on a frame pivoted in
such a way that they could be easily brought to the required positions.

Great difficulty was caused by air currents in the case, and it was
necessary to enclose the whole apparatus in a small room of its own
which was covered with tin-foil on the outside, and to avoid going near
the room or allowing any radiant heat to strike it for hours before the
observations. Baily, in England, and Reich, in Germany, between 1838
and 1842, made very extensive series of observations of this kind. Baily
obtained 5.66 for the earth’s density, and Reich 5.48.

The experiment was repeated in 1872 by Cornu, in Paris, with a
modified apparatus.

The horizontal bar was in this case only half a metre long, of alu-
minium, with small platinum balls at the end. For the large balls, glass
globes were used, which could be pumped full of mercury or emptied at
pleasure. The whole was enclosed in an air-tight case, and the air ex-
hausted by an air-pump. The deflections and vibrations were observed
by means of a telescope watching the image of a scale reflected in a
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small mirror attached to the aluminium beam near its centre, accord-
ing to the method first devised by Gauss and now so generally used in
galvanometers and similar apparatus. Cornu obtained 5.56 as the re-
sult, and showed that Baily’s figure required a correction which, when
applied, would reduce it to 5.55.

167. 3. PorspAM OBSERVATIONS.—During 1886 and 1887 an-
other series of observations was made by Wilsing, at Potsdam, with
apparatus similar in principle to the torsion balance, except that
the bar carrying the balls to be attracted was vertical, and turned
on knife edges very near its centre of gravity. The knife edges, like
those of an ordinary balance, rested upon agate planes, and the
centre of gravity of the apparatus was so adjusted that one vibra-
tion of the pendulum, under the influence of gravity alone, would
occupy from two to four minutes. The deflecting weights in this
case were large cylinders of cast iron, suspended in such a way that
they could be brought opposite the small balls, first on one side
and then on the other. The whole was set up in a basement, and
carefully and very effectually guarded against all changes of tem-
perature, the arrangements being such that all manipulations and
observations could be effected from the outside without entering the
room. The deflections and vibrations were observed by a reflected
scale, as in Cornu’s observations. The result obtained was 5.59.

Several other methods have been used; of less scientific value,
however.

168. a. The mass of the earth can he deduced by ascertaining the
force of gravity at the top of a mountain and at its base, by means of
pendulum experiments. The mass of the mountain must be determined
by a survey, just as in the Schehallien method, which makes the method
unsatisfactory. At the top of a mountain the height of which is h, and
the distance of its centre of attraction from the top is d, gravity will be
made up of two parts, one the attraction of the earth at a distance from
its centre equal to R + h, and the other the attraction of the mountain
alone considered. Calling the mass of the mountain m, and gravity at its
summit ¢’ (g being the force of gravity at the earth’s surface), we shall
have the proportion

, E E _'_@
(R+h)2  d?]’

g:g = ﬁ .
the second fraction in the last term of the proportion being the attrac-
tion of the mountain. When g and ¢’ are ascertained by the pendulum
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experiments, F remains as the only unknown quantity, and can be read-
ily found. Observations of this kind were made by Carlini, in 1821, at
Mt. Cenis, and the result was 4.95.

169. b. By means of pendulum observations at the earth’s surface
compared with those at the bottom of a mine of known depth. This
method was employed by Airy in 1843, at Harton Colliery, 1200 feet
deep; result, 6.56. In this case the principle involved is somewhat differ-
ent. At any point within a hollow, homogeneous, spherical shell, gravity
is zero, as Newton has shown. The attraction balances in all directions.
If, then, we go down into a mine, the effect on gravity is the same as if
a shell composed of all that part of the earth above our level had been
removed. At the same time our distance from the earth’s centre has been
decreased by d, the depth of the mine.

E
At the surface g = k—, as before.
R2
E o« h 1177
At the bottom of the mine ¢ = kﬁ

Comparing the two equations, we find F in the terms of the shell,
since the ratio of g to ¢’ is given by pendulum observations. Obviously,
however, the mass of the “shell” is difficult to determine with accuracy.
And it is by no means homogeneous, so that there is no great reason
for surprise at the discordant result. ¢’ was found to be actually greater
than g, showing that although at the centre of the earth the attraction
necessarily becomes zero, yet as we descend below the surface, gravity
increases for a time down to some unknown but probably not very great
depth, where it becomes a maximum.

170. c. By experiments with a common balance. If a body be hung
from one of the scale-pans of a balance, its apparent weight will obviously
be increased when a large body is brought very near it underneath; and
this increase can be measured. Poynting in England and Jolly in Ger-
many have recently used this method, and have obtained results agree-
ing very fairly with these got from the torsion balance. The experiment,
with some modifications, is soon to be tried again on a very large scale
in Germany.

171. Constitution of the Earth’s Interior.—Since the av-
erage density of the earth’s crust does not exceed three times that
of water, while the mean density of the whole earth is about 5.58
(taking the average of all the most trustworthy results), it is obvious
that at the centre the density must be very much greater than at
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the surface,—very likely as high as eight or ten times that of water,
and equal to the density of the heavier metals. There is nothing
in this that might not have been expected. If the earth were ever
fluid, it is natural to suppose that in the solidification the densest
materials would settle towards the interior.

Whether the interior of the earth is solid or fluid it is difficult to
say with certainty. Certain tidal phenomena, to be discussed hereafter,
have led Sir William Thomson and the younger Darwin to conclude that
the earth as a whole is solid throughout, and “more rigid than glass,”
volcanic centres being mere pustules in the general mass. To this many
geologists demur.

As regards the temperature at the earth’s centre, it is hardly an
astronomical question, though it has very important astronomical re-
lations. We can only take space to say that the temperature appears
to increase from the surface downward at the rate of about one degree
Fahrenheit for every fifty or sixty feet, so that at the depth of a few miles
the temperature must be very high.
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CHAPTER VL

THE APPARENT MOTION OF THE SUN AMONG THE STARS,
AND THE EARTH’S ORBITAL MOTION.—THE EQUATION
OF TIME, PRECESSION, NUTATION, AND ABERRATION.—
VARIOUS KINDS OF “YEAR.”—THE CALENDAR.

172. The Annual Motion of the Sun.—The apparent an-
nual motion of the sun must have been one of the earliest noticed
of all astronomical phenomena. Its discovery antedates history.

As seen by the people in Europe and Asia, the sun, starting
in the spring, mounts higher in the sky each day at noon for three
months, appears to stand still for a few days at the summer solstice,
and then descends towards the south, reaching in the autumn the
same noonday elevation it had in the spring. It keeps on its south-
ward course to a winter solstice in December, and then returns to
its original height at the end of the year, marking and causing the
seasons by its course. A year, the interval between the successive
returns of the sun to the same position, was very early found to
consist of a little more than three hundred and sixty days.

Nor is this all. The sun’s motion is not merely a north-and-south
motion, but it also moves eastward among the stars; for in the spring
the stars which are rising in the eastern horizon at sunset are dif-
ferent from these which are found there in the summer or winter.
In the spring, the most conspicuous of the eastern constellations at
sunset are Leo and Bootes; a little later, Virgo appears; in the sum-
mer, Ophiuchus and Libra; still later, Scorpio; and in mid-winter,
Orion and Taurus are in the eastern sky.

173. So far as mere appearances go, everything would be ex-
plained by assuming that the earth is at rest and the sun moving
around it; but equally by the converse supposition,—for if the earth
as seen from the sun appears at any point in the heavens, the sun as
seen from the earth must appear in exactly the opposite point, and
must keep opposite, moving through the same path in the sky (but
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six months behind), and always in the same “angular direction,” if
we may use the expression. (Just as two opposite teeth on a gear-
wheel move in the same angular direction, though at any moment
they are moving in opposite linear directions.)

174. That it is really the earth which moves, and not the sun,
is absolutely demonstrated by two phenomena, too minute and del-
icate for pre-telescopic observations, but accessible enough to mod-
ern methods. We can only mention them here, leaving their fuller
discussion for the present. One of them is the aberration of light, the
other the annual parallax of the fixed stars. These can be explained
only by the actual motion of the earth.

175. The Ecliptic.—By observing with a meridian circle daily
the declination of the sun, and the difference between its right as-
cension and that of some star (Flamsteed used o Aquile for the
purpose), we shall obtain a series of positions of the sun’s centre
which can be plotted on a celestial globe; and we can thus make
out the path of the sun among the stars, and find the place where
it cuts the celestial equator, and the angle it makes. This path
turns out to be a great circle, as is shown by its cutting the equa-
tor at two points just 180° apart (the so-called equinoctial points
or equinoxes), and makes an angle with it of approximately 23%0.
This great circle is called the ECLIPTIC, because, as was early dis-
covered, eclipses happen only when the moon is crossing it. It may
be defined as the trace of the plane of the earth’s orbit upon the
celestial sphere, just as the celestial equator is the trace of the plane
of the terrestrial equator on the same sphere.

176. Definitions.—The angle which the ecliptic makes with
the equator is called the Obliquity of the ecliptic, and the points
midway between the equinoxes are called the Solstices (sol-stitium),
because at these points the sun “stands” or stops moving in decli-
nation for a short time.

Two circles parallel to the equator, drawn through the solstices,
are called the Tropics (Greek Tpénw), or “turning-lines,” because
there the sun turns from its northward motion to a southward, or
vice versa. The obliquity is, of course, simply equal to the sun’s
mazximum declination, or greatest distance from the equator, which
is reached in June and December.

The ancients were accustomed to determine it by means of the gno-
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mon'! . The length of the shadow at noon on the solstitial
days determines the zenith distance of the sun on these days, and the
difference of the zenith distances at the two solstices is twice the angle
desired. The gnomon also determined for the ancients the length of the
year, it being only necessary to observe the interval between days in the
spring or autumn, when the shadow had the same length at noon.

177. The Zodiac and its Signs.—A belt 16° wide, 8° on
each side of the ecliptic, is called the Zodiac. The name is said to
be derived from (wov, a living creature, because the constellations
in it (except Libra) are all figures of animals. It was taken of that
particular width by the ancients simply because the moon and the
then known planets never go further than 8° from the ecliptic.

This belt is divided into the so-called SIGNS, each 30° in length,
having the following names and symbols:—

Aries, T Libra, as
Spring Taurus, I Autumn ¢ Scorpio, m.,
Gemini, IL Sagittarius, ¥
Cancer, ¢ Capricornus, ©
Summer ¢ Leo, QL Winter Aquarius, N
Virgo, TP Pisces, H

The symbols are for the most part conventionalized pictures of the
objects. The symbol for Aquarius is the Egyptian character for water.
The origin of the signs for Leo, Virgo, and Capricornus is not quite clear.
It has been suggested that 3 is simply a “cursive” form for A, the initial
of Aéwv; T for Tap (IlapOévog), and B for Tp (Tpdyos).

CELESTIAL LATITUDE AND LONGITUDE.

178. Since the moon and all the principal planets always keep
within the zodiac, the ecliptic is a very convenient circle of reference,
and was used us such by the ancients. Indeed, until the invention
of pendulum clocks, it was on the whole more convenient than the
equator, and more used.

The two points in the heavens 90° distant from the ecliptic are
called the Poles of the ecliptic. The northern one is in the constel-

!The Chinese claim to have made an observation of this kind about
4000 B.C., and the result given is very nearly what it should have been at
that time. (The obliquity changes slightly in centuries.) If their observation is
genuine, it is by far the oldest of all astronomical records.
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lation of Draco, about half-way between the stars ¢ and ¢ Draconis.
Now, suppose a set of great circles drawn, like meridians, through
these poles of the ecliptic, and hence perpendicular to that cir-
cle; these are Circles of latitude or secondaries to the ecliptic. The
LONGITUDE of a star or any other heavenly body is, then, the angle
made at the pole of the ecliptic, between the circle of latitude, which
passes through the vernal equinox, and the circle of latitude passing
through the body; or, what comes to the same thing, it is the arc
of the ecliptic included between the vernal equinox and the foot of
the circle of latitude passing through the body. Celestial longitude
is always reckoned eastward from the vernal equinox, completely
around the ecliptic, so that the longitude of the sun when 10° west
of the vernal equinox would be written as 350°, and not as —10°.

The LATITUDE of a star is simply its distance north or south of
the ecliptic measured on the star’s circle of latitude.

179. It will be seen that longitude differs from right ascension
in being reckoned on the ecliptic instead of on the equator, nor can it
be reckoned in time, but only in degrees, minutes, and seconds. Lat-
itude differs from declination in that it is reckoned from the ecliptic
instead of from the equator.

The relation between right ascension
and declination on the one hand, and lon-
gitude and latitude on the other, may be
made clearer by the accompanying dia-
gram (Fig. 57), in which EC is the ecliptic
and F(Q the equator, F being the vernal
equinox. S being a star, its right ascension
() is ER and its declination (§) is SR; its
longitude () is EL, and its latitude (/) is FIG. 57.

SL. P and K are the poles of the equa- Relation between Celestial

tor and ecliptic respectively, and the circle Latitude and Longitude,
’ and Right Ascension and

KPCQ is the Solstitial Colure, so called. Declination.

The student can hardly take too great care
to avoid confusion of celestial latitude and longitude with right ascen-
sion and declination or with terrestrial latitude and longitude. It is, of
course, unfortunate that latitude in the sky should not be analogous to
latitude upon the earth, or celestial longitude to terrestrial. The terms
right ascension and declination are, however, of comparatively recent
introduction, and found the ground preoccupied, celestial latitude and
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longitude being much older.

180. Conversion of A and [ into o and ¢, or Vice Versa.
—Right ascension and declination can, of course, always be converted
into longitude and latitude by a trigonometrical calculation. We proceed
as follows: In the triangle FRS, right-angled at R, we have given ER
and RS (a and 0), from which we find the hypothenuse ES and the
angle RES. Next in the triangle FLS, right-angled at L, we have the
hypothenuse ES and the angle LES, which is equal to RES — LEQ
(LEQ being w, the obliquity of the ecliptic). Hence we easily find FL
and LS.

181. The Earth’s Orbit in Space.—The ecliptic is not the
earth’s orbit, and must not be confounded with it. It is a great circle
of the infinite celestial sphere, the trace made upon the sphere by
the plane of the earth’s orbit, as was stated in its definition. The
fact that it is a great circle gives us no information about the earth’s
orbit, except that the orbit all lies in one plane passing through the
sun. It tells us nothing as to its real form and size.

By reducing the observations of the sun’s right ascension and
declination through the year to longitude and latitude (the latitude
will always be zero, of course, except for some slight perturbations)
and combining them with observations of the sun’s apparent diame-
ter, we can, however, ascertain the real form of the earth’s orbit and
the law of its motion in this orbit. But the size of the orbit—the
scale of miles—cannot be fixed until we can find the sun’s distance.

182. To find the Form of the
Orbit, we may proceed thus: Take a
point S for the sun and draw from it
a line SO, directed towards
the vernal equinox as the origin of
longitudes. Lay off from S indefinite
lines, making angles with SO equal
to the earth’s longitude on each of
the days observed through the year;
i.e., the angle OS 10, is the longitude
at the time of the 10th observation; FiG. 58.
and so on. We shall thus get a sort Determination of the Form of the
of “spider,” showing the directions as Harths Orbit.
seen from the earth on these days.

Next, as to relative distances. While the apparent diameter of
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the sun does not tell us its real distance from the earth, unless
we first know the sun’s real diameter in miles, the changes in the
apparent diameter do inform us as to the relative distance of the
earth at different times, since the nearer we are, the larger the sun
appears,—the distance being inversely proportional to the apparent
diameter (Art. 6). If, then, we lay off on the arms of our “spider”
distances inversely proportional to the number of seconds of arc in
the sun’s measured diameter at each date, these distances will be
proportional to the true distance of the earth from the sun, and the
curve joining the points thus obtained will be a true map of the
earth’s orbit, though without any scale of miles upon it.

When the operation is performed, we
find that the orbit is an ellipse of small
eccentricity (about one-sixtieth), with
the sun, not in the centre, but at one
focus.

183. For the benefit of any who may
not have studied conic sections we define
the ellipse. It is a curve such that the sum F1G. 59.—The Ellipse.
of the two distances from any point on its
circumference to two points within, called the foci, is always constant,
and equal to what is called the major-axis of the ellipse, SP+PF = AA’,
in AC is called the semi-major-axis, and is usually denoted by

A or a. BC is the semi-minor-axis, denoted by B or b. The eccentricity,

SC
denoted b is the fraction —.
enoted by e, is the fraction — =

Since BS is equal to A, SC =+ A2 — B?;

VB
==

and e =

The points where the earth is nearest to and most remote from
the sun are called respectively perihelion and aphelion and the line
that joins them is, of course, the major axis of the orbit. This line,
considered as indefinitely produced in both directions, is called the
line of apsides,—the major-axis being a limited piece or “sect” of
the line of apsides.

184. The variations of the sun’s diameter are too small to be de-
tected without a telescope (amounting to only about three per cent), so
that the ancients were unable to perceive them. Hipparchus, however,
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about 150 B.C., discovered that the earth is not in the centre of the cir-
cular orbit which he supposed the sun to describe around it. Everybody
assumed, on d prior: grounds, never disputed until the time of Kepler,
that the sun’s orbit must be a circle and described with a uniform mo-
tion, because a circle is the only “perfect” curve, and uniform motion
the only perfect motion. Obviously, however, the sun’s apparent motion
is not uniform, because it takes 186 days for the sun to pass from the
vernal equinox to the autumnal through the summer months, and only
179 days to return during the winter. Hipparchus explained this differ-
ence by the hypothesis that the earth is out of the centre of the sun’s
path.

185. To find the Eccentricity of the Orbit.—Having the
greatest and least apparent diameters of the sun, the eccentricity,
e, is easily found. In[Fig. 59| since, by definition, e = C'S + CA, we
have C'S = C'A x e, or Ae. The perihelion distance AS is therefore
equal to A x (1 — e), and the aphelion distance SA’ to A(1 + e).
Suppose now that the greatest and least measured diameters of the
sun are p and ¢g. This gives us the proportionp : ¢ = A(1+e) : A(1—
e), since the diameters are inversely proportional to the distances.
From this we get

e=2"1
p+q
The actual values of p and ¢ are 32’ 36”.4 and 31’ 31”.8, which give

e = 0.01678 : this is about %, as has been stated.

186. To find the Law of the
Earth’s Motion.—By comparing the
measured apparent diameter with the dif-
ferences of longitude from day to day, we
can also deduce the law of the earth’s mo-
tion. On making a table of daily motions
and apparent diameters, we find that these
daily motions vary directly as the squares
of the diameters; from which it directly fol- Equable Description of
lows that the earth moves in such a way Areas.
that its radius-vector describes areas pro-
portional to the times (a law which Kepler first brought to light in
1609). The radius-vector is the line which joins the earth to the sun
at any moment.

FiGc. 60.
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187. Consider a small elliptical sector, dSc , described by
the earth in a unit of time. Regarding it as a triangle, its area is given
by the formula %SC X SDsincSd; and calling this angle 6 (which will
be very small), and considering that in so short a time Sd and Sc¢ would
remain sensibly equal, each being equal to R (the radius-vector at the
middle point of the arc), this formula becomes,

Area of sector = %R29.

Now, calling the sun’s apparent diameter D, we have:

k
R= D
(k being a constant, and depending on the sun’s diameter in miles);
2 _ K
whence R = D

But our measurements show that § = k1 D?, k; being another constant.

Substitute these values of R? and 6 in the formula for the area, and we h:

k2
Area of sector = %ﬁ x k1 D? = %kgkl,
a constant; that is, the area described by the radius-vector in a unit
of time is always the same. The planet near perihelion moves so much
faster, that the areas aSbh,cSd, and eSf are all equal to each other, if
the arcs are described in the same time.

188. Kepler’s Problem.—As the
case stands so far, this is a mere fact of
observation; but as we shall see hereafter,
and as was demonstrated by Newton, the
fact shows that the earth moves under the
action of a force always directed in line
with the sun. In such a case the “equable
description of areas” is a necessary me- Fi1c. 61.—Kepler’s
chanical consequence. It is true in every Problem
case of elliptical motion, and enables us to
find the position of the earth or any planet in its orbit at any time,
when we once know the time of its orbital revolution (technically
the period), and the time when it was at perihelion. Thus, the angle
ASP (Fig. 61), which is called the Anomaly of the planet, must be
such that the area of the elliptical sector ASP will be that portion

t
of the whole ellipse which is represented by the fraction T t be-

ing the number of days since the planet last passed the perihelion,
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and T the number of days in the whole period. For instance, if
the earth last passed perihelion on Dec. 31 (which it did), its place
on May 1 must be such that the sector ASP will be % of the
whole of the earth’s orbit; since from Dec. 31 to May 1 is 121 days.
The solution of this problem, known as “Kepler’s problem,” leads

to transcendental equations, and lies beyond our scope.

See Watson’s “Theoretical Astronomy,” pp. 53 and 54, or any other
similar work.

189. Anomaly and Equation of the Centre.—The angle
ASP, which has been termed simply the “Anomaly,” is strictly
the true Anomaly, as distinguished from the mean Anomaly. The
former may be defined as the angle actually made at any time by
the radius-vector of a planet with the line of apsides, the angle be-
ing reckoned from the perihelion point completely around in the
direction of the planet’s motion. The mean Anomaly is what the
Anomaly would be at the given moment if the planet had moved with
uniform angular velocity, completing the orbit in the same period,
and passing perthelion at the same time, as it actually does. The
difference between the two anomalies is called the Equation of the
Centre. This is zero at perihelion and aphelion, and a maximum
midway between them. In the case of the sun, its greatest value
is nearly 2°, the sun getting alternately that amount ahead of, and
behind, the position it would occupy if its apparent daily motion
were uniform.

190. The Seasons.—The earth in its motion around the sun
always keeps its axis parallel to itself, for the mechanical reason
that a revolving body necessarily maintains the direction of its axis
invariable, unless disturbed by extraneous force, as is very prettily
illustrated by the gyroscope. About March 20 the earth is so situ-
ated that the plane of its equator passes through the sun, the sun’s
declination being zero on that day.

At that time, the line which separates the illuminated portions
of the earth passes through the two poles, and day and night are
everywhere equal. The same is again true of the 22d of September,
when the sun is at the autumnal equinox on the opposite side of the
orbit.

About the 21st of June the earth is so situated that its north
pole is inclined towards the sun by about 23%0, which is the sun’s
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northern declination on that date. The south pole is then in the
obscure half of the earth’s globe, while the north pole receives sun-
light all day long; and in all portions of the northern hemisphere
the day is longer than the night, the difference between the day and
night depending upon the latitude of the place, while in the south-
ern hemisphere the days are shorter than the nights. At the time of
the winter solstice these conditions are reversed. At the equator (of
the earth) the day and night are equal at all times of the year. The
sun when in northern declination of course always rises at a point
on the horizon north of east, and sets at a point north of west, so
that for a portion of the time each day it shines on the north side
of a house.

191. Diurnal Phenomena near the Pole.—At the north pole,
where the celestial pole is in the zenith, and the diurnal circles are par-
allel with the horizon, the sun will maintain the same elevation all day
long, except for the slight change caused by the variation of its decli-
nation in twenty-four hours. The sun will appear on the horizon at the
date of the vernal equinox (in fact, about three days before, on account
of refraction), and slowly wind upward in the sky until it reaches its
maximum elevation of 23%o on June 21. Then it will retrace its course
until a day or two after the autumnal equinox, when it sinks out of sight.

At points between the north pole and the polar circle the sun will
appear above the horizon earlier in the year than March 20, and will rise
and set daily until its declination becomes equal to the observer’s dis-
tance from the pole, when it will make a complete circuit of the heavens,
touching the horizon at midnight at the northern point; and after that
never setting again until it reaches the same declination in its southward
course after passing the solstice. From that time it will again rise and set
daily until it reaches a southern declination just equal to the observer’s
polar distance, when the long night begins; to continue until the sun,
having passed the southern solstice, returns again to the same declina-
tion at which it made its appearance in the spring. At the polar circle
itself (or, more strictly speaking, owing to refraction, about one-half a
degree south of it) the “midnight sun” will be seen on just one day in
the year, the day of the summer solstice; and there will also be one abso-
lutely sunless day, viz., the day of the winter solstice. The same remarks
apply in the southern hemisphere, by making the obvious changes.

192. Effects on Temperature.—The changes in the dura-
tion of “insolation” (exposure to sunshine) at any place involve
changes of temperature and other climatic conditions, thus produc-
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ing the seasons. Taking as a standard the amount of heat received
in twenty-four hours on the day of the equinox, it is clear that the
surface of the soil at any place in the northern hemisphere will re-
ceive more than this average amount of heat whenever the sun is
north of the celestial equator, for two reasons.

1. Sunshine lasts more than half the
day.

2. The mean elevation of the sun dur-
ing the day is greater than when it is at
the equinoxes, since it is higher at noon,
and in any case reaches the horizon at ris-
ing and setting. Now, the more obliquely
the rays str1k.e, the less heat the.y brlng to Effect of Sun’s Elevation
each square inch of surface, as is obvious on Amotnt of Heat
from [Fig. 62 A beam of sunshine having Tmparted to the Soil.
the cross-section ABC'D, when it strikes
the surface at an angle h (equal to the sun’s altitude) is spread over
a much larger surface, Ac, and of course the amount of heat per
square inch is proportionately reduced. If () is the amount of heat
per square inch brought by the ray when falling perpendicularly, as
on the surface AC, then on Ac the amount per square inch will be
Q@ X sinh, since AB = Ab x sinh. This difference in favor of the
more nearly vertical rays is exaggerated by the absorption of heat
in the atmosphere, because rays that are nearly horizontal have to
traverse a much greater thickness of air before reaching the ground.

Fic. 62.

For these two reasons, at a place in the northern hemisphere,
the temperature rises rapidly as the sun comes north of the equator,
thus giving us our summer.

193. Time of Highest Temperature.—We, of course, re-
ceive the most heat per diem at the time of the summer solstice;
but this is not the hottest time of the summer, for the obvious rea-
son that the weather is then all the time getting hotter, and the
maximum will not be reached until the increase ceases; that is, not
until the amount of heat lost in the night equals that stored up by
day.

If the earth’s surface threw off the same amount of heat hourly
whether it were hot or cold, then this maximum would not come un-
til the autumnal equinox. This, however, is not the case. The soil loses
heat faster when warm than it does when cold, the loss being nearly pro-
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portional to the difference between the temperature of the soil and that
of surrounding space; (Newton’s law of cooling); and so the time of the
maximum is made to come not far from the end of July, or the first of
August, in our latitude. For similar reasons the minimum temperature of
winter occurs about Feb. 1, about half-way between the solstice and the
vernal equinox. Since, however, our weather is not entirely “made on the
spot where it is used,” but is affected by winds and currents that come
from great distances, the actual time of the maximum temperature can-
not be determined by any mere astronomical considerations, but varies
considerably from year to year.

194. Difference between Seasons in Northern and
Southern Hemispheres.—Since in December the distance of the
earth from the sun is about three per cent less than it is in June, the
earth (as a whole) receives hourly about six per cent more heat in
December than in June, the heat varying inversely as the square of
the distance. For this reason the southern summer, which occurs in
December and January, is hotter than the northern. It is, however,
seven days shorter, because the earth moves more rapidly in that
part of its orbit. The total amount of heat per acre, therefore,
received during the summer is sensibly the same in each hemisphere,
the shortness of the southern summer making up for its increased
warmth.

195. The southern winter, however, is both longer and colder than
the northern; and it is maintained by certain geologists, Mr. Croll es-
pecially, that, on the whole, the mean annual temperature of the hemi-
sphere which has its winter at the time when the earth is in aphelion is
lower than that of the opposite one. It has been attempted to account
for the glacial epochs in this way. It is certain that at present, at any
place in the southern hemisphere, the difference between the maximum
temperature of summer and the minimum of winter must be greater than
in the case of a station in the northern hemisphere, similarly situated
as to elevation, etc. We say “at present” because, on account of cer-
tain slow changes in the earth’s orbit, to be spoken of immediately, the
state of things will be reversed in about ten thousand years, the northern
summer being then the hotter and shorter one.

196. Secular Changes in the Orbit of the Earth.—The
orbit of the earth is not absolutely unchangeable in form or position,
though it is so in the long run as regards the length of its major axis
and the duration of the year.
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197. 1. Change in Obliquity of the FEcliptic—The ecliptic
slightly and very slowly shifts its position among the stars, thus
altering the latitudes of the stars and the angle between the eclip-
tic and equator, i.e., the obliquity of the ecliptic. This obliquity
is at present about 24’ less than it was 2000 years ago, and is still
decreasing about half a second a year. It is computed that this
diminution will continue for about 15,000 years, reducing the oblig-
uity to 22;10, when it will begin to increase. The whole change,
according to J. Herschel, can never exceed about 1° 20" on each side
of the mean.

198. 2. Change of Eccentricity—At present the eccentricity of
the earth’s orbit (which is now 0.0168) is also slowly diminishing.
According to Leverrier, it will continue to decrease for about 24,000
years, until it becomes 0.003, and the orbit will be almost circular.
Then it will increase again for 40,000 years, until it becomes 0.02.

In this way the eccentricity will oscillate backwards and forwards, al-
ways, however, remaining between zero and 0.07; but the oscillations are
not equal either in amount or time, and so cannot properly be compared
to the “vibrations of a mighty pendulum,” which is rather a favorite
figure of speech.

199. 3. Rewvolution of the Apsides of the Farth’s Orbit.—The
line of apsides of the orbit, which now stretches in both directions
towards the constellations of Sagittarius and Gemini, is also slowly
and steadily moving eastward, and at a rate which will carry it
around the circle in about 108,000 years.

200. These so-called “secular” changes are due to the action of
the other planets upon the earth. Were it not for their attraction,
the earth would keep her orbit with reference to the sun strictly un-
altered from age to age, except that possibly in the course of millions
of years the effects of falling meteoric matter and the attraction of
the nearer fixed stars might make themselves felt.

Besides these secular perturbations of the earth’s orbit, the earth
itself is continually being slightly disturbed in its orbit. On account of
its connection with the moon, it oscillates each month a few hundred
miles above and below the true plane of the ecliptic, and by the action
of the other planets it is sometimes set forwards or backwards to the
extent of a few thousand miles. Of course every such change produces a
corresponding slight change in the apparent position of the sun.
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201. Equation of Time.—We have stated a few pages back
, that the interval between the successive passages of the
sun across the meridian is somewhat variable, and that for this rea-
son apparent solar, or sun-dial, days are unequal. On this account
mean time has been adopted, which is kept by a “fictitious” or
“mean” sun moving uniformly in the equator at the same average
rate as that of the real sun in the ecliptic. The hour-angle of this
mean sun is, as has been already explained, the local mean time (or
clock time); while the hour-angle of the real sun is the apparent or
sun-dial time. The Equation of Time is the difference between these
two times, reckoned as plus when the sun-dial is slower than the
clock, and minus when it is faster. It is the correction which must
be added (algebraically) to apparent time in order to get mean time.
As it is the difference between the two hour-angles; it may also be
defined as the difference between the right ascensions of the mean
sun and the true sun; or as a formula we may write: £ = a; — ayy,
in which «,, is the right ascension of the mean sun, and oy, of the
true sun.

The principal causes of this difference are two:—

202. 1. The Variable Motion of the

Sun in the Ecliptic, due to the Eccen- K, P\

tricity of the Farth’s Orbit.—Near per- \

ihelion, which occurs about Dec. 31, e\ ¢
the sun’s motion in longitude is most ‘

rapid. Accordingly, at this time the ap- T o Q

parent solar days exceed the sidereal by i
more than the average amount, mak- E
ing the sun-dial days longer than the g, 63 Effect of Obliquity of
mean. (The average solar day, it will Ecliptic in producing Equation
be remembered, is 3™ 56° longer than of Time.

the sidereal.) The sun-dial will there-

fore lose time at this season, and will continue to do so for about
three months, until the angular motion of the sun falls to its mean
value. Then it will gain until aphelion, when, if the clock and the
sun were started together at perihelion, they will once more be to-
gether. During the next half of the year the action will be reversed.
Thus, twice a year, so far as the eccentricity of the earth’s orbit is
concerned, the clock and sun would be together at perihelion and
aphelion, while half-way between they would differ by about eight
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minutes; the equation of time (so far as due to this cause only)
being +8 minutes in the spring, and —8 minutes in the autumn.

203. 2. The Inclination of the Ecliptic to the Equator.—Even
if the sun’s (apparent) motion in longitude (i.e., along the ecliptic)
were uniform, its motion in right ascension would be variable. If
the true and fictitious suns started together at the equinox, they
would indeed be together at the solstices and at the other equinox,
because it is just 180° from equinox to equinox, and the solstices
are exactly half-way between them. But at intermediate points,
between the equinoxes and solstices, they would not be together on
the same hour-circle. This is best seen by taking a celestial globe
and marking on the ecliptic a point, m, half-way between the vernal
equinox and the solstice, and also marking a point n on the equator,
45° from the equinox. It will at once be seen that the former point,
m in [Fig. 63]! is west of n, so that m in the daily westward motion
of the sky will come to the meridian first; in other words, when the
sun is half-way between the vernal equinox and the summer solstice,
the sun-dial is faster than the clock, and the equation of time is
minus. The difference, measured by the arc m’n, amounts to nearly
ten minutes; and of course the same thing holds, mutatis mutandis,
for the other quadrants.

g
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Fia. 64.—The Equation of Time.

204. Combination of the Effects of the Two Causes.—
We can represent graphically these two components of the equation
of time and the result of their combination as follows ([Fig. 64f):—

'Fig. 63 represents a celestial globe viewed from the west side, the axis
being vertical, and K, the pole of the ecliptic, on the meridian, while F is the
vernal equinox.
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The central horizontal line is a scale of dates one year long, the
letters denoting the beginning of each month. The dotted curve
shows the equation of time due to the eccentricity of the earth’s
orbit, above considered. Starting at perihelion on Dec. 31, this
component is then zero, rising from there to a value of about +8™
on April 2, falling to zero on June 30, and reaching a second max-
imum of —8™ on Oct. 1. In the same way the broken-line curve
denotes the effect of the obliquity of the ecliptic, which, by itself
alone considered, would produce an equation of time having four
maxima of, approximately, 10™ each, about the 6th of February,
May, August, and November (alternately + and —), and reducing
to zero at the equinoxes and solstices.

The full-lined curve represents their combined effect, and is con-
structed by making its ordinate at each point equal to the sum
(algebraic) of the ordinates of the two other curves. At the 1st of
February, for instance, the distance F', 3, in the =F 1+F, 2.
So, also, M, 6 = M, 44+ M, 5; the components, however, in this case
have opposite signs, so that the difference is actually taken.

The equation of time is zero four times a year, viz.: on April 15,
June 14, Sept. 1, and Dec. 24. The maxima are February 11,
+14™ 32%; May 14, —3™ 55°%; July 26, +6™ 12°, and Nov. 2, —16™ 18°.
But the dates and amounts vary slightly from year to year.

The two causes above discussed are only the principal ones effective
in producing the equation of time. Every perturbation suffered by the
earth comes in with its own effect; but all other causes combined never
alter the equation by more than a few seconds.

205. Precession of the Equinoxes.—The length of year was
found in two ways by the ancients:—

1. By the gnomon, which gives the time of the equinox and
solstice; and

2. By observing the position of the sun with reference to the
stars,—their rising and setting at sunrise or sunset.

Comparing the results of observations made by these two meth-
ods at long intervals, Hipparchus (120 B.c.) found that the two do
not agree; the former year (from equinox to equinox) being 20™ 23°
shorter than the other (according to modern data). The equinox is
plainly moving westward on the ecliptic, as if it advanced to meet
the sun on each annual return. He therefore called the motion the
“precession” of the equinoxes.
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On comparing the latitudes of the stars in the time of the an-
cient astronomers with the present latitudes, we find that they have
changed very slightly indeed; and we know therefore that the eclip-
tic and the plane of the earth’s orbit maintains its position sensibly
unaltered. On the other hand, the longitudes of the stars have been
found to increase regularly at the rate of about 50”.2 annually,—
fully 30° in the last 2000 years. Since longitudes are reckoned from
the equinox (the intersection between the ecliptic and equator), and
since the ecliptic does not move, it is evident that the motion must
be in the celestial equator; and accordingly we find that both the
right ascension and the declination of the stars are constantly chang-

ing.

206. Motion of the Pole of the Equator around the Pole
of the Ecliptic.—The obliquity of the ecliptic, which equals the
distance in the sky between the pole of the equator and the pole
of the ecliptic , has remained nearly constant. Hence the
pole of the equator must be describing a circle around the pole of the
ecliptic in a period of about 25,800 years (360° divided by 50”.2).
The pole of the ecliptic has remained practically fixed among the
stars, but the other pole has changed its position materially. At
present the pole star is about 1;110 from the pole. At the time of the
star catalogue of Hipparchus it was 12° distant from it, and during
the next century it will approach to within about 30’, after which
it will recede.

207. If upon a celestial globe we take the pole of the ecliptic as a
centre, and describe about it a circle with a radius of 23%0, we shall
get the track of the celestial pole among the stars, and shall find that
the circle passes very near the star a Lyrae, on the opposite side of
the pole of the ecliptic from the present pole star. About 12,000 years
hence a Lyrae will be the pole star. Reckoning backwards, we find that
some 3000 years ago v Draconis was the pole star; and it is a curious
circumstance that certain of the tunnels in the pyramids of Egypt face
exactly to the north, and slope at such an inclination that this star at its
lower culmination would have been visible from their lower end at the
date when the pyramids are supposed to have been built. It is probable
that these passages were arranged to be used for the purpose of observing
the transits of their then pole star.

208. Effect of Precession upon the Signs of the Zodiac.
—Another effect of precession is that the signs of the zodiac do not now
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agree with the constellations which bear the same name. The sign of
Aries is now in the constellation of Pisces; and so on, each sign having
“backed,” so to speak, into the constellation west of it.

209. Physical Cause of Precession.—The
physical cause of this slow conical rotation of the
earth’s axis around the pole of the ecliptic lies in the
two facts that the earth is not exactly spherical, and
that the attractions of the sun and moon' act upon
the equatorial ring of matter which projects above the
true sphere, tending to draw the plane of the equator
into coincidence with the plane of the ecliptic by their
greater attraction on the nearer portions of the ring.
The action is just what it would be if a spheroidal ball
of iron of the shape of the earth had a magnet brought
near it. The magnet, as illustrated in [Fig. 65, would
tend to draw the plane of the equator into the line
C'M joining its pole with the centre of the globe, be- Effoct of
cause it attracts the nearer portion of the equatorial a0 tion on
protuberance at £/ more strongly than the remoter at  a Spheroid.
Q. If it were not for the earth’s rotation, this attrac-
tion would bring the two planes of the ecliptic and equator together;
but since the earth is spinning on its axis, we get the same result
that we do with the whirling wheel of a gyroscope by hanging a
weight at one end of the axis. We then have the result of the com-
bination of two rotations at right angles with each other, one the
whirl of the wheel, the other the “tip” which the weight tends to
give the axis. (See Brackett’s Physics, pp. 53-56.)

Fic. 65.

210. In this case, if the wheel of the gyroscope is turning swiftly
clock-wise, as seen from above ([Fig. 60), the weight at the (lower)
end of the axis will make the axis move slowly around, counter-
clockwise, without at all changing its inclination. If we regard the
horizontal plane passing through the gyroscope as representing the
ecliptic, and the point in the ceiling vertically above the gyroscope
as the pole of the ecliptic, the line of the axis of the wheel produced
upward would describe on the ceiling a circle around this imaginary

IThe planets, by their action upon the plane of the earth’s orbit (Art. 197)),
slightly disturb the equinox in the opposite direction. This effect amounts to
about 0”.16 annually.
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ecliptic pole, acting precisely as does the pole of the earth’s axis in
the sky. The swifter the wheel’s rotation, the slower would be this
“precessional” motion of its axis; and of course, the rate of motion
also depends upon the magnitude of the suspended weight.

FiG. 66.
Precession Hlustrated by the Gyroscope.

211. A full treatment of the subject would be too complicated for
our pages. An elementary notion of the way the action takes place,
correct as far as it goes, is easily obtained by reference to Let
XY Dbe the axis of the gyroscope, the wheel being seen in section edge-
wise, and the eye being on the same level as the centre of the wheel;
the wheel turning so that the point B is coming towards the observer.
Now, suppose a weight hung on the lower end of the axis. If the wheel
were not turning, the point B would come to some point F' in the same
time it now takes to reach C' (that is, after a quarter of a revolution).
By combination of the two motions it will come to a point K at the
end of the same time, having crossed the horizontal plane AD at L; and
this can be effected only by a backward “skewing around” of the whole
wheel, axis and all. This does not, of course, explain why the inclination
of the axis does not change under the action of the weight, but is only
a very partial illustration, showing merely why the plane of the wheel
regresses. A complete discussion would require the consideration of the
motion of every point on the wheel by a thorough and difficult analytical
treatment, in order to give the complete explanation of the reason why
the depressing weight, however heavy, does not cause the end of the axis
to fall perceptibly. (See article, “Gyroscope,” in Johnson’s Cyclopadia.)

212. Why Precession is so Slow.—The slowness of the pre-
cession depends on three things: (a) the enormous “moment of ro-
tation” of the earth-—a point on the equator moves with the speed
of a cannon ball; (b) the smallness of the mass (compared with that
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of the whole earth) of the protuberant ring to which precession is
due; and (c¢) the minuteness of the force which tends to bring this
ring into coincidence with the ecliptic, a force which is not constant
and persistent, like the weight hung on the gyroscope axis, but very
variable.

213. The Equation of the Equinox.—Whenever the sun is
in the plane of the equator (which is twice a year, at the time of the
equinoxes), the sun’s precessional force disappears entirely, its attraction
then having no tendency to draw the equator out of its position. The
moon’s action, on account of her proximity, is still more powerful than
that of the sun; on the average two and a half times as great. Now, the
moon crosses the celestial equator twice every month, and at these times
her action ceases.

There is still another cause for variation
in the effectiveness of the moon’s attraction.
As we shall see hereafter, she does not move
in the ecliptic, but in a path which cuts the
ecliptic at an angle of about 5°, at two points
called the Nodes; the ascending node being
the point where she crosses the ecliptic from
south to north. These nodes move westward
on the ecliptic (Art. 455)), making the circuit ~ Frc. 67.
once in about nineteen years. Now, when Regression of the Gyroscope
the ascending node of the moon’s orbit is at Wheel
B ([Fig. 68)), near the autumnal equinox F, its inclination to the equator
will be, as the shows, less than the obliquity of the ecliptic by
about 5°; i.e., it will be only about 18°. On the other hand, nine and a
half years later, when the node has backed around to a point A, near the
vernal equinox, the inclination of the moon’s orbit to the equator will
be nearly 28°. When the node is in this position, the moon will produce
nearly twice as much precessional movement each month as when the
node was at B.

The precession, therefore, is not .
uniform, but variable, almost ceas- B2~ /N\
ing at some times and at others be- 7
coming rapid. The average amount,
as has been stated, is 50”.2 a year;
and the variation is taken account
of in what is called the equation of
the equinox, which is the difference between the actual position of the
equinox at any time and the position it would have at that moment if

Fic. 68.
Variation in the Inclination of
Moon’s Orbit to Equator.
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the precession had been all the time going on uniformly.

214. Nutation.—Not only does the precessional force vary in
amount at different times, but in most positions of the disturbing
body with respect to the earth’s equator there is a slight thwartwise
component of the force, tending directly to accelerate or retard the
precessional movement of the pole—just as if one should gently
draw the weight W horizontally. The consequence is what
is called Nutation or “nodding.” The axis of the earth, instead of
moving smoothly in a circle, nods in and out a little with respect
to the pole of the ecliptic, describing a wavy curve resembling that
shown in [Fig. 69 but with nearly 1400 indentations in the entire
circumference traversed in 26,000 years.

215. We distinguish three of these nutations,
(a) The Lunar Nutation, depending upon the mo-
tion of the moon’s nodes. This has a period of a
little less than nineteen years, and amounts to 9”.2,
(b) The Solar Nutation, due to the changing dec-
lination of the sun. Its period is a year, and its
amount 1”7.2. (¢) The Monthly Nutation, precisely
like the solar nutation, except that it is due to the

moon’s changes of declination during the month. It FiG. 69.—
Nutation.

is, however, too small to be certainly measured, not
exceeding one-tenth of a second.

Nutation was detected by Bradley in 1728, but not fully explained
until 1748.

Neither precession nor nutation affects the latitudes of the stars,
since they are not due to any change in the position of the ecliptic,
but only to displacements of the earth’s axis. The longitudes alone are
changed by them.

The right ascension and declination of a star are both affected.

216. The Three Kinds of Year.—In consequence of the mo-
tion of the equinoxes caused by precession, the sidereal year and
the equinoctial or “tropical” year do not agree in length. Although
the sidereal year is the one which represents the earth’s true orbital
revolution around the sun, it is not used as the year of chronology
and the calendar, because the seasons depend on the sun’s place
in relation to the equinoxes. The tropical year is the year usually
employed, unless it is expressly stated to the contrary. The length
of the Sidereal year is 3659 6" 9™ 9%; that of the Tropical year is
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about 20™ less, 3659 5" 48™ 46°.
The third kind of year is the anomalistic year, which is the time
from perihelion to perihelion again. As the line of apsides of the

earth’s orbit moves always slowly towards the east, this year is a
little longer than the sidereal. Its length is 3654 6" 13™ 485,

217. The Calendar.—The natural units of time are the day,
the month, and the year. The day, however, is too short for conve-
nient use in designating extended periods of time, as for instance
in expressing the age of a man. The month meets with the same
objection, and for all chronological purposes, therefore, the year is
the unit practically employed. In ancient times, however, so much
regard was paid to the month, and so many of the religious beliefs
and observances connected themselves with the times of the new and
full moon, that the early history of the calendar is largely made up
of attempts to fit the month to the year in some convenient way.
Since the two are incommensurable, the problem is a very difficult,
and indeed strictly speaking, an impossible, one.

In the earliest times matters seem to have been wholly in the
hands of the priesthood, and the calendar then was predominantly
lunar, with months and days intercalated from time to time to keep
the seasons in place. The Mohammedans still use a purely lunar
calendar, having a year of twelve lunar months, and containing al-
ternately 354 and 355 days. In their reckoning the seasons fall,
of course, continually in different months, and their calendar gains
about one year in thirty-three upon the reckoning of Christian na-
tions.

218. The Metonic Cycle.—Among the Greeks the discovery
of the so-called lunar or Metonic cycle by Meton, about 433 B.C.,
considerably simplified matters. This cycle consists of 235 synodic
months (from new moon to new again), which is very approximately
equal to 19 common years of 365% days.

235 months equal 69399 16" 31™; 19 tropical years equal
69399 14" 27™: 5o that at the end of the 19 years, the new and full
moon recur again on the same days of the year, and at the same time of
day within about two hours. The calendar of the phases of the moon,
for instance, for 1889 is the same as for 1870 and 1908 (except that
intervening leap-years may change the dates by one day).

The “Golden number” of a year is its number in this Metonic cycle,
and is found by adding 1 to the “date-number” of the year and dividing
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by 19. The remainder, unless zero, is the “golden number” (if it comes
out zero, 19 is taken instead). Thus the golden number for 1888 is found
by dividing 1889 by 19, and the remainder 8, is the golden number of
the year.

This cycle is still employed in the ecclesiastical calendar in finding
the time of Easter.

For further information on the subject, consult Johnson’s Encyclopaedia, or
Sir Edmund Becket’s “Astronomy without Mathematics.”

219. Julian Calendar.—Until the time of Julius Ceesar the
Roman calendar seems to have been based upon the lunar year of
twelve months, or 355 days, and was substantially like the modern
Mohammedan calendar, with arbitrary intercalations of months and
days made by the priesthood and magistrates from time to time in
order to bring it into accordance with the seasons. In the later
days of the Republic, the confusion had become intolerable. Caesar,
with the help of the astronomer Sosigenes, whom he called from
Alexandpria for the purpose, reformed the system in the year 45 B.C.,
introducing the so-called “Julian calendar,” which is still used either
in its original shape or with a very slight modification. He gave
up entirely the attempt to coordinate the month with the year,
and adopting 365}1 days as the true length of the tropical year, he
ordained that every fourth year should contain an extra day, the
sizth day before the Kalends of March on that year being counted
turice, whence the year was called “bissextile” Before his time the
year had begun in March (as indicated by the Roman names of
the months,—September, seventh month; October, eighth month,
etc.), but he ordered it to begin on the 1st of January, which in that
year (45 B.C.) was on the day of the new moon next following the
winter solstice. In introducing the change it was necessary to make
the preceding year 445 days long, and it is still known in the annals
as “the year of confusion.” He also altered the name of the month
Quintilis, calling it “July” after himself.

There was some irregularity in the bissextile years for a few years
after Ceaesar’s death, from a misunderstanding of his rule for the inter-
calary day; but his successor Augustus remedied that, and to put himself
on the same level with his predecessor, he took possession of the month
Sextilis, calling it “August”; and to make its length as great as that of
July, he robbed February of a day.

From that time on, the Julian calendar continued unbrokenly in use
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until 1582; and it is still the calendar of Russia and of the Greek Church.

220. The Gregorian Calendar.—The Julian calendar is not
quite correct. The true length of the tropical year is 365 days 5 hours
48 minutes and 46 seconds, and this leaves a difference of 11 minutes
and 14 seconds by which the Julian calendar year is the longer,
being exactly 365}L days. As a consequence, the date of the equinox
comes gradually earlier and earlier by about three days in 400 years.
(400 x 113" = 4467 minutes = 3¢ 2" 27™.) In the year 1582, the
date of the vernal equinox had fallen back 10 days to the 11th of
March, instead of occurring on the 21st of March, as at the time of
the Council at Nice, 325 A.D. Pope Gregory, therefore, acting under
the advice of the Jesuit astronomer, Clavius, ordered that the day
following Oct. 4 in the year 1582 should be called not the 5th, but
the 15th, and that the rule for leap-year should be slightly changed
so as to prevent any such future displacement of the equinox. The
rule now stands: All years whose date-number is divisible by four
without a remainder are leap-years, unless they are century years
(1700, 1800, etc.). The century years are not leap-years unless their
date-number is divisible by 400, in which case they are: that is,
1700, 1800, and 1900 are not leap years; but 1600, 2000, and 2400

are.

221. Adoption of the New Calendar.—The change was im-
mediately adopted by all Catholic nations; but the Greek Church
and most of the Protestant nations, rejecting the Pope’s authority,
declined to accept the correction. In England it was at last adopted
in the year 1752, at which time there was a difference of eleven
days between the two calendars. (The year 1600 was a leap-year
according to the Gregorian system as well as the Julian, but 1700
was not.) Parliament in 1751 enacted that the day following the 2d
of September, in the year 1752, should be called the 14th instead
of the 3d; and also that this year (1752), and all subsequent years,
should begin on the first of January.

The change was made under very great opposition, and there were
violent riots in consequence in different parts of the country, especially at
Bristol, where several persons were killed. The cry of the populace was,
“Give us back our fortnight,” for they supposed they had been robbed
of eleven days, although the act of Parliament was carefully framed to
prevent any injustice in the collection of interest, payment of rents, etc.

At present, since the year 1800 was not a leap-year according to the
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Gregorian calendar, while it was so according to the Julian, the difference
between the two calendars amounts to twelve days; thus in Russia the
19th of August would be reckoned as the 7th. In Russia, however, for
scientific and commercial purposes both dates are very generally used, so
that the date mentioned would be written Aug. %. When Alaska was
annexed to the United States, its calendar had to be altered by eleven

days. (See|Art. 123])

222. The Beginning of the Year.—The beginning of the year
has been at several different dates in the different countries of Europe.
Some have regarded it as beginning at Christmas, the 25th of December;
others, on the 1st of January; others still, on the 1st of March; others, on
the 25th; and others still, at Easter, which may fall on any day between
the 22d of March and the 25th of April.

In England previous to the year 1752 the legal year commenced on
the 25th of March, so that when the change was made, the year 1751
necessarily lost its months of January and February, and the first twenty-
four days of March. Many were slow to adopt this change, and it becomes
necessary, therefore, to use considerable care with respect to English
dates which occur in the months of January, February, or March about
that period. The month of February, 1755, for instance, would by some
writers be reckoned as occurring in 1754. Confusion is best avoided by

" 1754
writing, Feb. 22=.

223. First and Last Days of the Year.—Since the ordinary
civil year consists of 365 days, which is 52 weeks and one day, the last
day of each common year falls on the same day as the first; so that any
given date will fall one day later in the week than it did on the preceding
year, unless a 29th of February has intervened, in which case it will be
two days later; that is, if the 3d of January, 1889, falls on Thursday, the
same date in 1890 will fall on Friday.

224. Aberration.—Although in strictness the discussion of aberra-
tion does not belong to a chapter describing the earth and its motions, yet
since it is a phenomenon due to the earth’s motion, and affects the right ascen-
sion and declination of the stars in much the same ways as do precession and
nutation, it may properly enough be considered here.

Aberration is the apparent displacement of a star, due to the
combination of the motion of light with the motion of the observer.

The direction in which we have to point our telescope in ob-
serving a star is not the same that it would be if the earth were at
rest. It lies beyond our scope to show that according to the wave
theory of light the apparent direction of a ray will be affected by
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the observer’s motion precisely in the same way (within very narrow
limits) as it would be if light consisted of corpuscles shot off from a
luminous body, as Newton supposed. This is the case, however, as
Doppler and others have shown; and assuming it, the explanation
of aberration is easy:—

Suppose an observer standing at .
rest with a tube in his hand in a shower | !
of rain where the drops are falling verti- | g
cally. If he wishes to have the drops de-
scend axially through the tube without
touching the sides, he must of course
keep it vertical; but if he advances in
any direction, he must draw back the m|l/
bottom of the tube by an amount which
equals the advance he makes in the  FiG. 70.—Aberration of a
time while the drop is falling through Raindrop.
the tube, so that when the drop falling from B reaches A’, the bot-
tom of the tube will be there also; i.e., he must incline the tube
forward by an angle o, such that tana = u <+ V', where V is the
velocity of the raindrop and w that of his own motion. In
BA" =V and AA" = u.

e

225. Now take the more general case.

Suppose a star sending us light with a ve-
locity V' in the direction SP, [Fig. 71} which
makes the angle 6 with the line of the ob-
server’s motion. He himself is carried by the
earth’s orbital velocity in the direction Q) P.
In pointing the telescope so that the light
may pass exactly along its optical axis, he
will have to draw back the eye-end by an
amount QP which just equals the distance FiG. 71.—Aberration of
he is carried, by the earth’s motion during Light.
the time that the light moves from O to P.
The star will thus apparently be displaced towards the point to-
wards which he is moving, the angle of displacement POQ), or «,
being determined by the relative length and direction of the two
sides OP and Q)P of the triangle O PQ). These sides are respectively
proportional to the velocity of light, V', and the orbital velocity of
the earth, wu.
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The angle at P being 6, the angle OQP will be (6 — ), and we shall
have from trigonometry the proportion sina : sin (6 —a) =wu: V.

To find « from this, develop the second term of the proportion and
divide the first two terms by sin «, which gives us

1:sinfcotax—cosf =u:V,

whence usinfcota =V 4+ ucosb,
\% 0
and cota = w
u sin 0

Taking the reciprocal of this we have

ta 4 sin 6
noa=-———siné.

V 4+ wcosd
The second term in the denominator is insensible, since u is only about
one ten-thousandth of V, so that we may neglect it.! This gives the
formula in the shape in which it ordinarily appears, viz.,

t Y Ging
anoa = — s1invco.
%

The value of a (denoted by ) which obtains when 6 = 90° and
sin # = unity, is called the Constant of Aberration.

The latest, and probably the most accu-
rate, determination of this constant (derived
from the Pulkowa Observations by Nyrén in
1882) is 20”.492. Aberration was discovered
and explained by Bradley, the English As-
tronomer Royal, in 1726.

226. The Effect of Aberration upon
the Apparent Places of the Stars.—As
the earth moves in an orbit nearly circular,

. . . Fic. 72.
and with a velocity so nearly uniform that we sy ./ ational Orbit of

may for our present purpose disregard its vari- a Star.
ations, it is clear that a star at the pole of the

IThe velocity of light, according to the latest determinations of Newcomb
and Michelson, is 299860 kilometers £+ 30 kilometers (which equals 186,330
miles &+ 20 miles). The mean velocity of the earth in its orbit, if we assume
the solar parallax to be 8”.8, is 29.77 kilometers, or 18.50 miles; this makes the
constant of aberration 20”.478, a little smaller than that given in the text.
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ecliptic will be always displaced by the same amount of 20”.5, but
in a direction continually changing. It must, therefore, appear to
describe a little circle 41” in diameter during the year, as shown in
[Fig. 72 Now the direction of the earth’s orbital motion is always
in the plane of the ecliptic, and towards the right hand as we stand
facing the sun. At the vernal equinox, therefore, we are moving
toward the point of the ecliptic, which is 90° west of the sun, i.e.,
towards the winter solstitial point, and the star is then displaced
in that direction. Three months later the star will be displaced in
a line directed towards the vernal equinox, and so on. The earth,
therefore, so to speak, drives the star before it in the aberrational
orbit, keeping it just a quarter of a revolution ahead of itself.

A star on the ecliptic simply appears to oscillate back and forth
in a straight line 41” long.

Generally, in any latitude whatever, the aberrational orbit is an
ellipse, having its major axis parallel to the ecliptic, and always 41”
long, while its minor axis is 41” x sin 3, 3 being the star’s latitude,
or distance from the ecliptic.

226*. Diurnal Aberration.—The motion of an observer due to
the earth’s rotation also produces a slight effect known as the diurnal
aberration. Its “constant” is only 0”.31 for an observer situated at the
equator; anywhere else it is 0”.31 cos ¢, ¢ being the latitude of the ob-
server.

For any given star it is a maximum when the star is crossing the
meridian, and then its whole effect is slightly to increase the right ascen-
ston by an amount given by the formula

Aa = 0".31 cos ¢secd,

6 being the star’s declination.

See Chauvenet, “Practical Astronomy,” 1. p. 638.
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CHAPTER VIL

THE MOON: HER ORBITAL MOTION AND VARIOUS KINDS
OF MONTH.—DISTANCE AND DIMENSIONS, MASS, DEN-
SITY AND GRAVITY.—ROTATION AND LIBRATIONS.—
PHASES.—LIGHT AND HEAT.—PHYSICAL CONDITION
AND INFLUENCES EXERTED ON THE EARTH.—TELE-
SCOPIC ASPECT.—SURFACE AND POSSIBLE CHANGES
UPON IT.

227. WE pass next to a consideration of our nearest neighbor
in the celestial spaces, the moon, which is a satellite of the earth
and accompanies us in our annual motion around the sun. She is
much smaller than the earth, and compared with most of the other
heavenly bodies, a very insignificant affair; but her proximity makes
her far more important to us than any of them except the sun. The
very beginnings of Astronomy seem to have originated in the study
of her motions and in the different phenomena which she causes,
such as the eclipses and tides; and in the development of modern
theoretical astronomy the lunar theory with the problems it raises
has been perhaps the most fertile field of invention and discovery.

228. Apparent Motion of the Moon.—FEven superficial ob-
servation shows that the moon moves eastward among the stars
every night, completing her revolution from star to star again in
about 27% days. In other words, she revolves around the earth in
that time; or, more strictly speaking, they both revolve about their
common centre of gravity. But the moon is so much smaller than
the earth that this centre of gravity is situated within the ball of
the earth on the line joining the centres of the two bodies at a point
about 1100 miles below its surface.

As the moon moves eastward so much faster than the sun, which
takes a year to complete its circuit, she every now and then, at the
time of the new moon, overtakes and passes the sun; and as the
phases of the moon depend upon her position with reference to the
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sun, this interval from new moon to new moon is what we ordinarily
understand as the month.

229. Sidereal and Synodic Revolutions.—The SIDEREAL
revolution of the moon is the time occupied in passing from a
star to the same star again, as the name implies. It is equal to
274 7h 43™ 115,545 £ 0°.01, or 279.32166. The moon’s mean daily
motion among the stars equals 360° divided by this, which is 13° 11/
(nearly).

The SYNODIC revolution is the interval from new moon to new
moon again, or from full to full. It varies somewhat on account of the
eccentricity of the moon’s orbit and of that of the earth around the
sun, but its mean value is 299 12" 44™ 25 684 + 0°.01, or 294.53059;
and this is the ordinary month. (The word synodic is derived from
the Greek oUv and 00d¢, and has nothing to do with the nodes of
the moon’s orbit. The word is syn-odic, not sy-nodic).

A synodical revolution is longer than the sidereal, because during
each sidereal month of 27.3 days the sun has advanced among the
stars, and must be caught up with.

230. Elongation, Syzygy, etc.—The angular distance of the
moon from the sun is called its Elongation. At new moon it is zero,
and the moon is then said to be in “Conjunction.” At full moon it
is 180°, and the moon is then in “Opposition.” In either case the
moon is said to be in “Syzygy” (oVv {uydv). When the elongation
is 90°, as at the half-moon, the moon is in “Quadrature.”

231. Determination of the Moon’s Sidereal Period.—
This is effected directly by observations of the moon’s right ascen-
sion and declination (with the meridian circle), kept up systemati-
cally for a sufficient time.

If it were not for the so-called “secular acceleration” of the
moon’s motion (Arts. 461)), an exceedingly accurate determina-
tion of the moon’s synodic period could be obtained by comparing
ancient eclipses with modern.

The earliest authentically recorded eclipse is one that was ob-
served at Nineveh in the year 763 B.C. between 9 and 10 o’clock on
the morning of June 15th.

By comparing this eclipse with (say) the eclipse of August, 1887,
we have an interval of more than 35,000 months, and so an error of
ten hours even, in the observed time of the Nineveh eclipse, would
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make only about one second in the length of the month. But the
month is a little shorter now than it was 2000 years ago.

232. Relation of Sidereal and Synodic Periods.—The
fraction of a revolution described by the moon in one day equals
ﬁ, M being the length of the sidereal month. In the same way %
represents the earth’s daily motion in its orbit, £ being the length
of the year. The difference of these two equals the fraction of a
revolution which the moon gains on the sun during one day. In a
synodic month, S, it gains one whole revolution, and therefore must
gain each day % of a revolution; so that we have the equation

1 1 1
M E S
or, substituting the numerical values of £ and S,
1 1 1

M~ 365.25635  29.53059’
whence we derive the value of M.

Another way of looking at it is this: In a year there must be exactly
one more sidereal revolution than there are synodic revolutions, because
the sun completes one entire circuit in that time. Now the number of
synodic revolutions in a year is given by the fraction

3657

= 12.369+.

There will therefore be 13.369 sidereal revolutions in the year, and the
length of one sidereal revolution equals 365% days divided by this number
13.369, which will be found to give the length of the sidereal revolution
as before.

233. Moon’s Path among the Stars.—By observing with
the meridian circle the right ascension and declination of the moon
daily during the month, just as in the case of the sun, we obtain
the position of the moon for each day, and joining the points thus
found, we can draw the path of the moon in the sky. It is found
to be a great circle inclined at a mean angle of 5° 8 to the ecliptic,
which it cuts in two points called the nodes (from nodus, a “knot”).

We say the path is found to be a great circle. This must be taken
with some reservation, since at the end of the month the moon never
returns precisely to the position it occupied at the beginning, owing
to the regression of the nodes and other so-called “perturbations,”
which will be discussed hereafter.
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234. Moon’s Meridian Altitude.—Since the moon’s orbit is
inclined to the ecliptic 5° &', its inclination to the equator varies from
28°36" (23°28 + 5°8'), when the moon’s ascending node is the vernal
equinox, to 18° 20/, when, 9% years later, the same node is at the autum-
nal equinox. In the first case the moon’s declination will change during
the month by 57° 12/, from —28° 36’ to +28° 36’. In the other case it will
change only by 36°40’, so that at different times the difference in the
behavior of the moon in this respect is very striking.

235. Interval between Moon’s Transits.—On the average
the moon gains 12°11’.4 on the sun daily, so that it comes to the
meridian about 51 minutes of solar time later each day.

To find the mean interval between the successive transits of the
moon we may use the proportion

(360° — 12°11".4) : 360° = 24" : 2;  whence = = 24" 50™ 6.

The variations of the moon’s motion in right ascension, which are
very considerable (much greater than in the case of the sun), cause
this interval to vary from 24" 38™ to 25" 06™.

236. The Daily Retardation of the Moon’s Rising and
Setting.—The average daily retardation of the moon’s rising and
setting is, of course, the same as that of her passage across the
meridian, viz., 51™; but the actual retardation of rising is subject
to very much greater variations than these of the meridian passage,
being affected by the moon’s changes in declination as well as by
the inequalities of her motion in right ascension. When the moon is
very far north, having her maximum declination of 28° 36’, she will
rise in our latitudes much earlier than when she is farther south.

In the latitude of New York the least possible daily retardation of
moon-rise is 23 minutes, and the greatest is 1 hour and 17 minutes.
In higher latitudes the variation is greater yet.

237. Harvest and Hunter’s Moons.—The variations in the
retardation of the moon’s rising attract most attention when they occur
at the time of the full moon. When the retardation is at its minimum, the
moon rises soon after sunset at nearly the same time for several successive
evenings; whereas, when the retardation is greatest, the moon appears
to plunge nearly vertically below the horizon by her daily motion. When
the full moon occurs at the time of the autumnal equinox, the moon
itself will be near the first of Aries.
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Now, as will be seen by reference to[Fig. 73] the portion of the ecliptic
near the first of Aries makes a much smaller angle with the eastern
horizon than the equator.

[The line HN is the horizon, E being the east point—the [figure being
drawn to represent a celestial globe, as if the observer were looking at
the eastern side of the celestial sphere from the outside.]

EQ is the equator. Now, when the autumnal equinoctial point or
first of Libra is on the horizon at E, the position of the ecliptic will be
that represented by ED; more steeply inclined to the horizon than FQ
is, by the angle QED, 23%0. But when the first of Aries is at E, the
ecliptic will be in the position J.J'. And if the ascending node of the
moon’s orbit happens then to be near the first of Aries, the moon’s path
will be M M’.

Fia. 73.—Explanation of the Harvest Moon.

Accordingly, when the moon is in Aries, it, so to speak, coasts along
the eastern horizon from night to night, its time of rising not varying
very much; and this, when it occurs near the full of the moon, gives
rise to the phenomenon known as the harvest moon, the harvest moon
being the full moon nearest to the autumnal equinoz. The full moon next
following is called the hunter’s moon.

In Norway and Sweden, under these circumstances, the moon’s orbit
may actually coincide with the horizon, so that she will rise at absolutely
the same time for a considerable number of successive evenings.

238. The Moon’s Orbit.—As in the case of the sun, the ob-
servation of the moon’s path in the sky gives no information as to
the real size of its orbit; but its form may be found by measuring
the apparent diameter of the moon, which ranges from 33" 30" to
29" 21" at different points. The orbit turns out to be an ellipse
like the orbit of the earth, but with an eccentricity more than three
times as great—about %8 on the average, but varying from ﬁ to %
on account of perturbations.
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The extremities of the major axis of the moon’s orbit are called
the perigee and apogee (from rmepl y#) and dro 7).

The line of apsides, which passes through these two points,
moves around towards the east once in about nine years, also on
account of perturbations.

239. Parallax and Distance of the Moon.—These can be
found in several ways, of which the simplest is the following: At
two observatories B and C' on, or very nearly on, the
same meridian and very far apart (in the northern and southern
hemispheres if possible; Greenwich and the Cape of Good Hope,
for instance) let the moon’s zenith distance ZBM and Z'C'M be
observed simultaneously with the meridian circle. This gives in the
quadrilateral BOC'M the two angles at B and C, each of which
is the supplement of the geocentric zenith distance. The angle at
the centre of the earth, BOC, is the difference of the geocentric
latitudes and is known from the geographical positions of the two
observatories. Knowing the three angles in the quadrilateral, the
fourth at M is of course known, since the sum of the four must he
four right angles. The sides BO and C'O are known, being radii of
the earth; so that we can solve the whole quadrilateral by a simple
trigonometrical process.

First find from the triangle BOC
the partial angles OCB and OBC, and
the side BC'. Then in the triangle BCM
we have BC' and the two angles CBM
and MCB, from which we can find the
two sides BM and CM. Finally, in
the triangle OBM, we now know the
sides OB and BM and the included an-
gle OBM, so that the side OM can be
computed, which is the distance of the Fia. 74.—Determination of the
moon from the earth’s centre. Knowing Moon’s Parallax.
this, the horizontal parallax KMO, or
the semi-diameter of the earth as seen from the moon, follows at once.

The moon’s parallax can also be deduced from observations at a sin-
gle station on the earth, but not so simply. If she did not move among
the stars, it would be very easy, as all we should have to do would be to
compare her apparent right ascension and declination at different points
in her diurnal circle. Near the eastern horizon the parallax (always de-
pressing an object) increases her right ascension; at setting, vice versa.
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On the meridian the declination only is affected. But the motion of the
moon must be allowed for, as the observations to be compared are nec-
essarily separated by considerable intervals of time, and this complicates
the calculation.

A third, and a very accurate, method is by means of occultations of
stars, observed at widely separated points on the earth. These occul-
tations furnish the moon’s place with great accuracy, and so determine
the parallax very precisely; but the calculation is not very simple, as
the moon’s motion in this case also enters into it, since the observations
cannot be simultaneous.

240. The Distance of the Moon is continually changing
on account of the eccentricity of its orbit, varying all the way, ac-
cording to Neison, between 252,972 and 221,614 miles; the mean
distance being 238,840 miles, or 60.27 times the equatorial radius
of the earth. The mean parallax of the moon is 57" 2”, subject to
a similar percentage of change. This value of the parallax, it will
be noted, indicates that the earth, as seen from the moon, has a
diameter of nearly 2°.

Knowing the size of the moon’s orbit and the length of the
month, the velocity of her motion around the earth is easily cal-
culated. It comes out 2288 miles per hour, or about 3350 feet a
second.

Fi1G. 75.—Moon’s Path with Reference to the Sun.

241. Form of the Moon’s Orbit with Reference to the
Sun.—While the moon moves in a small elliptical orbit around the
earth, it also moves around the sun in company with the earth.
This common motion of the moon and earth, of course, does not
affect their relative motion; but to an observer outside the system
the moon’s motion around the earth would only be a very small
component of the moon’s movement as seen by him.

The distance of the moon from the earth, 239,000 miles, is very
small compared with that of the earth from the sun, 93,000,000

miles—being only about ﬁ part. The speed of the earth in its
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orbit around the sun is also more than thirty times faster than that
of the moon in its orbit around the earth, so that for the moon the
resulting path in space is one which is always concave towards the
sun, as shown in [Fig. 75 It is not like Figs. 76 and 77, as often
represented. If we represent the orbit of the earth by a circle with a
radius of 100 inches (8 feet 4 inches), the moon would only move out
and in a quarter of an inch, crossing the circumference twenty-five
times in going once around it.

TN TN

FiG. 76. Figc. 77.

False Representations of Moon’s Motions.

242. Diameter of the Moon.—The mean apparent diameter
of the moon is 31’ 7. This gives it a real diameter of 2163 miles
(plus or minus one mile), which equals 0.273 of the earth’s diameter.
Since the surfaces of globes are as the squares of their diameters,
and their volumes as their cubes, this makes the surface of the moon
0.0747 of the ecarth’s (between - and -;); and the volume 0.0204
of the earth’s volume (almost exactly 55); that is, it would take 49
balls each as large as the moon in bulk to make a ball of the size of

the earth.

243. Mass of the Moon.—This is about % of the earth’s
mass, different authorities giving the value from % to %. It is not
easy to determine it with accuracy. In fact, though the moon is the
nearest of all the heavenly bodies, it is more difficult to “weigh”
her than to weigh Neptune, although he is the most remote of the
planets.

There are four ways of approaching the problem: (1) (perhaps
easiest to understand) by finding the position of the common centre
of gravity of the earth and moon with reference to the centre of the
earth. Since it is this common centre of gravity of the two bodies
which describes around the sun the ellipse which we have called
the earth’s orbit, and since the earth and moon revolve around this
common centre of gravity once a month, it follows that this monthly
motion of the earth causes an alternate eastward and westward dis-
placement of the sun in the sky, which can be measured. At the
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time of the new and full moon this displacement is zero, the centre
of gravity being on the line which joins the earth and sun; but when
the moon is at quadrature (that is, 90° from the sun, as at the time
of half-moon), the sun is apparently displaced in the sky towards
the moon, as is evident from [Fig. 78 It will be about 6”.3 east of
its mean place at the first quarter of the moon, [Fig. 78| (B), and as
much west at the time of the last quarter, (A); (i.e., when
the angle MGS is 90°, the angle MC'S is always less than 90° by
6”.3, which is therefore the value of the angle C'SG). Now since the
parallax of the sun (which is the earth’s semi-diameter seen from
the sun—the angle C'SK) is about 8”.8, it follows that the distance
of the centre of gravity of the earth and moon from the centre of the
earth is the fraction % of the earth radius, or, about 2830 miles.
This is just about % of the distance from the earth to the moon,
whence we conclude that the mass of the earth is 80 times that of
the moon.

244. (2) A second method is by
comparing the moon’s actual period
with the computed period to which a sin-
gle particle at the moon’s distance from
the earth ought to have, according to the
known force of gravity of the earth, as
determined by pendulum experiments.
The explanation of this method cannot
be given until we have further studied
the motion of bodies under the law of
gravitation. It is not susceptible of great
accuracy.

(3) Still another method is by com-
paring the tides produced by the moon
with these produced by the sun. This }
gives us the mass of the moon as com-
pared with that of the sun; and the Fic. 78.
mass of the sun compared with that of ~Apparent Displacement of Sun
the earth being known, it gives us ulti- &t First and Third Quarters of
mately the mass of the moon compared the Month.
with that of the earth.

(4) The ratio of the moon’s mass to the sun’s can also be computed

from the nutation of the earth’s axis, (See [Chap. XIIL.)

. (A) E
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245. No other satellite is nearly as large as the moon, in comparison
with its primary planet. The earth and moon together, as seen from a
distant star, are really in many respects more like a double planet than
like a planet and satellite, as ordinarily proportioned to each other. At
a time, for instance, when Venus happens to be near the earth, at a
distance of about twenty-five millions of miles, the earth to her would
appear just about as bright as Venus at her best does to us; and the
moon would be about as bright as Sirius, at a distance of about half a
degree from the earth.

246. Density and Superficial Gravity of the Moon.—
mass _
, the density of the

volume
moon as compared with the earth is found from the fraction

Since the density of a body is equal to

0.125
0.0204

, or

&l=[|~

This makes the moon’s density 0.613 of the earth’s density, or
about 3% the density of water—somewhat above the average den-
sity of the rocks which compose the crust of the earth.

This small density of the moon is not surprising, nor at all inconsis-
tent with the belief that it once formed part of the same mass with the
earth, since if such were the case, the moon was probably formed by the
separation of the outer portions of that mass, which would be likely to
have a smaller specific gravity than the rest.

247. The superficial gravity, or the attraction of the moon
for bodies at its own surface, may be found by the equation

in which ¢’ signifies the superficial gravity of the moon, ¢ is the
force of gravity on the earth, while m and r are the mass and radius
of the moon as compared with those of the earth. This gives us

,_ 00125
9 =97 0.o0mar

or (very approximately) ¢’ equals one-sizth of g; that is, a body
which weighs six pounds on the earth’s surface would at the surface
of the moon weigh only one (in a spring balance). A man on the
moon could jump six times as high as he could on earth and could
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throw a stone six times as far. This is a fact to be remembered in
connection with the enormous scale of the surface-structure of the
moon. Volcanic forces, for instance, upon the moon would throw
the rejected materials to a vastly greater distance there than on the
earth.

248. Rotation of the Moon.—The moon ro-
tates on its axis once a month, in precisely the same O
time as that occupied by its revolution around the Liks N
earth. In the long run it therefore keeps the same
side always towards the earth: we see to-day pre-
cisely the same face and aspect of the moon as
Galileo did when he first looked at it with his tele- T
scope, and the same will continue to be the case for
thousands of years more, if not forever.

Fic. 79.

It is difficult for some to see why a motion of this sort should be
considered a rotation of the moon, since it is essentially like the motion
of a ball carried on a revolving crank. See Such a ball, they
say, “revolves around the shaft, but does not rotate on its own axis.” It
does rotate, however. The shaft being vertical and the crank horizontal,
suppose that a compass needle be substituted for the ball, as in [Fig. 80
The pivot turns underneath it as the crank whirls, but the compass
needle does not rotate, maintaining always its own direction with the
marked end north. On the other hand, if we mark one side of the ball (in
the preceding, we shall find the marked side presented successively
to every point of the compass as the crank revolves, so that the ball as
really turns on its own axis as if it were whirling upon a pin fastened to
a table. The ball has two distinct motions by virtue of its connection
with the crank: first, the motion of translation, which carries its centre
of gravity, like that of the compass needle, in a circle around the axis of
the shaft; secondly, an additional motion of rotation around a line drawn
through its centre of gravity parallel to the shaft.

248*. Definition of Rotation.—A
body “rotates” whenever a line drawn from its I'ELI ———ﬂ‘-————
centre of gravity outward, through any point | |
selected at random in its mass, describes a circle
in the heavens. In every rotating body, one such
line can be so drawn that the circle described
by it in the sky becomes infinitely small, This
is the azis of the body. Another set of points
can be found such that lines drawn from the centre of gravity outward

Fic. 80.
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through them describe a great circle in the sky 90° distant from the
point pierced by the axis, and these points constitute the equator of the
body.

249. Librations of the Moon.—1. Libration in Latitude. The
axis of revolution of the moon is not perpendicular to its orbit. It
makes a constant angle of about 88%O with the ecliptic, and the
moon’s equator is so placed that it is always edge-wise to the earth
when the moon is at her node, being maintained in that position
by an action of the earth, which produces a precessional motion of
the moon’s axis. The angle between the moon’s equator and the
plane of her orbit, therefore, is 1%°+ the inclination of the moon’s
orbit, which together make up an angle of a little more than 6%0;
but, as the inclination of the moon’s orbit to the ecliptic is con-
stantly varying slightly, this inclination of the moon’s axis to her
orbit also changes correspondingly. This inclination of the moon’s
axis produces changes in the aspect of the moon towards the earth
similar to these produced by the inclination of the earth’s axis to-
wards the ecliptic. At one time, just as the north pole of the earth
is turned towards the sun, so also the north pole of the moon is
tipped towards the earth at an angle of 6%0, and in the opposite
half of the moon’s orbit the south pole is similarly presented to us.
In consequence we alternately look over the northern and southern
portions of the moon’s disc.

The period of this libration is the time of the moon’s revolution from
node to node, called a nodical revolution. This is 27.21 days—about
2 hours and 38 minutes shorter than the sidereal revolution of the moon,
since the nodes always move westward, completing the circuit in about
19 years.

250. 2. Libration in Longitude. The moon’s orbit being ec-
centric, she moves faster when near perigee, and slower when near
apogee; half-way between perigee and apogee she is more than 6°
ahead of the position she would have if she had moved with the mean
angular velocity. Now the rotation is uniform. A point, therefore,
on the moon’s surface which is directed toward the earth at perigee
will not have revolved far enough to keep it directed toward the
earth when she is half-way (in time) between perigee and apogee,
as is evident from For in the quarter-month next follow-
ing the perigee, the moon will travel to a point M, considerably
more than half-way to apogee. But the point a will have made only
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one quarter-turn, which is not enough to bring it to the line M E.
We shall therefore see a little around the western edge. Similarly on
the other side of the orbit, half-way between apogee and perigee, we
shall look around the eastern edge to the same extent. At perigee
and apogee both, the libration is, of course, zero. The amount of
this libration is evidently at any moment just the same as that of
the so-called “equation of the centre,” which, it will be remembered,
is the difference between the mean and true anomalies of the moon
at any moment. Its maximum possible value is 7° 45'.

The period of this libration is
the time it takes the moon to go
around from perigee to perigee—
the so-called anomalistic revolution,
which is 27.555 days, about 5 hours
and 36 minutes longer than the sid-
ereal month, and 8 hours 14 minutes
longer than the moon’s nodical rev-
olution, which determines the libra-
tion in latitude.

The cause of the increased length
of the anomalistic revolution is of
course the fact that the line of apsides Fic. 81.— The Libration in
continually advances eastward, mak- Longitude.
ing one revolution every nine years.

251. 3. Diurnal Libration. This is strictly a libration not of
the moon, but of the observer; still, as far as the aspect of the
moon goes, the effect is precisely the same as if it were a true lunar
libration. The moon’s motions have reference to the earth’s centre.
We, on the surface of the earth, look down over the western edge of
the moon when it is rising, and over the eastern when it is setting, by
an amount which is equal to the semi-diameter of the earth as seen
from the moon; that is, about one degree (the moon’s parallax).

On the whole, taking all three librations into account, we see
considerably more than half the moon, the portion which never dis-
appears being about forty-one per cent of the moon’s surface, that
never visible also forty-one per cent, while that which is alternately
visible and invisible is eighteen per cent.

252. The agreement between the moon’s time of rotation and
of her orbital revolution cannot be accidental. It is probably due to
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the action of the earth on some slight protuberance on the moon’s
surface, analogous to a tidal wave. If the moon were ever plastic,
such a bulge must have been formed on the side of the moon next
the earth, and would serve as the handle by which the earth always
keeps the same face of the moon towards herself. This subject will
be resumed later.

Fia. 82.—Explanation of the Phases of the Moon.

253. The Phases of the Moon.—Since the moon is an
opaque globe, shining entirely by reflected light, we can see only
that hemisphere of her surface which happens to be illuminated,
and of course only that part of the illuminated hemisphere which
is at the time turned towards the earth. At new moon, when the
moon is between the earth and the sun, the dark side is towards
us. A week later, at the end of the first quarter, half of the illumi-
nated hemisphere is seen, and we have the half moon, just as we do
a week after the full. Between the new moon and the half moon,
during the first and last quarters of the lunation, we see less than
half of the illuminated portion, and then have the “crescent” phase.
See (in which the light is supposed to come from a point
far above the moon’s orbit). Between the half moon and the full,
during the second and third quarters of the lunation, we see more
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than half of the moon’s illuminated side, and have what is called
the “gibbous” phase.

Since the terminator or line which separates the dark portion of
the disc from the bright is always a semi-ellipse (being a semi-circle
viewed obliquely), the illuminated surface is always a figure made

up of a semi-circle plus or minus a semi-ellipse, as shown in [Fig. 83
A.

It is sometimes incorrectly attempted to repre-
sent the crescent form by a construction like [Fig. 83|
B (where a smaller circle is cut by a larger one). It
is to be noticed that ab, the line which joins the
cusps, is always perpendicular to the line directed
to the sun, and the horns are always turned away Fic. 83.
from the sun; so that the precise position in which
they will stand at any time is always predictable, and has nothing what-
soever to do with the weather. Artists are sometimes careless in the
manner in which they introduce the moon into landscapes. One occa-
sionally sees the moon near the horizon with the horns turned downwards,
a piece of drawing fit to go with Hogarth’s barrel which shows both its
heads at once.

254. Earth-Shine on the Moon.—Near the time of new moon
the whole disc of the satellite is easily visible, the portion on which
sunlight does not fall being illuminated by a pale ruddy light. This light
is earth-shine, the earth as seen from the moon being then nearly full; for
seen from the moon the earth shows all the phases that the moon does,
the earth’s phase in every case being exactly supplementary to that of
the moon as seen by us.

As the earth has a diameter nearly four times that of the moon,
the earth-shine at any phase would be about thirteen times as strong as
moonlight, if the reflective power of the earth’s surface were the same.
Probably, taking the clouds and snow into account, the earth’s surface on
the whole is rather more brilliant than the moon’s, so that near new moon
the earth-shine, by which the dark side of the moon is then illuminated,
is from fifteen to twenty times as strong as full moonlight. The ruddy
color is due to the fact that light sent to the moon from the earth has
twice penetrated our atmosphere and so has acquired the sunset tinge.

255. Physical Characteristics of the Moon.—1. Its Atmo-
sphere. The moon’s atmosphere, if it has any at all, is extremely
rare, probably not producing a barometric pressure to exceed % of

an inch of mercury, or % of the pressure at the earth’s surface.
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The evidence on this point is twofold.

(a) The telescopic appearance. The parts of the moon near the
edge of the disc, which, if there were any atmosphere, would be
seen through its greatest possible depth, are seen without the least
distortion: there is no haze, and all shadows are perfectly black.
There is no sensible twilight at the cusps of the moon; no evidences
of clouds or storms, or anything like atmospheric phenomena.

(b) The absence of refraction when the moon intervenes between
us and any more distant object. For instance, at an eclipse of the
sun there is no distortion of the sun’s limb where the moon cuts
it, nor any ring of light running out on the edge of the moon like
that which encircles the disc of Venus at the time of a transit. The
most striking evidence of this sort comes, however, from occulta-
tions of the stars. When the moon hides a star from sight, the
phenomenon, if it occurs at the moon’s dark edge, is an exceedingly
striking one. The star retains its full brightness in the field of the
telescope until all at once, without the least warning, it simply is
not there, the disappearance generally being absolutely instanta-
neous. Its reappearance is of the same sort, and still more startling.
Now if the moon had any perceptible atmosphere (or the star any
sensible diameter) the disappearance would be gradual. The star
would change color, become distorted, and fade away more or less
gradually.

The spectroscope adds its evidence in the same direction. There
is no modification of the spectrum of the star in any respect at the
time of its disappearance; and we may add that the spectrum of
moonlight is identical with that of sunlight pure and simple, there
being no traces of any effect whatever produced upon the sunlight
by its reflection from the moon, nor any signs of its having passed
through an atmosphere.

256. The time during which a star would be hidden behind
the moon would also be decreased by the refraction of any sensible
atmosphere, making the observed duration of an occultation less
than that computed from the known diameter of the moon and its
rate of motion. Certain Greenwich observations apparently show
a difference, amounting to about two seconds of time. This may
possibly be due in some part to the action of a real, but exceed-
ingly rare, lunar atmosphere; for if the whole phenomenon were due
simply to atmospheric action, it would indicate an atmosphere hav-
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ing a density about ﬁ of our own,—far within the limits which

were stated above. But the difference may be, and very probably
is, attributable, in part at least, to a slight error in the measured
diameter of the moon, due to irradiation: the diameter of a bright
object always appears a little larger than it really is. An error of
about 2" of this sort would explain the whole discrepancy, without
any need of help from an atmosphere.

257. What has become of the Moon’s Atmosphere.—if
the moon ever formed a part of the same mass as the earth, she must
once have had an atmosphere. There are a number of possible and more
or less probable hypotheses to account for its disappearance. It has been
surmised (1) that there may be great cavities left within the moon’s
mass by volcanic eruptions, and that the rocks themselves have been
transformed into a sort of pumice-stone structure, and that the air has
retired into these internal cavities.

(2) That the air has been absorbed by the inner lunar rocks in cooling.
A heated rock expels any gases that it may have absorbed; but if it
afterwards cools slowly, it reabsorbs them, and can take up a very great
quantity. The earth’s core is supposed to be now too intensely heated to
absorb much gas; but if it goes on cooling, it will absorb more and more,
and in time it may rob the surface of the earth of all its air. There are
still other hypotheses, which we can not take space even to mention.

258. Water on the Moon’s Surface.—Of course without an
atmosphere there can be no water, since the water would immedi-
ately evaporate and form an atmosphere of water vapor if there were
no air present. It is not impossible, however, or even improbable,
that solid water, that is, ice and snow, may exist on the moon’s sur-
face at a temperature too low for any sensible evaporation. There
are many things in the moon’s appearance that seem to indicate the
former existence of seas and oceans on her surface, and the same
hypotheses have been suggested to account for their disappearance
that were suggested in the case of the moon’s atmosphere. It may
be added also that many kinds of molten rock in crystallizing would
take up large quantities of water of crystallization, not merely ab-
sorbed as a sponge absorbs water, but chemically united with the
other constituents of the rock. In whatever way, however, it may
have come about, it is certain that now no substances that are
gaseous, or that can be evaporated at low temperatures, exist in
any quantity on the moon’s surface—at least, not on our side of
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the moon.

There have been speculations that on the other side—that celestial
country so near us and so absolutely concealed from us—there may be
air and water and abundant life; the idea being that our side of the
moon is a great table land many miles in elevation, while the other side
is a corresponding depression, like the valley of the Caspian Sea, only
vastly deeper. An insufficiently grounded conclusion of Hansen’s, that
the centre of gravity of the moon is some thirty miles farther from us
than its centre of figure, for a time gave color to the idea, but it is now
practically abandoned, Hansen’s conclusion having been shown to be
unwarranted by the facts.

259. The Moon’s Light.—As to quality it is simple sunlight,
showing a spectrum which, as has been said, is identical in every
detail with that of light coming directly from the sun. Its bright-
ness as compared with that of sunlight is difficult to measure accu-
rately, and different experimenters have found results for the ratio
between full moonlight and sunlight ranging all the way from s
(Bouguer) to grogs (Wollaston). The value now usually accepted

is that determined by Zollner, viz., mslm' According to this, if the
whole visible hemisphere were packed with full moons, we should

receive from it about one-eighth part of the light of the sun.

It is found, also, that the half moon does not give even nearly half
as much light as the full moon. The law which connects the phase of
the moon with the amount of light given at the time, is rather compli-
cated, but the gist of the matter is that at any time, except at the full,
the visible surface is more or less darkened by the shadows cast by the
irregularities of the surface. Zollner has calculated that an average angle
of 52° for these elevations and depressions would account for the law of
illuminations actually observed.

The average “albedo,” or reflecting power of the moon’s surface,
Zollner states as 0.174; that is, the moon’s surface reflects a little
more than one-sixth part of the light that falls upon it. This is about
the albedo of a rather light-colored sandstone, and agrees well with
the estimate of Sir John Herschel, who found the moon to be very
exactly of the same brightness as the rock of Table Mountain when
it was setting behind it, illuminated as were the rocks themselves
by the light of the rising sun. There are, however, great variations
in the brightness of different portions of the moon’s surface. Some
spots are nearly as white as snow or salt, and others as dark as
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slate.

260. Heat of the Moon.—For a long time it was impossible
to detect the moon’s heat. It is too feeble to be detected by the most
delicate mercurial thermometer even when concentrated by a large
lens. The first sensible effect was obtained by Melloni, in 1846, with
the then newly invented thermopile, by a series of observations from
the summit of Vesuvius. Since then several physicists have worked
upon the subject with more or less success, but the most recent
and reliable investigations are those of Lord Rosse and Professor
Langley. With modern apparatus there is no difficulty in detecting
the heat in the lunar radiations, but measurements are extremely
difficult and liable to error. A considerable percentage of the lunar
heat seems to be heat simply reflected (like light), while the rest,
perhaps three-fourths of the whole, is “obscure heat”; that is, heat
which has been first absorbed by the moon’s surface and then ra-
diated, like the heat from a brick surface that has been warmed by
sunshine. This is shown by the fact that a comparatively thin plate
of glass cuts off some 86 per cent of the heat received from the moon
in the same way that it does the heat of a stove, while the heat of
direct sunlight, or of an electric arc, would pass through the same
plate with very little diminution. The same thing appears also from
direct measurements upon the heat-spectrum of the moon made by
Langley with his bolometer, described further on. (Art. 343])

261. As to the temperature of the moon’s surface, it is difficult
to affirm much with certainty. On one hand, the lunar rocks are
exposed to the sun’s rays in a cloudless sky for fourteen days at
a time, so that if they were blanketed by air like our own rocks
they would certainly become intensely heated. A few years ago,
Lord Rosse inferred from his observations that the temperature of
the lunar surface rose at its maximum (about three days after full
moon) far above that of boiling water.

But his own later investigations and these of Langley throw great
doubt on this conclusion. There is no air-blanket at the moon’s
surface to prevent it from losing heat as fast as it receives it; and it
now seems rather more probable that the temperature never rises
above the freezing-point of water, as is the case on the highest of
our mountains, where there is perpetual ice, and the temperature
is always low even at noon. So far as we can judge, the condition of
things on the moon’s surface must correspond to an elevation many
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times higher than any mountain on the earth; for no terrestrial
mountain is so high that the density of the air at its summit is even
nearly as low as that of the densest supposable lunar atmosphere.

This idea, that the temperature is low, is borne out, also, by the
fact that the bolometer shows the presence, in the lunar radiations,
of a considerable quantity of heat having a wave-length greater than
that of the heat radiated from a block of ice.

At the end of the long lunar night of fourteen days the temper-
ature must fall appallingly low, certainly 200° below zero.

The whole amount of heat sent by the full moon to the earth is
estimated by Rosse as about one eighty-thousandth part of that sent
by the sun.

262. Lunar Influences on the Earth.—The moon’s attrac-
tion cooperates with that of the sun in producing tides, of which we
shall speak hereafter. There are also certain distinctly ascertained
disturbances of terrestrial magnetism connected with the approach
and recession of the moon at perigee and apogee; and this ends the
chapter of ascertained lunar influences.

The multitude of current beliefs as to the controlling influence of
the moon’s phases and changes over the weather and the various condi-
tions of life are mostly unfounded, and in the strict sense of the word
“superstitions,”—mere survivors from a past credulity.

It is quite certain that if there is any influence at all of the sort
it is extremely slight—so slight that it cannot be demonstrated with
certainty, although numerous investigations have been made expressly
for the purpose of detecting it. We have never been able to ascertain,
for instance, with certainty, whether it is warmer or not, or less cloudy
or not, at the time of the full moon. Different investigations have led to
contradictory results.

The frequency of the moon’s changes is so great that it is always easy
to find instances by which to verify a belief that changes of the moon
control conditions on the earth. A change of the moon necessarily occurs
about once a week, the interval from quarter to quarter being between
seven and eight days. All changes, of the weather for instance, must
therefore occur within three and three-fourths days of a change of the
moon, and fifty per cent of them ought to occur within forty-six hours
of a change, even if there were no causal connection whatever.

Now it requires only a very slight prepossession in favor of a belief in
the effectiveness of the moon’s changes to make one forget a few of the
weather changes that occur too far from the proper time. Coincidences
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enough can easily be found to justify a preéxisting belief.

THE MOON’S SURFACE.

263. Even to the naked eye the moon is a beautiful object,
diversified with darker and lighter markings which have given rise
to numerous popular superstitions. With a powerful telescope these
naked-eye markings mostly vanish, and are replaced by a countless
multitude of smaller details, which are interesting in the highest
degree. The moon on the whole, on account of this diversity of
detail, is the finest of all telescopic objects; especially to moderate-
sized instruments, say from six to ten inches in diameter, which
generally give a more pleasing view of our satellite than instruments
either larger or smaller.

264. How near the Tele-
scope brings the Moon.—An
instrument of this size, with mag-
nifying powers between 250 and
500, brings up the moon virtually
to a distance ranging from 1000
miles to 500; and since an object
a mile in diameter on the moon

subtends an angle of about 0”.86, FiG. 84.—A Normal Lunar Crater
(Nasmyth.)

with the higher powers of such an
instrument objects less than a mile in diameter become visible un-
der favorable atmospheric conditions. A long line or streak, even
less than a quarter of a mile across, could probably be seen. With
larger telescopes the power can now and then be carried at least
twice as high, and correspondingly smaller details made out. When
everything is at its best, the great Lick telescope of 30 inches aper-
ture, with a power of 2500 or so, may possibly reduce the virtual
distance of our satellite to about 100 miles for visual purposes. It is
evident that while with our telescopes we should be able to see such
objects as lakes, rivers, forests, and great cities, if they exist on the
moon, it will be hopeless to expect to distinguish single buildings, or
any of the ordinary operations and indications of life, if such there
are.

There are a few mountains on the earth from which a range of 100
miles is obtained in the landscape. Those who have seen such a landscape
know how little is to be made out with the naked eye at that distance.
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Still, the comparison is not quite fair, because in looking at a terrestrial
object a hundred miles away the line of vision passes through a dense
atmosphere, while in looking upward towards the moon it penetrates a
much less thickness of air.

265. The Moon’s Surface Structure.—The moon’s surface
for the most part is extremely uneven and broken, far more so than
that of the earth. The structure, however, is not like that of the
earth’s surface. On the earth the mountains are mostly in long
ranges, such as the Alps, the Andes, and Himalayas. On the moon
such mountain ranges are few in number, though they exist; but the
surface is pitted all over with great craters, resembling very closely
the volcanic craters on the earth’s surface, though on an immensely
greater scale. One of the largest craters upon the earth, if not the
largest, is the Aso San in Japan, about seven miles across. Many of
those on the moon are fifty and sixty miles in diameter, and some
are over 100 miles across, while smaller ones from a half-mile to
eight or ten miles in diameter are counted by the thousand.
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The normal lunar crater is nearly circular, surrounded by an
elevated ring of mountains which rise anywhere from 1000 to 20,000
feet above the surrounding country. Within the floor of the crater
the surface may be either above or below the outside level. Some
craters are deep, some filled nearly to the brim. In some cases the
surrounding mountain ring is entirely absent, and the crater is a
mere hole in the plain. In the centre of the crater there usually
rises a group of peaks, which attain about the same elevation as
the encircling ring, and these central peaks often show little holes
or craterlets in their summits.

In most cases the resemblance of these formations to terrestrial vol-
canic structures, like those exemplified by Vesuvius and others in the
surrounding region, makes it natural to assume that they had a similar
origin. This, however, is not absolutely certain, for there are consider-
able difficulties in the way, especially in the case of the great “Bulwark
Plains,” so called, which are so extensive that a person standing in the
centre could not see the summit of the surrounding ring at any point; and
yet no line of demarcation can be drawn between them and the smaller
craters. The series is continuous. Moreover, on the earth, volcanoes
necessarily require the action of air and water, which do not now exist
on the moon. It is obvious, therefore, that if these lunar craters are the
result of true volcanic eruptions, they must be fossil formations; for it is
quite certain that no evidence of existing volcanic activity has ever been
found. The moon’s surface appears to be absolutely quiescent—still in
death.

On some portions of the moon these craters stand very thickly.
Older craters have been encroached upon, or more or less completely
obliterated by the newer, and the whole surface is a chaos, of which
the counterpart is hardly to be found on the earth, even in the
roughest portions of the Alps. This is especially the case near the
moon’s south pole. It is noticeable that, as on the earth the newest
mountains are generally the highest, so on the moon the more newly
formed craters are generally deeper and more precipitous than the
older ones.

266. Lunar Nomenclature.—The great plains were called
by Galileo oceans or seas (Maria), and some of the smaller ones
marshes (Paludes) and lakes, for he supposed that the grayish sur-
faces visible to the naked eye, and conspicuous in a small telescope,
were covered with water. Thus we have the “Oceanus Procellarum,”
the “Mare Imbrium,” and a number of other “seas,” of which “Mare
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Fecunditatis,” “Mare Serenitatis,” and “Mare Tranquilitatis,” are

the most conspicuous. There are twelve of them in all, and eight or
nine Paludes, Lacus, and Sinus.

The ten mountain ranges on the moon are mostly named after
terrestrial mountains, as Caucasus, Alps, Apennines, though two or
three bear the names of astronomers, like Leibnitz, Dorfel, etc.
The conspicuous craters bear the names of the more eminent ancient
and mediaeval astronomers and philosophers, as Plato, Archimedes,
Tycho, Copernicus, Kepler, and Gassendi; while hundreds of smaller
and less conspicuous formations bear the names of more modern or
less noted astronomers.

The system seems to have originated with Riccioli in 1650, but most
of the names have been more recently assigned by the later map-makers,
the most eminent of whom have been the German astronomers Beer and
Maedler (who published their map in 1837), and Schmidt of Athens,
whose great map of the moon, on a scale seven feet in diameter, was
published by the Prussian government a few years ago. It is not at all
too much to say that our maps of the earth’s surface do not, on the
whole, compare in fulness and accuracy with our maps of the moon. Of
course this is not true of such countries as France and England, or others
that have been trigonometrically surveyed; but there are no such lucune
in our maps of the moon as exist in our maps of Asia and Africa, for
instance.

267. Other Lunar Forma-
tions.—The craters and moun-
tains are not the only interest-
ing formations on the moon’s sur-
face. There are many deep, nar-
row, crooked valleys that go by the
name of “rills” (German Rillen),
some of which may once have been
watercourses. Then there are nu-
merous “clefts,” half a mile or so
wide and of unknown depth, run-
ning in some cases several hundred
miles, straight through mountain
and valley, without any apparent
regard for the accidents of the sur- g0 86 Archimedes and the
face. They seem to be deep cracks Apennines (Nasmyth).
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in the crust of our satellite. Several of them are shown in [Fig. 86
Most curious and interesting of all are the light-colored streaks or
“rays” which radiate from certain of the craters, extending in some
cases a distance of several hundred miles. They are usually from five
to ten miles wide, and neither elevated nor depressed to any extent
with reference to the general surface. They pass across mountain
and valley, and sometimes through craters without any change in
width or color. We do not know whether they are like the so-called
“trap-dykes” on the earth,—fissures which have been filled up from
below with some light-colored material,—or whether they are mere
surface markings. No satisfactory explanation has ever been given.

The most remarkable system of “rays” of this kind is the one
connected with the great crater Tycho, not very far from the moon’s
south pole. They are not very conspicuous until within a few days
of full moon, but at that time they, and the crater from which they
radiate, constitute by far the most striking feature of the whole
lunar landscape.

268. Changes on the Moon.
—It is certain that there are no
conspicuous changes.  The ob-
server has before him no such ever-
varying vision as he would have in
looking toward the earth,—mno fly-
ing clouds, no alternations of sea-
sons with the transformation of the
snowy wastes to green fields, nor
any considerable apparent move-
ment of objects on the disc. The
sun rises on them slowly as they
come one after the other to the ter-
minator, and sets as slowly. At the
same time it is confidently main-
tained by many observers that here
and there changes are still going on in the details of the surface.
Others as stoutly dispute it.

Fia. 87.—Gassendi (Nasmyth).

269. Probably the most notable and best advocated instance of
such a change is that of the little crater Linné, in the Mare Serenitatis.
It was observed by Schroeter very early in the century, and is figured
and described by Beer and Maedler as being about five and a half or
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six miles in diameter, quite deep and very bright. In 1866 Schmidt, who
had several times observed it before, announced that it had disappeared.
A few months later it was visible again, and there were many reported
changes in its appearance during the next year or two. There is no
question that it does not now at all agree in conspicuousness and size
with the representation of Beer and Maedler, for it is at present, and
has been for several years, only a minute dark spot, with a whitish spot
surrounding it. Astronomers would feel more confident that this was a
case of real change were it not that Schroeter’s earlier picture much more
resembles the present appearance than does that of Beer and Maedler.
As the latter observers worked with rather a small telescope, and had no
reason for taking any special pains in the delineation of this particular
object, the evidence is less conclusive than it might seem at first. The
change, however, if real, was certainly as great as in the instance of
Krakatao, the great volcano whose eruption in 1883 filled the earth’s
atmosphere with smoke and vapor for more than two years, and caused
the “twilight conflagrations” of the sky. The phenomenon in the case
of Linné, if real, was probably a falling in of the walls of the crater,
exposing fresh unweathered surfaces.

The reason why it is so difficult to be sure of changes lies in the great
variations in the appearance of a lunar object under the varying illumi-
nation. To insure certainty in such delicate observations, comparisons
must be made between the appearance seen at precisely the same phase
of the moon, with telescopes (and eyes too) of equal power; and under
substantially the same conditions otherwise, such as the height of the
moon above the horizon, the clearness and steadiness of the air, etc. It
is of course very difficult to secure such identity of conditions.

270. Measurements of Heights of
Lunar Mountains.—When the termina-
tor approaches a lunar mountain, the top of
the mountain catches the sunlight first, and
appears as a star entirely detached from the
rest of the illuminated portion, like the little
bright spots opposite a and b in [Fig. 88 As
time passes, the bright spot becomes larger
as the light extends lower down the moun-
tain side, until the terminator reaches and FiG. 88.
passes it.

If now we measure the apparent distance, AD or a, [Fig. 89 from

the peak to the terminator at the moment when it first appears like
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a star, it is easy to compute AB, and from this, the height of the
mountain.

In the angle S’C'N very approximately the moon’s “elonga-
tion” at the time of observation, since the line from the earth to the sun

is nearly parallel to S’C' (the moon’s distance being only about ﬁ of

the sun’s). Now the angle BAD = GBE" = 90° — S’C'N, so that AB,
or b, = AD (or a)+sin S’CN. Knowing b, and the radius of the moon
r, we get

(r+h)? =12+
in which A is the height of the mountain, and b is the distance AB. From
this equation we find

h=+\r2+0b2—r,

or (very nearly) h=35—.

If, for instance, b were 60 miles,

3600
h(in miles) = 3% 1081 " 1.664 miles = 8845 feet.

Since the terminator is very
ragged, it is sometimes best to
measure from the mountain top ﬁ”
clear across to the edge of the D

)
S

N
by

moon, as indicated by the lit- § > RS

tle arrows in [Fig. 88l = The <—+Totnesun / .

position of the theoretical ter- 8

minator (the terminator as it - /Y

would be if the moon were a

smooth sphere) is known from A

the moon’s age, so that AB can

be deduced by measuring from Fia. 89.

the limb as well as from the ter- Measurement of the Height of a Lunar
Mountain.

minator.

The height of a mountain can also be ascertained by measur-
ing the length of its shadow in cases where the shadow falls on a
reasonably level surface. A few of the lunar mountains reach the
height of 22,000 or 23,000 feet, but there are none which attain the
elevation of the very highest terrestrial mountains. Heights ranging
from 10,000 to 20,000 feet are common.



THE MOON. 176

271. The Best Time to look at the Moon with a Tele-
scope.—The moon when full is not so satisfactory an object as when
near the half, because at the full moon there are no shadows, so that at
that time the “relief” of the surface structure is entirely lost. Certain
features, however, as has been before mentioned, are then best seen, as,
for instance, the streaks or rays. Generally, any particular mountain,
crater, rill, or cleft, is best studied when it is just on or very near the
terminator, that is, at the time when the sun is rising or setting near
it, because then the shadows are longest. The best general view of the
moon is that obtained a few days after the half moon, when Copernicus
and Tycho are both near the terminator, and Plato is still near enough
to it to show very well.

272. Photographs of the Moon.—A great deal of attention
has been paid to this subject, and some fine results have been reached.
The earliest success was that of Bond in 1850, with the old daguerreo-
type process; then followed the work of De la Rue in England, and of
Dr. Henry Draper, and especially of Mr. Rutherfurd in this country.
Rutherfurd’s pictures have remained absolutely unrivalled until very re-
cently.

To these older experimenters the moon’s motion offered a great dif-
ficulty, but now that with the sensitive plates at present used, a fraction
of a second is a sufficient exposure, that difficulty has disappeared, and
the plates which have recently been taken at Cambridge, Mass., are far
in advance even of Rutherfurd’s, showing such craters as Copernicus or
Ptolemy with a diameter of two inches, on a scale larger than that of
Schmidt’s map. The Lick Observatory has also taken up the work, and
is making admirable pictures.
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CHAPTER VIIIL

THE SUN: DISTANCE AND DIMENSIONS.—MASS AND DEN-
SITY.—ROTATION.—STUDY OF THE SURFACE: GENERAL
VIEWS AS TO THE SUN’S CONSTITUTION.—SUN SPOTS:
THEIR APPEARANCE, NATURE, DISTRIBUTION, AND
PERIODICITY.—THE SPECTROSCOPE AND THE SOLAR
SPECTRUM.—CHEMICAL ELEMENTS RECOGNIZED IN
THE SUN.—THE CHROMOSPHERE AND PROMINENCES.—
THE CORONA.

273. THE SUN is simply a star; a hot, self-luminous globe of
enormous magnitude as compared with the earth and the moon,
though probably only of medium size among its stellar compeers.
But to the earth and the other planets which circle around it, it
is the grandest of all physical objects. Its attraction confines its
planets to their orbits and controls their motions, and its rays sup-
ply the energy which maintains every form of activity upon their
surfaces and makes them habitable.

274. Its Distance and Dimensions.—Its distance is deter-
mined by finding its horizontal parallax; that is, the semi-diameter
of the earth as seen from the sun. The mean value of this parallax
is probably very near 8”.8.' plus or minus 0”.03.

We reserve to a separate the discussion of the methods
by which this most fundamental and important of all astronomical
data has been ascertained, merely remarking here that the problem
is one of extreme practical difficulty, though the principles involved
are simple enough.

'In the American Ephemeris the value deduced by Newcomb in 1867 is
used, viz., 8”.85. The British “Nautical Almanack” uses the same value, and
the French the value deduced by Leverrier a little earlier, 8”.86; but more
recent observations seem to show that this value is a little too large, and that
the number stated, 8.8, is more probably correct. The difference is of no
importance for almanac purposes.
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Assuming the parallax at 8”.8, the mean distance of the sun
(putting r for the earth’s radius) equals

r+sin8”.8 = 23,439 x r.

With Clarke’s value of r , this gives 149,500000 kilome-
ters, or 92,897,000 miles; which, however, is uncertain by at least
200,000 miles, and is wvariable, also, to the extent of about three
million miles on account of the eccentricity of the earth’s orbit, the
earth being nearer the sun in December than in June.

275. This distance is so much greater than any with which we
have to do on the earth that it is possible to reach a conception of
it only by illustrations of some sort. Perhaps the simplest is that
drawn from the motion of a railway train. Such a train going 1000
miles a day (nearly forty-two miles an hour, and faster than the
Chicago Limited on the Pennsylvania Railroad) would take 254%
years to make the journey.

If sound were transmitted through interplanetary space, and at
the same rate as through our own atmosphere, it would make the
passage in about fourteen years; i.e., an explosion on the sun would
be heard by us fourteen years after it actually occurred. A cannon-
ball moving unretarded, at the rate of 1700 feet per second, would
travel the distance in nine years. Light does it in 499 seconds.

276. Diameter.—The sun’s mean apparent diameter is
32" 04” +2”. Since at the sun one second equals 450.36 miles, its
diameter equals 866,500 miles, or 109% times the diameter of the
earth. It is quite possible that this diameter is variable to the extent
of a few hundred miles, since, as will appear hereafter, the sun (at
least the surface which we see) is not solid.

Representing the sun by a globe two feet in diameter, the earth
would be % of an inch in diameter,—the size of a very small pea,
or a “22-calibre” round pellet. Its distance from the sun on that
scale would be just about 220 feet, and the nearest star (still on the
same scale) would be eight thousand miles away, at the antipodes.

If we were to place the earth in the centre of the sun, supposing
it to be hollowed out, the sun’s surface would be 433,000 miles away
from us. Since the distance of the moon is only about 239,000 miles,
it would be only a little more than half-way out from the earth to
the inner surface of the hollow globe, which would thus form a very

good background for the study of the lunar motions.
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It is perhaps worth noticing, as a help to memory, that the sun’s
diameter exceeds the earth’s just about as many times as it is itself
exceeded by the radius of the earth’s orbit; or, in other words, the sun’s
diameter is nearly a mean proportional between the earth’s distance from
the sun and the earth’s diameter, 110 being the common ratio.

Sun’s Surface

Sun Spot

F1Gc. 90.—Dimensions of the Sun compared with the Moon’s Orbit.

277. Surface and Volume.—Since the surfaces of globes are
proportional to the squares of their radii, the surface of the sun
exceeds that of the earth in the ratio of (109.5)? to 1; that is, its
surface is about 12,000 times the surface of the earth.

The volumes of spheres are proportional to the cubes of their
radii; hence the sun’s volume is (109.5)3, or 1,300000 times that of
the earth.

278. The Sun’s Mass.—The mass of the sun is very nearly
three hundred and thirty-two thousand times that of the earth, sub-
ject to a probable error of at least one per cent. There are various
ways of getting at this result. For our purpose here, perhaps the
most convenient is by comparing the earth’s attraction for bodies
at her surface (as determined by pendulum experiments) with the
attraction of the sun for the earth,—the central force which keeps
her in her orbit. Put f for this force (measured, like gravity, by the
velocity it generates in one second), g for the force of gravity (32 feet
2 inches per second), r the earth’s radius, R the sun’s distance, and
let £ and S be the masses of the earth and sun respectively. Then,



THE SUN. 180

by the law of gravitation, we have the proportion

.Sk (D (RY
R
Now, = 23,440 (nearly).

Its square equals 549,433,600. g = 386 inches. To find f we have
from Mechanics (Physics, p. 62),
V2

f== (b)
this being the expression for the “central force” in the case of a
body revolving in a circle. (We may neglect the eccentricity of the
earth’s orbit in a merely approximate treatment of the problem.)
V' is the orbital velocity of the earth, which is found by dividing
the circumference of the orbit, 2w R, by T', the number of seconds

in a sidereal year. This velocity comes out 18.495 miles per second.
Putting this into formula (b), we get f = 0.2333 inches,

1
so that 5 = 0.0006044 = Teed (nearly);

1
whence S=Fx Tood x 519,433,600; or S equals 332,000.

We may note in passing that half of f expresses the distance by
which the earth falls towards the sun every second, just as half g
is the distance a body at the earth’s surface falls in a second. This
quantity (0.116 inch), a trifle more than a ninth of an inch, is the
amount by which the earth’s orbit deviates from a straight line in
a second. In travelling eighteen and one-half miles the deflection is
only one-ninth of an inch.

2R
278%*. By substituting WT for V in equation (b), we get

472 R
f=—5
T

and putting this value f into equation (@) and reducing, we obtain

(¢)

or, since
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(p being the sun’s horizontal parallax), we have finally

()0

It will be noticed that in this expression the cube of the parallax
appears, and this is the reason why an uncertainty of one per cent in p
involves an uncertainty of three per cent in S.

In obtaining the mass of the sun it will be seen that we require as
data, T, the length of the sidereal year in seconds; the value of gravity, ¢
(which is derived from pendulum experiments); the radius of the earth, r
(deduced from geodetic surveys); and finally (and most difficult to get),
tgle sun’s parallax, p, or else, what comes to the same thing, the ratio

E.

279. The Sun’s Density.—This density! as compared with
that of the earth is found by simply dividing its mass by its volume
(both as compared with the earth); that is, it equals the fraction

332000
1300 000

a little more than a quarter of the earth’s density. To get its “specific
gravity” (i.e., density as compared with water), we must multiply
this by 5.58, the earth’s mean specific gravity. This gives 1.41; that
is, the sun’s mean density is not 1% times that of water,—a most
significant result as bearing on its physical condition.

= 0.255,

280. Superficial Gravity.—This is found by dividing its mass
by the square of its radius; that is,

332000

(1091)%’

which equals 27.6. A body weighing one pound on the earth’s sur-
face would there weigh 27.6 Ibs. A body would fall 444 feet in a
second, instead of sixteen feet, as here.

IThe determination of the sun’s density does not mecessarily involve its
parallax. Put p for the sun’s radius, and Ds for its density: also let De be
the earth’s mean density. Substitute in equation (c¢), and we have %Wp3Ds =

43 r\ ( R\’ r\ (R\® p .
smroDe | — — ] , whence Ds = De | — — ] . But <—) = sinX, X
g r g P R
1

being the sun’s (angular) semi-diameter. Hence, finally, Ds = De r —_—
g) sin®¥®
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281. The Sun’s Rotation.—The sun’s surface often shows
spots upon it, which pass across the disc from east to west. These
are evidently attached to its surface, and not bodies circling around
the sun at a distance above it, as was imagined by some early as-
tronomers, because, as Galileo early demonstrated, they continue in
sight just as long as the time during which they are invisible; which
would not be the case if they were at any considerable elevation.

Period of Rotation.—The average time occupied by a spot in
passing around the sun and returning to the same position again
is 27.25 days,—average because different spots show considerable
differences in this respect. This interval, however, is not the true
time of solar rotation, but the synodic, since the earth advances in
the interval of a revolution so that the sun has to turn on its axis
a little farther each time to bring the spot again into conjunction
with the earth. The equation by which the true period is deduced
from the synodic is the same as in the case of the moon (Art. 232)),
viz.:

1 1 1

T ES
T being the true period of the sun’s rotation, F the length of the
year, and S the observed synodic rotation;

" 11 N 1
whenee T~ 2725 ' 365.25°
which gives T' = 25%.35. Different observers get slightly different

results. Carrington finds 254.38; Spoerer, 254.23.

282. Position of the Sun’s Axis.—On watching the spots
with care as they cross the disc, it appears that they usually describe
paths more or less oval, showing that the sun’s axis is inclined to
the ecliptic. Twice a year, however, the paths become straight, at
the times when the earth is in the plane of the sun’s rotation. These
dates are about June 3 and Dec. 5.

The ascending node of the sun’s equator is in celestial longitude
73°40" (Carrington), and the inclination of its equator to the plane of
the ecliptic is 7° 15’. Its inclination to the plane of the terrestrial equator
is 26° 25'. The position of the point in the sky towards which the sun’s
pole is directed is in right ascension 18" 44™ declination +64°, almost
exactly half-way between the bright star a Lyrse and the Pole Star.
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283. Peculiar Law of the Sun’s Rotation.— Fquatorial Ac-
celeration. The earth rotates as a whole, every point on its surface
making its diurnal revolution in the same time; so also with the
moon and with the planet Mars. Of course it is necessarily so with
any solid globe. But this is not the case with the sun. It was no-
ticed quite early that the different spots give different results for the
rotation period, but the researches of Carrington about thirty years
ago first brought out the fact that the differences follow a regular
law, showing that at the solar equator the time of rotation is less
than on either side of it. Thus spots near the sun’s equator give
T = 25 days; at solar latitude 20°, T' = 25.75 days; at solar latitude
30°, T' = 26.5 days; at solar latitude 40°, T' = 27 days. The time
of rotation in latitude 40° is fully two days longer than at the solar
equator; but we are unable to follow the law further towards the
poles, because the spots are rarely found beyond the parallels of
45° on each side of the equator, and there are no well-defined mark-
ings between this point and the poles by which we can accurately
determine the motion.

284. Various formulse have been proposed to represent this law of
rotation. Carrington gives for the daily motion of a spot X = 865" —
165" x sini [, | being the solar latitude of the spot. Faye, from the same
observations, considering that the exponent % could have no physical
justification, deduced X = 862’ — 186 x sin?[, which agrees almost as
well with the observations. Still other formulae have been deduced by
Spoerer, Zollner, and Tisserand, all giving substantially the same results.

The law, in any case, is simply empirical; that is, it is deduced
from the observations, without being based upon any satisfactory
physical explanation, for no such explanation of this strange equa-
torial acceleration has yet been found. Probably it has its origin
somehow in the effects produced by the outpour of heat from the
sun’s surface; still, just how such a result should follow in the case
of a cooling globe, of which the particles are free to move among
each other, is not yet evident.

285. It is possible that the spots move on the surface of the sun,
changing their places just as do clouds or railroad trains upon the sur-
face of the earth, so that their motion does not represent the sun’s true
rotation. This however, as we shall see later, is hardly probable, and
if it were the case, it would still be no less difficult to account for this
systematic difference in their behavior at the solar equator and in the
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higher latitudes.

It has been suggested that the spots may be
due to the fall of matter from a considerable el-
evation above the sun’s surface, matter which
has remained at that elevation for some time,
and acquired a corresponding velocity of rota-
tion due to that elevation. It can be shown that
if the matter forming the spots had thus fallen
from an elevation of about 20,000 miles, it would
account for their apparent acceleration. Matter
so falling would have an apparent eastward mo-
tion, just as do bodies on the earth when falling from the summit of
a tower . From this point of view it is very interesting to
inquire whether the minuter markings upon the sun’s surface, such as
the “granules,” to be spoken of very soon, do, or do not, possess the
same rate of motion as the spots. There is no decisive observational®
evidence at present that they do not. But the subject is an extremely
difficult one; and yet important, because the solution of the problem of
the sun’s equatorial acceleration will probably throw much light upon its
real constitution.

Fic. 91.—Telescope
and Screen.

286. The Phenomena of the Sun’s Surface.—In order to
study the sun with the telescope it is necessary to be provided with
some special forms of apparatus. Its heat and light are so intense
that it is impossible to look directly at it, as we do at the moon.
A very convenient method of exhibiting the sun to a number of
persons at once is simply to attach to the telescope a frame carrying
a screen of white paper at a distance of a foot or more from the eye-
piece, as shown in [Fig. 911 On pointing the instrument to the sun
and properly adjusting the focus, a distinct image is formed on the
screen, which shows the main features very fairly. It is, however,
much more satisfactory to look at it directly, with a proper eye-

IMr. Crew has recently made at Baltimore, under the direction of Professor
Rowland, an extensive series of observations upon the displacement of the lines
of the spectrum at the eastern and western limbs of the sun. This displacement,
which is very slight, is due, according to Doppler’s principle (Art. 321, to the
rotation of the sun; and Mr. Crew’s results, so far as they can be considered
decisive, go to show that the absorbing layer of gases by which the Fraunhofer
lines are formed does not behave like the sun spots, but is slightly retarded at the
sun’s equator. The observations are so delicate, however, that the conclusion,
though made very probable, can hardly be considered to be absolutely proved
beyond question.
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piece. With a small telescope, not more than two and a half or
three inches in diameter, a mere dark glass between the eye-piece
and the eye can be used, but this dark glass soon becomes very hot,
and is apt to crack. With larger instruments, it is necessary to use
eye-pieces especially designed for the purpose and known as solar
eye-pieces or helioscopes.

The simplest of them, and a very good one

for ordinary purposes, is one known as Her- m
schel’s, in which the sun’s rays are reflected

at right angles by a plane of unsilvered glass

(Fig. 92). This reflector is made either of a i

prismatic form or concave, in order that the re- : |
flection from the back surface may not interfere 4
with that from the front. About nine-tenths of ~—————"— L

the light passes through this reflector, and is
allowed to pass out uselessly through the open
end of the tube. The remaining tenth is sent F1a. 92.—Herschel
through the eye-piece, and though still too in- Eye-piece.

tense for the eye to endure, it requires only a

comparatively thin shade of neutral-tinted glass to reduce it sufficiently,
and in this case the shade does not become uncomfortably heated. It
is well to have the shade-glass made wedge-shaped,—thinner at one end
than at the other—so that one can choose the particular thickness which
is best adapted to the magnifying power employed.

287. The polarizing eye-pieces are still better when well made. In
these the light is reflected twice at plane surfaces of glass at the “angle of
polarization” (Physics, p. 480), and is then received on a second pair of
reflectors of black glass. When the upper pair of reflectors is in either of
the two positions shown in [Fig. 93] a strong beam of light is received at
C,—too strong for the eye to bear, although more than ninety per cent
of it has already been rejected; but by simply turning the box which
carries the upper reflectors one-quarter of a revolution around the line
BB’ as an axis, the light may be wholly extinguished; and any desired
gradation may be obtained by setting it at the proper angle, without the
use of a shade-glass.

288. It may be asked why it will not answer merely to “cap”
the object-glass, and so cut off part of the light, instead of rejecting
it after it has once been allowed to enter the telescope. It is because

of the fact, mentioned in [Article 43| that the smaller the object-lens
of the telescope, the larger the image it makes of a luminous point,
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or the wider its image of a sharp line. To cut down the aperture,
therefore, is to sacrifice the definition of delicate details. With a low
power there is no objection to reducing the amount of heat admitted
into the telescope tube in that way, but with the higher powers the
whole aperture should always be used.

289. Photography.—In the study
of the sun’s surface photography is for
some purposes very advantageous and B’
much used. The instrument must have

a special object-glass (Article 42f), with L

an apparatus for the quick exposure ,," //
of plates. Such instruments are called /7
photo-heliographs, and with them pho- AV

tographs of the sun are made daily at
numerous observatories. The neces-
sary exposure varies from ﬁ to % of
a second, in different cases. The pic-
tures made by these instruments are
usually from two inches up to eight or
ten inches in diameter, and some of
Janssen’s, made at Meudon, bear en-
larging up to forty inches in diameter.
Photographs have the advantage of freedom from prejudice and pre-
possession on the part of the observer; but they take no advantage
of the instants of fine seeing. They represent the surface as it hap-
pened to be at the moment when the plate was uncovered.

Fiac. 93.—Polarizing
Helioscope.

290. The study of the sun has become so important from a scientific
point of view that several observatories have recently been established
mainly for that purpose, though most of them connect with it that of
other topics in astronomical physics. The two most important of these
solar or astro-physical observatories, are the observatory at Meudon and
the so-called “Sonnenwarte” at Potsdam. There ought to be one in this
country.

291. General Views.—Before passing to a discussion of the
details of the different solar phenomena, it will be well to give a
very brief summary of the objects and topics to be considered.

1. The photosphere; i.e., the luminous surface of the sun directly
visible to our telescopes. It is probably a sheet of luminous clouds
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formed by condensation into little drops and crystals (like the water-
drops and ice-crystals in our terrestrial clouds) of certain substances
which within the central mass of the sun exist in a gaseous form,
but are cooled at its surface below the temperature necessary for
their condensation; perhaps such substances as carbon, boron, and
silicon. The granules, faculae, and spots are all phenomena in this
photosphere.

2. The so-called “reversing layer” is a stratum of unknown thick-
ness, but probably shallow, just above the photosphere, containing
the vapors of many of the familiar terrestrial elements; of which
the presence, and to some extent their physical condition, can be
investigated by means of the spectroscope.

3. Above the photosphere, in-
terpenetrating the atmosphere of
vapors just spoken of, and per-
haps indistinguishable from it, is
an envelope of permanent gases;
that is, gases which, under the
solar conditions, cannot be con-
densed into clouds of solid or lig-
uid particles. Among them hy-
drogen is most conspicuous. This
envelope is the so-called Chromo-
sphere; and from it the promi-
nences of various kinds rise, some-
times to the height of hundreds of
thousands of miles. These beau-
tiful objects are best seen at total
eclipses of the sun, but to a certain
extent they can also be studied at
any time by the help of a spectro-
scope. FiG. 94.

4. Higher yet rises the myste- Constitution of the Sun. From “The
rious Corona, of material still less Sun,” by permission of the

Publishers.
dense, and so far observable only
during total eclipses of the sun.

Fig. 94 shows the relative positions of these different elements
of the solar constitution.
5. A fifth subject deals with the measurement of the sun’s light
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and the relative brightness of different parts of the solar surface.

6. Another most interesting and important topic relates to the
amount of heat radiated by the sun,—the sun’s probable temperature
and the mechanism by which its heat-supply is maintained.

Fic. 95.
The Great Sun Spot of September, 1870, and the Structure of the
Photosphere. From a Drawing by Professor Langley. From “The New
Astronomy,” by permission of the Publishers.

292. The Photosphere.—The sun’s visible surface is called
the photosphere, and when studied under favorable atmospheric
conditions, with rather a low magnifying power, it looks like rough
drawing-paper. With higher powers it is seen to be, as shown in
Fig. 95, made up of a comparatively darkish background sprinkled
over with grains, or “nodules,” as Herschel called them, of some-
thing much more brilliant,—like snow-flakes on gray cloth, accord-
ing to Langley. These are from 400 to 600 miles across, and in the
finest seeing are themselves resolved into more minute “granules.”
For the most part, these nodules are about as broad as they are
long, though of irregular form; but here and there, especially in the
neighborhood of the spots, they are drawn out into long streaks.
Nasmyth seems first to have observed this structure, and called the
filaments “willow leaves.” Secchi called them “rice grains.” Accord-
ing to Huggins they were “dots”; and there was for a long time a



THE SUN. 189

pretty lively controversy as to their true form. Their shape, how-
ever, unquestionably varies very much in different parts of the sur-
face and under different circumstances. They are probably luminous
clouds floating in a less luminous atmosphere.

Near the edge the photosphere appears generally much less bril-
liant; but certain bright streaks called “faculee” (from faz, a torch),
which though visible are not very obvious at points further from
the limb, become there conspicuous. These facule are elevations,—
masses of the same material as the rest of the photosphere but el-
evated above the general level and intensified in brightness. When
one of them passes off the edge of the sun, it is sometimes seen as a
little projection. They are most abundant near the sun-spots, and
they are more conspicuous near the edge of the disc, as shown in
because the sun’s surface is overlaid by a gaseous atmo-
sphere which absorbs more of the light there than it does near the
centre, and these faculae push up through it like mountains.

Fi1c. 96.—Facule at Edge of the Sun. (De La Rue.)

293. The Sun Spots.—Whenever these are present upon the
sun’s surface, they are the most conspicuous objects to be seen upon
it. The appearance of a normal sun spot, fully formed and
not yet beginning to break up, is that of a dark central “umbra,”
more or less nearly circular, with a fringing “penumbra,” composed
of filaments directed radially. The umbra itself is not uniformly
dark throughout, but is overlaid with filmy clouds which require
a good telescope and helioscope to make them visible. Usually,
also, in the umbra there are several round and very black spots,
which are sometimes called “nucleoli,” but are often referred to us
“Dawes’ holes,” after the name of their first discoverer. But while
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this is the appearance of what may be taken as a normal spot, very
few are strictly normal. Most of them are more or less irregular in
form. They are often gathered in groups with a common penumbra,
and partly covered by brilliant “bridges” extending across from the
outside photosphere. Often the umbra is out of the centre of the
penumbra, or has a penumbra only on one side, and the penumbral
filaments, instead of being strictly radial, are frequently distorted in
every conceivable way. In fact, the normal spots form a very small
proportion of the whole number.

F1a. 97.—A Normal Sun Spot. (Secchi; modified.)

The darkest portions of the umbra are dark only by contrast.
Photometric observations (by Langley) show that even the nucleus
gives at least one per cent as much light as a corresponding area of
the photosphere; that is to say, as we shall see hereafter, the darkest
portion of a sun spot is brighter than a calcium light.

294. The spots are unquestionably cavities or depressions in
the photosphere, filled with gases and vapors which are cooler than
the surrounding portions, and therefore absorb a considerable pro-
portion of light. The fact that they are cavities is shown by the
change in the appearance of a spot as it approaches the edge of the
disc. When a normal spot is near the centre of the disc, the nucleus
is nearly central. As it approaches the edge, the penumbra becomes
wider on the outer edge and narrower on the inner, and just before
the spot disappears around the limb of the sun, the penumbra on
the inner edge entirely disappears,—the appearance being precisely
such as would be shown by a saucer-shaped cavity in the surface of
a globe, the bottom of the cavity being painted black to represent
the umbra, and the sloping sides gray for the penumbra. [Fig. 98
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represents the phenomena in a schematic way. Observations upon a
single spot would hardly be sufficient to substantiate this, because
the spots are so irregular in their form; but by observing the be-
havior of several hundred of them the truth comes out quite clearly.
Occasionally, when a very large spot passes off the sun’s limb, the
depression can be seen with the telescope.

F1G. 98.—Sun Spots as Cavities.

The fact was first discovered by Wilson of Glasgow something
more than a hundred years ago. Previously it had very commonly
been supposed that the spots were elevated above the general sur-
face of the sun, and the idea still survives in certain quarters, though
certainly incorrect.

295. The penumbra is usually composed of “thatch-straws,” or
long drawn-out granules of photospheric matter, which, as has been
said, converge in a general way towards the centre of the spot. At
the inner edge the penumbra, from the convergence of these fila-
ments, is usually brighter than the outer. The inner ends of the
filaments are generally club-formed; but sometimes they are drawn
out into fine points, which seem to curve downward into the umbra
like the rushes over a pool of water. The outer edge of the penumbra
is usually pretty definite, and the penumbra there is darker. Around
the spot the photosphere is much disturbed and elevated into fac-
ulee, which sometimes radiate outward from the spot like streams
of lava from a crater, though, of course, they are really nothing of
the sort.

296. Dimensions of Sun Spots.—The diameter of the umbra
of a sun spot ranges all the way from 500 to 1000 miles in the
case of a very small one, to 50,000 or 60,000 miles in the case of
the larger ones. The penumbra surrounding a group of spots is
sometimes 150,000 miles across, though that would be rather an
exceptional size. Not infrequently sun spots are large enough to be
seen by the naked eye, and they have been often so seen at sunset
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or through a fog. The depth by which the umbra is depressed below
the general surface of the photosphere is very difficult to determine,
but according to Faye, Carrington, and others, it seldom exceeds
2500 miles, and more often is between 500 and 1500.

297. Development and Changes of Form.—Generally the
origin of a sun spot fails to be observed. It begins from an insensible
point, and rapidly grows larger, the penumbra usually appearing
only after the nucleus is fairly developed.

If the disturbance which causes the spot is violent, the spot usu-
ally breaks up into several fragments, and these again into others
which tend to separate from each other. At each new disturbance
the forward portions of the group show a tendency to advance east-
ward on the sun’s surface, leaving behind them a trail of smaller
spots.

298. The “segmentation” of a spot, as Faye calls it, is usually ef-
fected by the formation of a “bridge,” or streak of brilliant light, which
projects itself across the penumbra and umbra from the outside photo-
sphere. These bridges are mere extensions of the surrounding faculee,
and are often intensely bright.

Occasionally a spot shows a distinct cyclonic motion, the filaments
being drawn inward spirally; and in different members of the same group
of spots the cyclonic motions are not seldom in opposite directions.

When a spot at last vanishes it is usually by the rapid encroachment
of the photospheric matter, which, as Secchi expresses it, appears to
“fall pell-mell into the cavity,” completely burying it and leaving its
place covered by a group of facule. Figs. 99-104 (see page show
the changes which took place in the great spot of September, 1870. They
are from photographs by Mr. Rutherfurd of New York, and are borrowed
from “The New Astronomy” of Professor Langley, through the courtesy
of his publishers.

299. Spots within 15° or 20° of the sun’s equator generally, on
the whole, drift a little towards it, while these in higher latitudes
drift away from it; but the motion is slight, and exceptions are
frequent.

In and around the spot itself the motion is usually inward to-
wards the centre, and downward at the centre. Not infrequently the
fragments at the inner end of the penumbral filaments appear to
draw off, move towards the centre of the spot, and then descend.
Occasionally, though seldom, the motion is vigorous enough to be
detected by the displacement of lines in the spectrum.
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Fia. 99.—Sept. 19. Fic. 100.—Sept. 20.
Fic. 101.—Sept. 21. Fi1c. 102.—Sept. 22.
Fig. 103.—Sept. 23. FiG. 104.—Sept. 26.

The Great Sun Spot of 1870.
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300. Duration.—The duration of the spots is very various,
but, astronomically speaking, they are always short-lived phenom-
ena, sometimes lasting for only a few days, more frequently, perhaps,
for a month or two. In a single instance, a spot has been observed
through as many as eighteen successive revolutions of the sun.

301. Distribution.—It is a significant fact that the spots are
confined mostly to two zones of the sun’s surface between 5° and
40° of latitude north and south. A few are found near the equator,
none beyond the latitude of 45°. |Fig. 105 shows the distribution of
several thousand spots as observed by Carrington and Sporer.

Carrington

Fi1a. 105.—Distribution of Sun Spots in Latitude.
Occasionally, what Trouvelot calls “veiled spots” are seen be-
yond the 45° limits—grayish patches surrounded by faculse, which
look as if a dark mass were submerged below the surface and dimly
seen through a semi-transparent medium.

302. Theories as to the Nature of the Spots.—We first
mention (a) the theory of Sir William Herschel, because it still
finds place in certain text-books, though certainly incorrect. His
belief was that the spots were openings through two luminous strata,
which he supposed to surround the central globe of the sun. This
globe he supposed to be dark (and even habitable!). The outer
stratum, the photosphere, was the brighter of the two, and the
opening in it the larger, while the inner shell between it and the solid
globe was of less luminous substance, and formed the penumbra. He
thought the opening through these might be caused by volcanoes
on the globe beneath.
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303. (b) Another theory, now abandoned, was proposed inde-
pendently both by Secchi and Faye about 1868. They supposed that
the spots were openings in the photosphere caused by the bursting
outward of the imprisoned gases underneath it; the photosphere at
that time being supposed to be liquid.

They explained the darkness of the centre of the spot by the fact
that a heated gas at a given temperature has a lower radiating power
and sends out much less light than a liquid surface, or than clouds formed
by the condensation of the same material at even a lower temperature.
This is true of gases at low pressure, but not of gases under great com-
pression, such as must be the case within the body of the sun. Besides,
if the gases possessed the small radiating power necessary to this theory,
they would also possess small absorbing power, and therefore would be
transparent; the inner side of the photosphere on the opposite side of the
sun would therefore be visible through the opening, so that the centre of
such an eruption would not be dark, but, if anything, brighter than the
general solar surface. Moreover, as we now know from the spectroscopic
evidence, the motion at the centre of a spot is inward, not outward.

304. (c) Faye more recently has proposed and now maintains
a theory which has numerous good points about it, and is accepted
by many, viz.: that the spots are analogous to storms on the earth,
being cyclones, due to the fact that the portions of the sun’s surface
near the equator make their revolution in a shorter time than these
in higher latitudes. This causes a relative drift in adjacent portions
of the photosphere, and according to him gives rise to vortices or
whirlpools like these in swiftly running water. The theory explains
the distribution of the spots (which abound precisely in the regions
where this relative drift is at the maximum) and many other facts,
such as their “segmentation.” According to it, however, all spots
should be cyclonic, and the spiral motion of all the spots in the
northern hemisphere should be clock-wise, while in the southern
hemisphere they should be counter-clock-wise. Now, as a matter
of fact, only a very few of the spots show such spiral motions, and
there is no such agreement in the general direction of the motion as
the theory requires.

Faye attempts to account for this by saying that we do not see the
vortex itself, but only the cloud of cooler materials which is drawn to-
gether by the down-rushing vortex, itself hidden beneath this cloud. Still,
it would seem that in such a case the cloud itself should gyrate. More-
over, the relative drift of the adjacent portions of the photosphere is too
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small to account for the phenomena satisfactorily. In the solar latitude
of 20° two points separated by 1’ of the sun’s surface (123 miles) have a
relative daily drift of only about four and one-sixth miles, insufficient to
produce any sensible whirling.

305. (d) Secchi’s later theory. He supposed the spots to be due
to eruptions from the inner portions of the sun’s surface, not in the
spot, however, but only near it; the spot itself being formed by the
settling down upon the photosphere of materials thrown out by the
eruption and cooled by their expansion and their motion through
the upper regions. We have, however, in fact, as a usual thing, not a
single eruption, but a ring of eruptions all around every large spot,
all of them converging their bombardment, so to speak, upon the
same centre,—a fact very difficult to explain if the spot originates
in the eruption, but not difficult to understand if the eruptions are
the result of the spot.

Perhaps the true explanation may be that when an eruption oc-
curs at any spot, the photosphere somewhere in the neighborhood
settles down in consequence of the diminution of the pressure be-
neath, thus forming a “sink,” so to speak, which is of course covered
by a greater depth of cooler vapors above, and so looks dark.

306. (e) Mr. Lockyer, in his recent work on the chemistry of
the sun, revives an old theory, first suggested by Sir John Herschel
and accepted by the late Professor Peirce, that the spots are not
formed by any action from within, but by cool matter descending
from above,—matter very likely of meteoric origin; but it is difficult
to see how the distribution of the spots with reference to the sun’s
equator can be accounted for in this way.

On the whole it is impossible to say that the problem of the
origin of sun spots is yet satisfactorily solved. There is no question
that sun spots are closely associated with eruptions from beneath;
but which is cause and which effect, or whether both are due to
some external action, remains undetermined.

307. Periodicity of Sun Spots.—In 1851 Schwabe of Dessau,
by the comparison of an extensive series of observations running over
nearly thirty years, showed that the sun spots are periodic, being at
times vastly more numerous than at others, with a roughly regular
recurrence every ten or eleven years. This had been surmised by
Horrebow more than a century before, though not proved.
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Subsequent study fully confirms this remarkable result of
Schwabe. Wolf of Zurich has collected all the observations discov-
erable and finds a pretty complete record back to 1610. From these
records is constructed the annexed diagram, The ordinates
of the curve represent what Wolf calls his “relative numbers,”! which
he has adopted as representing the spottedness.
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Fi1G. 106.—Wolf’s Sun-Spot Numbers.

The average period is eleven and one-tenth years, but, as the
shows, the spot maxima are quite irregular, both in time and
as to the extent of spottedness. The last spot maximum occurred
in 1883-84 (a year or two behind time), and we are now (1888)
approaching a minimum. During a maximum the surface of the sun
is never free from spots, from twenty-five to fifty being frequently
visible at once. During a minimum, on the other hand, weeks often
pass without the appearance of a single one.

308. Possible Cause of the Periodicity.—The cause of this
periodicity is not known. It has been attempted to connect it with

IThis “relative number” is formed in rather an arbitrary manner from the
observations which Wolf hunted up as the basis of his investigation. The formula
is, r (the relative number) — k(10g + f), in which ¢ is the number of groups
and isolated spots observed, f the total number of spots which can be counted
in these groups and singly, while k is a coefficient which depends upon the
observer and the size of his telescope: it is large for a small telescope and not
very persistent observer, and approaches unity the more likely the observer
may be supposed to have noted every sun spot that appeared during the time
covered by his observations.
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planetary action. Some things in the Kew statistics of the sun spots
look as if Venus, Mercury, and the Earth had something to do with it,
the sun’s surface being more spotted when these planets approach nearer;
but the evidence is insufficient, or at least needs to be supplemented by
further comparisons. Jupiter also has been suspected. His period is
11.86 years, which is not very different from the mean sun-spot period;
but an examination of the different spot maxima show that some of them
have occurred when he was near perihelion, and others when he was near
aphelion; and on the whole there is very little reason for supposing that
he has any considerable influence in the matter.

Sir John Herschel suggested that it might be due to streams of me-
teors moving in an oval orbit with a period of about eleven years, and
approaching so near at perihelion that numerous members of the mete-
oric group actually fall into the sun; but, as has been said before, the
distribution of the spots would seem to contradict the idea.

309. Terrestrial Influence of the Sun Spots.—One influ-
ence of the sun spots upon the earth is perfectly demonstrated.
When the spots are numerous, magnetic disturbances (the so-called
magnetic storms) are most numerous and violent upon the earth, a
fact not to be wondered at since violent disturbances upon the sun’s
surface have been in many individual cases immediately followed by
magnetic storms, with a brilliant exhibition of the Aurora Borealis.
The nature and mechanism of the connection is as yet unknown,
but of the fact there can be no question. The dotted lines in the
figure of the sun-spot periodicity represent the magnetic
storminess of the earth at the indicated dates; and the correspon-
dence between these curves and the curve of spottedness makes it
impossible to doubt the connection.

310. It has been attempted, also, to show that greater or less
disturbance of the sun’s surface, as indicated by the greater fre-
quency of the sun’s spots, is accompanied by effects upon the me-
teorology of the earth, upon its temperature, barometric pressure,
storminess, and the amount of rain-fall. The researches of Mr. Mel-
drum of Mauritius with respect to the cyclones in the Indian Ocean
appear to bear out the conclusion that there may be some such
connection in that case, but the general results are by no means
decisive. In some parts of the earth the rain-fall seems to be greater
during a spot maximum; in others, less.

As to the temperature, it is still uncertain whether it is higher
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or lower at the time of a spot maximum. The spots themselves are
cooler (as Henry, Secchi, and Langley have shown) than the general
surface of the photosphere; but their extent is never sufficient to
reduce the amount of heat radiated from the sun by us much as Wloo
part. On the other hand, when the spots are most numerous, the
generally disturbed condition of the photosphere would, as Langley
has shown, necessarily be accompanied by an increased radiation.

Dr. Gould considers that the meteorological records in the Ar-
gentine Republic between 1875 and 1885 show an indubitable con-
nection between the wind currents and the number of sun spots.
But the demonstration of such a relation really requires observa-
tions running through several spot periods. On the whole, it is
now quite certain that whatever influence the sun spots exert upon
terrestrial meteorology is very slight, if it exists at all.

THE SOLAR SPECTRUM AND ITS REVELATIONS.

311. About 1860 the spectroscope appeared in the field as a
new and powerful instrument of astronomical research, at once re-
solving many problems as to the nature and constitution of the
heavenly bodies which before had not seemed to be even open to
investigation.

The essential part of the apparatus is either a prism or train of
prisms, or else a diffraction grating,! which is capable of perform-
ing the same office of dispersing—that is, of spreading and sending
in different directions—the light rays of different wave-lengths. If,
with such a “dispersion piece,” as it may be called (either prism
or grating), one looks at a distant point of light, as a star, he will
see instead of a point a long streak of light, red at one end and
violet at the other. If the object looked at be not a point, but a
line of light parallel to the edge of the prism or to the lines of the
grating, then, instead of a mere colored streak without width, one
gets a spectrum, a colored band of light, which may show markings
that will give the observer most valuable information. (Physics,
pp. 458-460.) For convenience’ sake it is usual to form this line of
light by admitting the light through a narrow “slit,” which is at one

IThe grating is merely a piece of glass or speculum metal, ruled with many
thousand straight, equidistant lines, from 5000 to 20,000 in the inch. Usually
the surface before ruling is accurately plane, but for some purposes the concave
gratings, originated by Professor Rowland, are preferable.
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end of a tube having at the other end an achromatic object-glass
at such a distance that the slit is in its principal focus. This tube
with slit and lens constitutes the “collimator,” so called because it
is precisely the same as the instrument used in connection with the
transit instrument to adjust its line of collimation (Article 60)).

Instead of looking at the spectrum with the naked eye, however,
it is better in most cases to use a small telescope; called the “view-
telescope,” to distinguish it from the large telescope, to which the
spectroscope is often attached.

312. Construction of the Spectroscope.—The instrument,
therefore, as usually constructed, and shown in consists of
three parts,—collimator, dispersion-piece, and view-telescope; but
in the direct-vision spectroscope, shown in the [figurd the view-
telescope is omitted. If the slit, .S, be illuminated by strictly homo-
geneous light all of one wave-length, say yellow, the “real image”
of the slit will be found at Y. If at the same time light of a differ-
ent wave-length be also admitted, say red, a second image will be
formed at R, and the observer will see a spectrum with two “bright
lines,” the lines being really nothing more than images of the slit. If
light from a candle be admitted, there will be an infinite number of
these slit-images, close packed, like the pickets in a fence, without
interval or break, and we then get a continuous spectrum; but if we
look at sunlight or moonlight, we shall find a spectrum continuous
in the main, but crossed by numerous dark lines, as if some of the
“pickets” had been knocked off, leaving gaps.

Direct-Vision Spectroscope

Fi1c. 107.—Different Forms of Spectroscope.
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313. Integrating and Analyzing Spectroscope.—If we
simply direct the collimator of a spectroscope towards a distant
luminous object, every part of the slit receives light from every part
of the object, so that in this case every elementary streak of the
spectrum is a spectrum of the entire body, without distinction of
parts. A spectroscope used in this way is said to be an integrating
instrument.

If, however, we interpose a lens (the object-glass of a telescope)
between the luminous object and the slit, so as to have in the plane
of the slit a distinct, real image of the object, then the top of the
slit, for instance, will be illuminated wholly by light from one part
of the object, the middle of it by light from another point, and
the bottom by light from still a third. The spectrum formed by
the top of the slit belongs, then, to the light from that particular
point of the object whose image falls upon that part of the slit;
and so of the rest. We thus separate the spectra of the different
parts of the object, and so optically analyze it. An instrument thus
used is spoken of as an “analyzing spectroscope.” The combined
instrument formed by attaching a spectroscope to a large telescope
for the spectroscopic observation of the heavenly bodies has been
called by Mr. Lockyer a “telespectroscope.” shows the
apparatus used by the writer for some years at Dartmouth College.

For solar purposes a grating spectroscope is generally better than
a prismatic, being less complicated and more compact for a given
power.

Fi1G. 108.—The Telespectroscope.
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314. Principles upon which Spectrum Analysis depends.
—These, substantially as announced by Kirchoff in 1858, are the
three following:—

1st, A continuous spectrum is given by every incandescent body,
the molecules of which so interfere with each other as to prevent
their free, independent, luminous vibration; that is, by bodies which
are either solid or liquid, or, if gaseous, are under high pressure.

2d, The spectrum of a gaseous element, under low pressure, is
discontinuous, made up of bright lines, and these lines are charac-
teristic; that is, the same substance under similar conditions always
gives the same set of lines, and generally does so even under widely
different conditions.

Fic. 109.—Reversal of the Spectrum.

3d, A gaseous substance absorbs from white light passing
through it precisely these rays of which its own spectrum consists.
The spectrum of white light which has been transmitted through it
then exhibits a “reversed” spectrum of the gas; that is, one which
shows dark lines instead of the characteristic bright lines.

Fig. 109 illustrates this principle. Suppose that in front of the
slit of the spectroscope we place a spirit lamp with a little carbonate
of soda and some salt of thallium upon the wick. We shall then get
a spectrum showing the two yellow lines of sodium and the green
line of thallium, bright. If now the lime-light be started right behind
the lamp flame, we shall at once get the effect shown in the lower
Hgure,—a continuous spectrum crossed by black lines just where the
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bright lines were before. Insert a screen between the lamp flame and
the lime, and the dark lines instantly show bright again.

315. Chemical Constituents of
the Sun.—By taking advantage of these
principles we can detect the presence of a
large number of well-known terrestrial el-
ements in the sun. The solar spectrum is
crossed by dark lines, which, with an in-
strument of high dispersion, number sev- Fic. 110.—The Comparison
eral thousand, and by proper arrange- Prism.
ments it is possible to identify among
these lines many which are due to the presence in the sun’s lower
atmosphere of known terrestrial elements in the state of vapor. To
effect the comparison necessary for this purpose, the spectroscope
must be so arranged that the observer can have before him, side
by side, the spectrum of sunlight and that of the substance to be
tested. In order to do this, half of the slit is fitted with a little
“comparison prism,” so-called , which reflects into it the
light from the sun, while the other half of the slit receives directly
the light of some flame or electric spark. On looking into the eye-
piece of the spectroscope, the observer will then see a spectrum,
the lower half of which, for instance, is made by sunlight, while the
upper half is made by light coming from an electric spark between
two metal points, say of iron.

Fia. 111.
Comparison of the Solar Spectrum with that of Iron. From a Negative by
Prof. Trowbridge.

Photography may also be most effectively used in these com-
parisons instead of the eye. is a rather unsatisfactory
reproduction, on a reduced scale, of a negative recently made by
Professor Trowbridge at Cambridge. The lower half is the violet
portion of the spectrum of the sun, and the upper half that of the
vapor of iron in an electric arc. The reader can see for himself with
what absolute certainty such a photograph indicates the presence of
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iron in the solar atmosphere. A few of the lines in the photograph
which do not show corresponding lines in the solar spectrum are
due to impurities in the carbon, and not to iron.

316. As the result of such comparisons we have the following
list of twelve elements, which are certainly known to exist in the
sun, viz..—

hydrogen, cobalt,

iron, chromium,
titanium, barium,
calcium, sodium,
manganese, magnesium,
nickel, platinum.

There are evidences, perhaps not quite conclusive, of the presence
of nearly as many more, viz.:—

copper, uranium,

palladium, aluminium,

vanadium, cadmium,

molybdenum, carbon,
lead.

As to carbon, however, the spectrum is so peculiar, consisting of
bands rather than lines, that it is very difficult to be sure, but the
tendency of the latest investigations (of Rowland and Hutchins) is
to establish its right to a place on the list.

The more recent researches have thrown much doubt on the presence
of several substances which, a few years ago, were usually included in the
list, as, for instance, strontium and cerium. It has been generally admit-
ted also that the photographs of Dr. Henry Draper had demonstrated
the presence of oxygen in the sun, represented in the solar spectrum, not
by dark lines like other elements, but by certain wide, bright bands. The
latest work, while it does not absolutely refute Dr. Draper’s conclusion,
appears however to turn the balance of evidence the other way.

317. It will be noticed that all the bodies named in the list,
carbon alone excepted, are metals (chemically hydrogen is a metal),
and that a multitude of the most important terrestrial elements fail
to appear; oxygen (7), nitrogen, chlorine, bromine, iodine, sulphur,
phosphorus, silicon, and boron are all missing. We must be cautious,
however, as to negative conclusions. It is quite conceivable that the
spectra of these bodies under solar conditions may be so different
from their spectra as presented in our laboratories that we cannot
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recognize them; for it is now quite certain that some substances,
nitrogen, for instance, under different conditions, give two or more
widely different spectra.

Among the many thousand lines of the solar spectrum only a
few hundred are so far identified.

318. Mr. Lockyer’s Views.—Mr. Lockyer thinks it more
probable that the missing substances are not truly elementary, but
are decomposed or “dissociated” on the sun by the intense heat,
and so do not exist there, but are replaced by their components;
he believes, in fact, that none of our so-called elements are really
elementary, but that all are decomposable, and, to some extent ac-
tually decomposed in the sun and stars, and some of them by the
electric spark in our own laboratories. Granting this, a crowd of
interesting and remarkable spectroscopic facts find easy explana-
tion. At the same time the hypothesis is encumbered with great
difficulties and has not yet been finally accepted by physicists and
chemists. For a full statement of his views the reader is referred to
his “Chemistry of the Sun.”

319. The Reversing Layer.—According to Kirchoff’s theory
the dark lines are formed by the passing of light from the minute
solid and liquid particles of which the photospheric clouds are sup-
posed to be formed, through vapors containing the substances which
we recognize in the solar spectrum. If this be so, the spectrum of
the gaseous envelope, which by its absorption forms the dark lines,
should by itself show a spectrum of corresponding bright lines. The
opportunities are of course rare when it is possible to obtain the
spectrum of this gas-stratum alone by itself; but at the time of a
total eclipse, at the moment when the sun’s disc has just been ob-
scured by the moon, and the sun’s atmosphere is still visible beyond
the moon’s limb, if the slit of the spectroscope be carefully adjusted
to the proper point, the observer ought to see this bright-line spec-
trum. The author succeeded in making this very observation at
the Spanish eclipse of 1870. The lines of the solar spectrum, which
up to the final obscuration of the sun had remained dark as usual
(with the exception of a few belonging to the spectrum of the chro-
mosphere), were suddenly “reversed,” and the whole length of the
spectrum was filled with brilliant-colored lines, which flashed out
quickly and then gradually faded away, disappearing in about two
seconds,—a most beautiful thing to see. Substantially the same
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thing has since then been several times observed.

320. The natural interpretation of this phenomenon is, that the
formation of the dark lines in the solar spectrum is mainly, at least,
produced by a very thin layer close down to the photosphere, since the
moon’s motion in two seconds would cover a thickness of only about 500
miles. It was not possible, however, to be certain that all the dark lines
were reversed, and in this uncertainty lies the possibility of a different
interpretation. Mr. Lockyer doubts the existence of any such thin stra-
tum. According to his views the solar atmosphere is very extensive, and
these lines of iron, which correspond to the more complex combinations
of its constituents, are formed only in the regions of lower temperature,
high up in the sun’s atmosphere. They should appear early at the time
of an eclipse and last long, but not be very bright. Those due to the
constituents of iron which are found only close down to the solar sur-
face should be short and bright; and he thinks that the numerous bright
lines observed under the conditions stated are due to such substances
only. Observation needs to be directed to the special point to determine
whether all of the dark lines are reversed at the edge of the sun, or only
a few; and if so, what ones.

321. Sun-Spot Spectrum.—
This is like the general solar spec- / L/
trum, except that certain lines are
much widened, while certain others are 'y
thinned, and sometimes the lines of hy-
drogen become bright. It is to be no-
ticed that by far the larger proportion F1G. 112.
of the dark lines of any given substance The C line in the Spectrum of
are not affected at all in the spot spec- Sun Spot, Sept. 22, 1870.
trum, but only a certain few of them, a point which Mr. Lockyer
considers very important. Not infrequently it happens that certain
lines of the spectrum are crooked and broken in connection with sun
spots, as shown by [Fig. T12] Such phenomena are caused, according
to Doppler’s principle,! by the swift motion of matter towards or

2 43m 2 46 2 51m

'Doppler’s principle is this: that when we are approaching, or approached
by, a body which is emitting regular vibrations, then the number of waves
received by us in a second is increased, and their wave-length correspondingly
diminished; and vice versa when the distance of the vibrating body is increasing.
Thus the pitch of a musical tone rises while we are approaching the sounding
body, and falls as we recede; in just the same way the “refrangibility” of the
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from the observer. In the particular case shown in the[figure, hydro-
gen is the substance, and the greatest motion indicated was towards
the observer at the rate of about 300 miles a second—an unusual
velocity. These effects are most noticeable, not in the spots, but
near them, usually just at the outer edge of the penumbra.

The dark and apparently continuous spectrum which is due to the
nucleus of a sun spot is not truly continuous, but under high dispersion is
resolved into a range of extremely fine, close-packed, dark lines, separated
by narrow spaces. At least this is so in the green and blue portions of
the spectrum; it is more difficult to make out this structure in the yellow
and red. It appears to indicate that the absorbing medium which fills
the hollow of a sun spot is gaseous, and not composed of precipitated
particles like smoke, as has been suggested.

322. The Chromosphere.—The chromosphere is a region of
the sun’s gaseous envelope which lies close above the photosphere,
the “reversing layer,” if it exists at all, being only the most dense
and hottest part of it. The chromosphere is so called, because as
seen for an instant, during a total solar eclipse, it is of a bright
scarlet, color, the color being due to the hydrogen which is its main
constituent. It is from 5000 to 10,000 miles in thickness, and in
structure is very like a sheet of scarlet flame, not being composed
of horizontal sheets, but of (approximately) upright filaments. Its
appearance has been compared very accurately to that of “a prairie
on fire”; but the student must carefully guard against the idea that
there is any real “burning” in the case; i.e., any process of combina-
tion between hydrogen and some other substance. The temperature

rays, say of hydrogen, emanating from the sun is increased (the wave-length
being shortened) whenever we are approaching it with a speed which bears a
sensible ratio to the velocity of light. Calling A the wave-length of the ray
when the observer and the luminous object are relatively at rest, and )\’ the
wave-length as affected by their relative motion; putting V also for the velocity
of light (about 186,330 miles per second), and s for the speed with which the
observer and source of light approach each other, we have

' Vv
A _/\(V+s '

[If the distance is increasing instead of diminishing, the denominator will be
(V —s).] With the most powerful spectroscopes motions of from one to two
miles per second along the line of sight can thus be detected.
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is altogether too high for any formation of hydrogen compounds at
the sun’s surface.

323. The Prominences.—At a total eclipse, after the total-
ity has fairly set in, there are usually to be seen at the edge of
the moon’s disc a number of scarlet, star-like objects, which in the
telescope appear as beautiful, fiery clouds of various form and size.
These are the so-called “prominences,” which very non-committal
name was given while it was still doubtful whether they were so-
lar or lunar. Photography, in 1860, proved that they really belong
to the sun, for the photographs taken during the totality showed
that the moon obviously moves over them, covering those upon the
eastern limb, and uncovering those upon the western.

In 1868, during the observation of the eclipse which occurred
that year in India, the spectroscope showed them to be gaseous, and
that their main constituent is hydrogen. Their spectrum contains
also a conspicuous yellow line known as the Dj line, because it is
very near the two “D” lines of sodium. This line is not due to
hydrogen, and is not identified with any known element; but an
element has been assumed for it and called provisionally “helium.”

In connection with this eclipse, Janssen, who observed it in In-
dia, found that the lines of the prominence spectrum were so bright
that he was able to observe them the next day after the eclipse in
full sunlight; and he also found that by a proper management of
his instrument he could study the form and behavior of the promi-
nences nearly as well without an eclipse as during one. Lockyer,
in England, some time earlier had come to similar conclusions from
theoretical grounds, and he practically perfected his discovery a few
weeks later than Janssen, although without knowledge of what he
had done. By a remarkable but accidental coincidence their discov-
eries were communicated to the French Academy on the same day;
and in their honor the French have struck a medal bearing their
united effigies.

324. How the Spectroscope makes the Prominences
Visible.—The only reason we cannot see the prominences at any
time is on account of the bright illumination of our own atmosphere.
We can screen off the direct light of the sun; but we cannot screen
off the reflected sunlight coming from the air which is directly be-
tween us and the prominences themselves; a light so brilliant that
the prominences cannot be seen through it without some kind of
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aid.

The spectrum of this air-light is, of course,
just the same as that of the sun—a continu-
ous spectrum with the same dark lines upon it.
When, therefore, we arrange the apparatus as
indicated in pointing the telescope so
that the image of the sun’s limb just touches

I

the slit of the spectroscope, then, if there is Fic. 113.
a prominence at that point, we shall have in  Spectroscope Slit
our spectroscope two spectra superposed upon adjusted for

Observation of the

each other; namely, the spectrum of the air- .
Prominences.

illumination and that of the prominence. The

latter is a spectrum of bright lines, or, if the slit is opened a little, of
bright images of whatever part of the prominence may fall within
the edges of the slit. Now, the brightness of these images is not
affected by any increase of dispersion in the spectroscope. Increase!
of dispersion merely sets these images farther apart, without mak-
ing them fainter. The spectrum of the aerial illumination, on the
other hand, is made very faint by its extension; and, moreover, it
presents dark lines (or spaces when the slit is opened) precisely at
the points where the bright images of the prominences fall.

A spectroscope of dispersive power
sufficient to divide the two E lines,
attached to a telescope of four or five
inches aperture, gives a very satisfac-
tory view of these beautiful objects;
the red image corresponds to the C'
line, and is by far the best for such ob-
servations, though the Dj line or the
F line can also be used. When the
instrument is properly adjusted, the
slit opened a little, and the image of
the sun’s limb brought exactly to the FiG. 114.
edge of the slit, the observer at the The Chromosphere and

. . Prominences seen in the
eye-piece of the spectroscope will see Spectroscope.
things about as we have attempted to represent them in ; as

!Too high dispersion injures the definition, however, because the lines in
the spectrum of hydrogen are rather broad and hazy.
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if he were looking at the clouds in an evening sky through a slightly
opened window-blind.

325. Different Kinds of Prominences; Their Forms and
Motions.—The prominences may be broadly divided into two
classes,—the quiescent or diffused, and the eruptive or “metallic,”
as Secchi calls them, because they show in their spectrum the lines of
many metals besides hydrogen. The former, illustrated by
(see p.[211]), are immense clouds, often 60,000 miles in height, and of
corresponding horizontal dimensions, either resting upon the chro-
mosphere or connected with it by slender stems like great banyan-
trees. They are not very brilliant, and are composed almost entirely
of hydrogen and “helium.” They often remain nearly unchanged for
days together as they pass over the sun’s limb. They are found on
all portions of the disc, at the poles and equator as well as in the
spot zones. Some of them are clouds floating entirely detached from
the sun’s surface.

Usually these clouds are simply the remnants of prominences
which appear to have been thrown up from below, but in some
cases they actually form and grow larger without any visible con-
nection with the chromosphere—a fact of considerable importance,
as showing in these regions the presence of hydrogen, invisible to
our spectroscopes until somehow or other it is made to give out
the rays of its familiar spectrum. All the forms and motions of
the prominences, it may be said further, seem to indicate the same
thing—that they exist and move, not in a vacuum, but in a medium
of density comparable with their own, as clouds do in our own at-
mosphere.

326. The eruptive prominences, on the other hand, are bril-
liant and active, not usually so large as the quiescent, but at times
enormous, reaching elevations of 100,000, 200,000, or even 400,000
miles. They are illustrated by Most frequently they are in
the form of spikes or flames; but they present also a great variety
of other fantastic shapes, and are sometimes so brilliant as to be
visible with the spectroscope on the surface of the sun itself, and
not merely at the limb. Generally prominences of this class are
associated with active sun spots, while both classes appear to be
connected with the faculee. The given are from drawings of
individual prominences that have been observed by the author at
different times.
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Clouds. Diffuse.

Filamentary. Stemmed.

Plumes.

Fia. 115.
Quiescent Prominences. Scale 75,000 Miles to the Inch. From “The Sun,”
by Permission of D. Appleton & Co.
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Vertical Filaments. Prominences Sept. 7, 1871, 12.30 P.M.

Same at 1.15 P.M.

Jets near Sun’s Limb, Oct. 5, 1871.

Fic. 116.
Eruptive Prominences. From “The Sun.” By Permission of D. Appleton & Co.
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These solar clouds are most fascinating objects to watch, on ac-
count of the beauty of their forms, and the rapidity of their changes.
In the case of the eruptive prominences the swiftness of the changes
is sometimes wonderful—portions can be actually seen to move, and
this implies a real velocity of at least 250 miles a second, so that it
is no exaggeration to speak of such phenomena as veritable “explo-
sions”: of course, in such cases the lines in the spectrum are greatly
broken and distorted, and frequently a “magnetic storm” follows
upon the earth, with a brilliant Aurora Borealis.

The number visible at a single time is variable, but it is not very
unusual to find as many as twenty on the sun’s limb at once.

327. The Corona.—This is a halo, or “glory,” of light which
surrounds the sun at the time of the total eclipse. From the remotest
times it has been well known, and described with enthusiasm, as
being certainly one of the most beautiful of natural phenomena.

The portion of the corona nearest the sun is almost dazzlingly
bright, with a greenish, pearly tinge which contrasts finely with
the scarlet blaze of the prominences. It is made up of streaks and
filaments which on the whole radiate outwards from the sun’s disc,
though they are in many places strangely curved and intertwined.
Usually these filaments are longest in the sun-spot zones, thus giving
the corona a more or less quadrangular figure. At the very poles of
the sun, however, there are often tufts of sharply defined threads.

For the most part the streamers have a length not much exceed-
ing the sun’s radius, but some of them at almost every eclipse go far
beyond this limit. In the clear air of Colorado during the eclipse of
1878, two of them could be traced for five or six degrees,—a distance
of at least 9,000000 miles from the sun. A most striking feature of
the corona usually consists of certain dark rifts which reach straight
out from the moon’s limb, clear to the extremest limit of the corona.

The corona varies much in brightness at different eclipses, and
of course the details are never twice the same. Its total light under
ordinary circumstances is at least two or three times as great as
that of the full moon.

328. Photographs of the Corona.—While the eye can per-
haps grasp some of its details more satisfactorily than the photo-
graphic plate can do, it is found that drawings of the corona are
hardly to be trusted. At any rate, it seldom happens that the rep-
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resentations of two artists agree sufficiently to justify any confidence
in their scientific accuracy. Photographs, on the other hand, may
be trusted as far as they go, though they may fail to bring out some
things which are conspicuous to the eye. is from the pho-
tograph of the Egyptian eclipse of 1882, when a little comet was
found close to the sun.

F1a. 117.—Corona of the Egyptian Eclipse, 1882.

Of course, as in the case of the prominences, the only reason we
cannot see the corona without an eclipsed sun is the illumination of
the earth’s atmosphere. If we could ascend above our atmosphere, and
manage to exist and to observe there, we could see it by simply screening
off the sun’s disc. So long, however, as the brightness of the illuminated
air is more than about sixty times that of the corona, it must remain
invisible to the eye. Dr. Huggins has thought that it might be possible
by means of photographs to detect differences of illumination less than
% (the limit of the eye’s perception), and so to obtain pictures of the
corona at any time; especially as it appears that the coronal light is
far richer in ultra-violet rays (the photographic rays) than the general
sunlight with which the air is illuminated. His attempts so far, however,
have yielded only doubtful success.

329. Spectrum of the Corona.—This was first definitely ob-
served in 1869 during the eclipse which passed over the western part
of the United States in that year. It was then found that its most
remarkable characteristic is a bright line in the green, which the
writer identified as coinciding with the dark line at 1474 on the
scale of Kirchoff’s map (A = 5316). This line was also observed by
Harkness.
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This result was for a time very puzzling, since the dark line in ques-
tion is given by Angstrom and other authorities as due to the spectrum
of 7ron. The mystery has since been removed, however, by the discovery
that under high dispersion the line is double, and that the corona line
coincides with the more refrangible of the two components, while the
other one is the line due to iron. We have as yet been unable to identify
with any terrestrial element the substance to which this line is due, but
the provisional name “coronium” has been proposed for it. The recent
researches of Griinewald make it somewhat probable that both coronium
and helium are components of hydrogen, which (in line with Mr. Lock-
yer’s speculations) is supposed to be partially decomposed under solar
conditions.

Besides this conspicuous green line, the hydrogen lines are also
faintly visible in the spectrum of the corona; and by means of a pho-
tographic camera used during the Egyptian eclipse of 1882, it was
found that the upper or violet portion of the spectrum is very rich
in lines, among which H and K are specially conspicuous. There is
also, through the whole spectrum, a faint continuous background,
which, however, according to Mr. Lockyer’s statements, is not of
uniform brightness, but “banded.” In it some observers have re-
ported the presence of a few of the more conspicuous dark lines of
the ordinary solar spectrum, but the evidence on this point is rather
conflicting.

If during the totality we look at the eclipsed sun with a diffrac-
tion grating, or through a prism of high dispersive power, we see
three rings which are really images of the corona. One of them, the
brightest and the largest, is the green ring due to the 1474 line; the
others are a red ring due to (', and a blue one due to the F' line of
hydrogen.

330. Nature of the Corona.—It is evident that the corona is
a truly solar and not merely an optical or atmospheric phenomenon,
from two facts: first, the identity of detail in photographs made at
widely separate stations. In 1871, for instance, photographs were
obtained at the Indian station of Bekul, in Ceylon, and in Java,
three stations separated by many hundreds of miles; but, excepting
minute differences of detail, such as might be expected to have re-
sulted from the changes that would naturally go on in the corona,
during the half-hour while the moon’s shadow was travelling from
Bekul to Java, all the photographs agree exactly, which of course
would not be the case if the corona depended in any way upon the
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atmospheric conditions at the observer’s station.

Second (but first historically), the presence of bright lines in
the spectrum of the corona proves that it cannot be a terrestrial or
lunar phenomenon, by demonstrating the presence in the corona of
a self-luminous gas, which observation fails to find either near to
the moon or in our own atmosphere. It must, therefore, be at the
sun.

But while it is thus certain that the corona contains luminous
gas, it also is very likely that finely divided solid or liquid matter
may be present in the corona; that is, fog or dust of some kind.

331. The corona cannot be a true “solar atmosphere” in any
strict sense of the word. No gaseous envelope in any way analogous
to the earth’s atmosphere could possibly exist there in gravitational
equilibrium under the solar conditions of pressure and temperature.
The corona is probably a phenomenon due somehow to the intense
activity of the forces there at work; meteoric matter, cometic mat-
ter, matter ejected from within the sun, are all concerned.

That this matter is inconceivably rare is evident from the fact
that in several cases comets have passed directly through the corona
without experiencing the least perceptible disturbance of their mo-
tions. It is altogether probable that at a very few thousand miles
above the sun’s surface, its density becomes far less than that of
the best vacuum we can make in an electric lamp.
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CHAPTER IX.

THE SUN’S LIGHT AND HEAT: COMPARISON OF SUNLIGHT
WITH ARTIFICIAL LIGHTS.—MEASUREMENT OF THE
SUN’S HEAT, AND DETERMINATION OF THE “SOLAR
CONSTANT.”—PYRHELIOMETER, ACTINOMETER, AND
BOLOMETER.—THE SUN’S TEMPERATURE.—THEORIES
AS TO THE MAINTENANCE OF THE SUN’S RADIATION,
AND CONCLUSIONS AS TO THE SUN’S POSSIBLE AGE
AND FUTURE DURATION.

332. The Sun’s Light.—The Quantity of Sunlight. 1t is very
easy to compare (approximately) sunlight with the light of a stan-
dard! candle; and the result is, that when the sun is in the zenith,
it illuminates a white surface about 60,000 times as strongly as a
standard candle at a distance of one metre. If we allow for the
atmospheric absorption, the number would he fully 70,000. If we
then multiply 70,000 by the square of 150,000 million (roughly the
number of metres in the sun’s distance from the earth), we shall
get what a gas engineer would call the sun’s “candle power.” The
number comes out 1575 billions of billions (English); i.e., 1575 with
twenty-four ciphers following.

333. One way of making the comparison is the following: Arrange
matters as in The sunlight is brought into a darkened room by
a mirror M, which reflects the rays through a lens L of perhaps half an
inch in diameter. After the rays pass the focus they diverge and form on
the screen S a disc of light, the size of which may be varied by changing
the distance of the screen. Suppose it so placed that the illuminated
circle is just ten feet in diameter; that is, 240 times the diameter of the

'A standard candle is a sperm candle weighing one-sixth of a pound and
burning 120 grains an hour. The French “Carcel burner,” used as a standard
in their photometry, gives just ten times the quantity of light given by this
standard candle. An ordinary gas-burner consuming five feet of gas hourly
gives a light equivalent to from twelve to fifteen standard candles.
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lens. The illumination of the disc will then be less than that of direct
sunlight in the ratio of 240? (or 57,600) to 1 (neglecting the loss of light
produced by the mirror and the lens, a loss which of course must he
allowed for). Now place a little rod like a pencil near the screen, as at
P, light a standard candle, and move the candle back and forth until the
two shadows of the pencil, one formed by the candle, and the other by
the light from the lens, are equally dark. It will be found that the candle
has to be put at a distance of about one metre from the screen; though
the results would vary a good deal from day to day with the clearness of
the air.

Fig. 118.—Comparison of Sunlight with a Standard Candle.

334. When the sun’s light is compared with that of the full
moon and of various stars, we find, as stated (Art. 259), that it is
about 600,000 times that of the full moon. It is 7,000,000000 times
as great as the light received from Sirius, and about 40,000,000000
times that from Vega or Arcturus.

335. The Intensity of the Sun’s Luminosity.—This is a
very different thing from the total quantity of its light, as expressed
by its “candle power” (a surface of comparatively feeble luminos-
ity can give a great quantity of light if large enough). It is the
amount of light per square inch of luminous surface which deter-
mines the intensity. Making the necessary computations from the
best data obtainable (only roughish approximations being possible),
it appears that the sun’s surface is about 190,000 times as bright as
that of a candle flame, and about 150 times as bright as the lime
of the calcium light. Even the darkest part of a solar spot outshines
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the lime. The intensely brilliant spot in the so-called “crater” of an
electric arc comes nearer sunlight than anything else known, being
from one-half to one-fourth as bright as the surface of the sun itself.
But either the electric arc or the calcium light, when interposed
between the eye and the sun looks like a dark spot on the disc.

336. Comparative Brightness of Different Portions of
the Sun’s Surface.—By forming a large image of the sun, say a
foot in diameter, upon a screen, we can compare with each other the
rays coming from different parts of the sun’s disc. It thus appears
that there is a great diminution of light at the edge, the light there,
according to Professor Pickering’s experiments, being just about
one-third as strong as at the centre. There is also an obvious differ-
ence of color, the light from the edge of the disc being brownish red
as compared with that from the centre. The reason is, that the red
and yellow rays of the spectrum lose much less of their brightness
at the limb than do the blue and violet. According to Vogel, the
latter rays are affected nearly twice as much as the former. For this
reason, photographs of the sun exhibit the darkening of the limb
much more strongly than one usually sees it in the telescope.

337. Cause of the Darkening of
the Limb.—It is due unquestionably to
the general absorption of the sun’s rays
by the lower portion of the overlying at- b
mosphere. The reason is obvious from
the figure . The thinner this n
atmosphere, other things being equal,
the greater the ratio between the percent- FiG. 119.
age of absorption at the centre and edge  Cause of the Darkening of
of the disc, and the more obvious the the Sun’s Limb.

darkening of the limb.

Attempts have been made to determine from the observed differ-
ences between the brightness of centre and limb the total percentage
of the sun’s light thus absorbed. Unfortunately we have to supple-
ment the observed data with some very uncertain assumptions in
order to solve the problem; and it can only be said that it is probable
that the amount of light, absorbed by the sun’s atmosphere lies be-
tween fifty and eighty per cent; i.e., the sun deprived of its gaseous
envelope would probably shine from two to five times as brightly as
now. It is noticeable also, as Langley long ago pointed out, that thus
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stripped, the “complexion” of the sun would be markedly changed
from yellowish white to a good full blue, since the blue and violet
rays are much more powerfully absorbed than these at the lower
end of the spectrum.

THE SUN’S HEAT.

338. Its Quantity; the “Solar Constant.” By the “quantity
of heat” received by the earth from the sun we mean the number of
heat-units received in each unit of time by a square unit of surface
when the sun is in the zenith. The heat-unit most employed by en-
gineers is the calorie, which is the quantity of heat required to raise
the temperature of one kilogram of water one degree centigrade. It
is found by observation that each square metre of surface exposed
perpendicularly to the sun’s rays receives from the sun each minute
from twenty-five to thirty of these calories; or rather it would do
so if a considerable portion of the sun’s heat were not stopped by
the earth’s atmosphere, which absorbs some thirty per cent of the
whole, even when the sun is vertical, and a much larger proportion
when the sun is near the horizon. This quantity, twenty-five calo-
riest per square metre per minute (using the smaller of the values
mentioned, which certainly is not too large), is known as the “Solar
Constant.”

339. Method of determining the “Solar Constant.”—
The method by which the solar constant is determined is simple
enough in principle, though complicated with serious practical dif-
ficulties which affect its accuracy. It is done by allowing a beam
of sunlight of known cross-section to shine upon a known weight
of water (or other substance of known specific heat) for a known
length of time, and measuring the rise of temperature. It is neces-
sary, however, to determine and allow for the heat received from

!For many scientific purposes the engineering calorie is inconveniently large,
and a smaller one is employed, which replaces the kilogram of water by the gram
heated one degree—the smaller calorie being thus only ﬁ of the engineering
unit. As stated by many writers (Langley, for instance), the solar constant is
the number of these small calories received per square centimetre of surface in
a minute. This would make the number 2.5 instead of 25. It would perhaps
be better to bring the whole down to the “c.g.s. system” by substituting the
second for the minute; and this would give us for the solar constant, on the
“c.g.s. system,” 0.0417 (small) calories per square centimetre per second.
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other sources during the experiment, and for that lost by radiation.
Above all, the absorbing effect of our own atmosphere is to be taken
into account, and this is the most difficult and uncertain part of the
work, since the atmospheric absorption is continually changing with
every change of the transparency of the air, or of the sun’s altitude.

340. Pyrheliometers and  Acti-
nometers.—The instruments with which
these measurements are made, are known as
“pyrheliometers” and “actinometers.” [Fig. 120
represents the pyrheliometer of Pouillet, with
which in 1838 he made his determination of the
solar constant, at the same time that Sir John
Herschel was experimenting at the Cape of
Good Hope in practically the same way. They
were the first apparently to understand and
attack the problem in a reasonable manner.
The pyrheliometer consists essentially of a
little cylindrical box ab, like a snuff-box, made
of thin silver plate, with a diameter of one
decimetre and such a thickness that it holds
100 grams of water. The upper surface is
carefully blackened, while the rest is polished
as brilliantly as possible. In the water is
inserted the bulb of a delicate thermometer,
and the whole is so mounted that it can be
turned in any direction so as to point it directly
towards the sun. It is used by first holding a screen between it and the
sun for (say) five minutes, and watching the rise or fall of the mercury
in the thermometer at m. There will usually be some slight change due
to the radiation of surrounding bodies. The screen is then removed, and
the sun is allowed to shine upon the blackened surface for five minutes,
the instrument being continually turned upon the thermometer as an
axis, in order to keep the water in the calorimeter box well stirred.
At the end of the five minutes the screen is replaced and the rise of
the temperature noted. The difference between this and the change of
the thermometer during the first five minutes will give us the amount
by which a beam of sunlight one decimetre in diameter has raised the
temperature of 100 grams of water in five minutes, and were it not for
the troublesome corrections which must be made, would furnish directly
the value of the solar constant.

F1G. 120.—Pouillet’s
Pyrheliometer.
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341. The second apparatus, T
is the actinometer of Violle, which consists
of two concentric metal spheres, the inner
of which is blackened on the inside, while > D
the outer one is brightly polished, the space N
between the two being filled with water at 3
a known temperature, kept circulating by i}
a pump of some kind. The thermoscopic /
body in this case, instead of being a box ]
filled with water, is the blackened bulb of
the thermometer T'; and the observations
may be made either in the same way as with
the pyrheliometer, or simply by noting the
difference between the temperature finally F1G. 121.—Violle’s
attained by the thermometer T after it has Actinometer.
ceased to rise in the sun’s rays, and the
temperature of the water circulating in the shell.

342. Correction for Atmospheric Absorption.—The cor-
rection for atmospheric absorption is determined by making observations
at various altitudes of the sun between zenith and horizon. If the rays
were homogeneous (that is, all of one wave-length), it would be com-
paratively easy to deduce the true correction and the true value of the
solar constant. In fact, however, the visible solar spectrum is but a small
portion of the whole spectrum of the sun’s radiance, and, as Langley has
shown, it is necessary to determine the coefficient of absorption sepa-
rately for all the rays of different wave-length.

343. The Bolometer.—This he has done by means of his
“Bolometer,” an instrument which is capable of indicating exceedingly
minute changes in the amount of radiation received by an extremely
thin strip of metal. This strip is so arranged that the least change in
its electrical resistance due to any change of temperature will disturb a
delicate galvanometer. The instrument is far more sensitive than any
thermometer or even thermopile, and has the especial advantage of be-
ing extremely quick in its response to any change of radiation. [Fig. 122
shows it so connected with a spectroscope that the observer can bring
to the bolometer, B, rays of any wave-length he chooses. The rays enter
through the collimator lens L, and are then refracted by the prism P to
the reflector M, whence they are sent back to B.

Langley has shown that the corrections for atmospheric absorption
deduced by earlier observers are all considerably too small, and has raised
the received value of the solar constant, from 20 or 25, which was the
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value accepted a few years ago, to 30. We have, however, provisionally
retained the 25, as his new results, though almost certainly correct, have
not yet been universally accepted, and perhaps need verification.

344. A less technical state-
ment of the solar radiation may
be made in terms of thickness of
the quantity of ice which would
be melted by it in a given time.
Since it requires about eighty calo-
ries of heat to melt a kilogram of
ice, it follows that twenty-five calo-
ries per minute per square metre
would liquefy in an hour a sheet
of ice one metre square and about
nineteen millimetres thick. Accord-
ing to this the sun’s heat would
melt about 174 feet of ice annu-
ally on the earth’s equator; or 136%
feet yearly all over the surface of Fic. 122.
the earth, if the heat annually re-  Langley’s Spectro-Bolometer, as
ceived were equally distributed in ~ used for Mapping the Energy of
all latitudes. (See note at end of the Prismatic Spectrum.
the chapter, page [232])

345. Solar Heat expressed as Energy.—Since according to
the known value of the “mechanical equivalent of heat” (Physics,
p. 159) a horse-power corresponds to about 10% calories per minute,
it follows that each square metre of surface (neglecting the air-
absorption) would receive, when the sun is overhead, about two
and one-third horse-power continuously. Atmospheric absorption
cuts this down to about one and one-half horse-power, of which
about one-eighth can be actually utilized by properly constructed
machinery, as, for instance, the solar engines of Ericsson and Mou-
chot (see Langley’s “New Astronomy”). In Ericsson’s apparatus the
reflector, about 11 feet by 16 feet, collected heat enough to work a
three-horse-power engine very well. Taking the earth’s surface as
a whole, the energy received during a year aggregates about sixty
mile-tons for every square foot. That is to say, the heat annually
recetwed on each square foot of the earth’s surface, if employed in a
perfect heat engine, would be able to hoist sixty tons to the height of
a mile.
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346. Solar Radiation at the Sun’s Surface.—If, now, we
estimate the amount of radiation at the sun’s surface itself, we come
to results which are simply amazing and beyond comprehension. It
is necessary to multiply the solar constant observed at the earth
(which is at a distance of 93,000000 miles from the sun) by the
square of the ratio between 93,000000 and 433,250, the radius of
the sun. This square is about 46,000; in other words, the amount
of heat emitted in a minute by a square metre of the sun’s surface
is about 46,000 times as great as that received by a square metre
at the earth. Carrying out the calculations, we find that this heat
radiation at the surface of the sun amounts to over a million calories
per square metre per minute; that it is over 100,000 horse-power per
square metre continuously acting; that if the sun were frozen over
completely to a depth of fifty feet, the heat emitted is sufficient to
melt this whole shell in one minute of time; that if an ice bridge
could be formed from the earth to the sun by a column of ice two
and one-fourth miles square at the base and extending across the
whole 93,000000 of miles, and if by some means the whole of the
solar radiation could be concentrated upon this column, it would
be melted in one second of time, and in between seven and eight
seconds more would be dissipated in vapor. To maintain such a
development of heat by combustion would require the hourly burning
of a layer of the best anthracite coal from sixzteen to twenty feet
thick over the sun’s entire surface,—a ton for every square foot of
surface,—at least nine times as much as the consumption of the
most powerful blast furnace in existence. At that rate the sun, if
made of solid coal, would not last 6000 years.

347. Waste Of Solar Heat.—Those estimates are of course
based on the assumption that the sun radiates heat equally in all di-
rections, and there is no assignable reason why it should not do so. On
this assumption, however, so far as we can see, only a minute fraction
of the whole radiation ever reaches a resting-place. The earth receives
about m of the whole, and the other planets of the solar system,
with the comets and the meteors, get also their shares; all of them to-
gether, perhaps ten or twenty times as much as the earth. Something
like W%)oooo of the whole seems to be utilized within the limits of the
solar system. As for the rest, science cannot yet tell what becomes of it.
A part, of course, reaches distant stars and other objects in interstellar
space; but by far the larger portion seems to be “wasted,” according to
our human ideas of waste.



THE SUN’S LIGHT AND HEAT. 225

348. Experiments with the thermopile, first conducted by
Henry at Princeton in 1845, show that the heat from the edges of the
sun’s disc, like the light, is less than that from the centre—according
to Langley’s measurements about half as much. The explanation
evidently lies in its absorption by the solar atmosphere.

349. The Sun’s Temper-
ature.—While we can measure A
with some accuracy the quantity »>
of heat sent us by the sun, it
is different with its temperature
in respect to which we can only Fig. 123.
say that it must be very high—
much higher than any temperature attainable by known methods
on the surface of the earth.

This is shown by a number of facts, for instance, by the great
abundance of the violet and ultra-violet rays in the sunlight.

Again, by the penetrating power of sunlight; a large percentage
of the heat from a common fire, for instance, being stopped by a
plate of glass, while nearly the whole of the solar radiation passes
through.

The most impressive demonstration, however, follows from this
fact; viz., that at the focus of a powerful burning-lens all known
substances melt and vaporize, as in an electric arc. Now at the
focus of the lens the limit of the temperature is that which would
be produced by the sun’s direct radiation at a point where the sun’s
angular diameter equals that of the burning-lens itself seen from the
focus, as represented in[Fig. 123] An object at F would theoretically
(that is, if there was no loss of heat conducted away by surrounding
bodies and by the atmosphere) reach the same temperature as if
carried to a point where the sun’s angular diameter equals the angle
LFL'. In the most powerful burning-lenses yet constructed a body
at the focus is thus virtually carried up to within about 240,000
miles of the sun’s surface, where its apparent diameter would be
about 80°. Here, as has been said, the most refractory substances
are immediately subdued. If the earth were to approach the sun as
near as the moon is to us, she would melt and be vaporized.

350. Ericsson in 1872 made an exceedingly ingenious and interest-
ing experiment illustrating the intensity of the solar heat. He floated a
calorimeter, containing about ten pounds of water, upon the surface of a
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large mass of molten iron by means of a raft of fire-brick, and found that
the radiation of the metal was a trifle over 250 calories per minute for
each square foot of surface; which is only ﬁ part of the amount emitted
by the same area of the sun’s surface. He estimated the temperature of
the metal at 3000° F. or 1649° C.

351. Effective Temperature.—The question of the sun’s
temperature is embarrassed by the fact that it has no one temper-
ature; the temperature at different parts of the solar photosphere
and chromosphere must be very different. We evade this difficulty
to some extent by substituting for the actual temperature, as the
object of inquiry, what has been called the sun’s “effective temper-
ature”; that is, the temperature which a sheet of lampblack must
have in order to radiate the amount of heat actually thrown off by
the sun. (Physicists have taken the radiating power of lampblack as
unity.) If we could depend upon the laws' deduced from laboratory
experiments, by which it has been sought to connect the tempera-
ture of the body with its rate of radiation, the matter would then
be comparatively simple: from the known radiated quantity of heat
(in calories) we could compute the effective temperature in degrees.
But at present it is only by a very unsatisfactory process of extrap-
olation that we can reach conclusions. The sun’s temperature is so
much higher than any which we can manage in our laboratories,
that there is not yet much certainty to be obtained in the matter.
Rosetti, the most recent investigator, whose results seem to be on
the whole the most probable, obtains 10, 000° C. or 18,000° F. for

the effective temperature.

352. Constancy of the Sun’s Heat.—It is an interesting and
thus far unsolved problem, whether the total amount of the sun’s
radiation varies perceptibly at different times. It is only certain
that the variations, if real, are too small to be detected by our
present means of observation. Possibly, at some time in the future,

LA number of such laws have been formulated; for instance, the well-known
law of Dulong and Petit (Physics, p. 470). The French physicists Pouillet and
Vicaire, using this formula, have deduced values for the sun’s effective tempera-
ture running from 1500° to 2500° C. Ericsson and Secchi, using Newton’s law of
radiation (which, however, is certainly inapplicable under the circumstances),
put the figure among the millions. Zdllner, Sporer, and Lane give values ranging
from 25,000° to 50,000° C.
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observations on a mountain summit above the main body of our
atmosphere may decide the question.

It is not unlikely that changes in the earth’s climate such as
have given rise to glacial and carboniferous periods may ultimately
be traced to the condition of the sun itself, especially to changes
in the thickness of the absorbing atmosphere, which, as Langley
has pointed out, must have a great influence in the matter. Since
the Christian era, however, it is certain that the amount of heat
annually received from the sun has remained practically unchanged.
This is inferred from the distribution of plants and animals, which
is still substantially the same as in the days of Pliny.

353. Maintenance of the Solar Heat.—The question at
once arises, if the sun is sending off such an enormous quantity
of heat annually, how is it that it does not grow cold?

(a) The sun’s heat cannot be kept up by combustion. As has
been said before, it would have burned out long ago, even if made
of solid coal burning in oxygen.

(b) Nor can it be simply a heated body cooling down. Huge as it
is, an easy calculation shows that its temperature must have fallen
greatly within the last 2000 years by such a loss of heat, even if it
had a specific heat higher than that of any known substance.

As matters stand at present, the available theories seem to be
reduced to two,—that of Mayer, which ascribes the solar heat to the
energy of meteoric matter falling on the sun; and that of Helmholtz,
who finds the cause in a slow contraction of the sun’s diameter.

354. Meteoric Theory of Sun’s Heat.—The first is based
on the fact that when a moving body is stopped, its mass-energy
becomes molecular energy, and appears mainly as heat. The amount
of heat developed in such a case is given by the formula

2
Q= ]5\3?3/9 ’

in which @ is the number of calories of heat produced, M the
mass of the moving body in kilograms, and V' its velocity in me-
tres per second; the denominator is the “mechanical equivalent of
heat” (Physics, p. 159) multiplied by 2g expressed in metres; i.e.,
425 x 2 x 9.81.

Now, the velocity of a body coming from any considerable dis-
tance and falling into the sun can be shown to be about 380 miles
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per second, or more than 610 kilometres. A body weighing one kilo-
gram would therefore, on striking the sun with this velocity, produce
about 45,000000 calories of heat,

=

This is 6000 times more than could be produced by burning it, even
if it were coal or solidified hydrogen burning in pure oxygen.

Now, as meteoric matter is continually falling upon the earth, it
must be also falling upon the sun, and in vastly greater quantities,
and an easy calculation shows that a quantity of meteoric matter
equal to ﬁ of the earth’s mass striking the sun’s surface annually
with the velocity of 600 kilometres per second would account for its
whole radiation.

355. Objections to Meteoric Theory of Sun’s Heat.—
There can be no question that a certain fraction of the sun’s heat
is obtained in this way, but it is very improbable that this fraction
is a large one; indeed, it is hardly possible that it can be as much
as one per cent of the whole.

(1) The annual fall on the sun’s surface of such a quantity of meteoric
matter implies the presence near the sun of a vastly greater mass; for,
as we shall see hereafter, only a few of the meteors that approach the
sun from outer space would strike the surface: most of them would act
like the comets and swing around it without touching. Now, if there
were any considerable quantity of such matter near the sun, there would
result disturbances in the motions of the planets Mercury and Venus,
such as observation does not reveal.

(2) Professor Peirce has shown further that if the heat of the sun
were produced in this way, the earth ought to receive from the meteors
that strike her surface about half as much heat as she gets from the sun.
Now the quantity of meteoric matter which would have to fall upon the
earth to furnish us daily half as much heat as we receive from the sun,
would amount to nearly fifty tons for each square mile. It is not likely
that we actually get m()éw of that amount. It is difficult to determine
the amount of heat which the earth actually does receive from meteors,
but all observations indicate that the quantity is extremely small. The
writer has estimated it, from the best data attainable, as less in a year
than we get from the sun in a second.

356. Helmholtz’s Theory of Solar Contraction.—We
seem to be shut up to the theory of Helmholtz, now almost uni-
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versally accepted: namely, that the heat necessary to maintain the
sun’s radiation is principally supplied by the slow contraction of its
bulk, aided, however, by the accompanying liquefaction and solidi-
fication of portions of its gaseous mass. When a body falls through
a certain distance, gradually, against resistance, and then comes to
rest, the same total amount of heat is produced as if it had fallen
freely, and been stopped instantly. If, then, the sun does contract,
heat is necessarily produced by the process, and that in enormous
quantity, since the attracting force at the solar surface is more than
twenty-seven times as great as terrestrial gravity, and the contract-
ing mass is immense. In this process of contraction each particle
at the surface moves inward by an amount equal to the diminution
of the sun’s radius: a particle below the surface moves less and un-
der a diminished gravitating force; but every particle in the whole
mass, excepting only that at the exact centre of the globe, con-
tributes something to the evolution of heat. In order to calculate
the precise amount of heat evolved by a given shrinkage it would
be necessary to know the law of increase of the sun’s density from
the surface to the centre; but Helmholtz has shown that under the
most unfavorable conditions a contraction in the sun’s diameter of
about two hundred and fifty feet a year (125 feet in the sun’s radius)
would account for the whole annual output of heat. This contraction
is so slow that it would be quite imperceptible to observation. It
would require more than 9000 years to reduce the sun’s diameter
by a single second of arc; and nothing much less would be certainly
detectible by our measurements. If the contraction is more rapid
than this, the mean temperature of the sun must be actually rising,
notwithstanding the amount of heat it is losing. Long observation
alone can determine whether this is really the case or not.

357. Lane’s Law.—It is a remarkable fact, first demonstrated
by Lane of Washington, in 1870, that a gaseous sphere, losing heat by
radiation and contracting under its own gravity, must rise in temperature
and actually grow hotter, until it ceases to be a “perfect gas,” either by
beginning to liquefy, or by reaching a density at which the laws of perfect
gases no longer hold. The kinetic energy developed by the shrinkage of
a gaseous mass is more than sufficient to replace the loss of heat which
caused the shrinkage. In the case of a solid or liquid mass this is not
so. The shrinkage of such a mass contracting under its own gravity on
account of the loss of heat is never sufficient to make good the loss; but
the temperature falls and the body cools. At present it appears that
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in the sun the relative proportions of true gases and liquids are such
as to keep the temperature nearly stationary, the liquid portions of the
sun being of course the little drops which are supposed to constitute the
clouds of the photosphere.

358. Future Duration of the Sun.—If this shrinkage theory
of the solar heat is correct (and there is every reason to accept it),
it follows that in time the sun’s heat must come to an end, and,
looking backwards, we see that there must have been a beginning.

We have not sufficient data to enable us to calculate the future
duration of the sun with exactness, though an approximate esti-
mate can he made. According to Newcomb, if the sun maintains its
present radiation, it will have shrunk to half its present diameter in
about 5,000000 years at the longest. Since when reduced to this size
it must be about eight times as dense as now, it can hardly then
continue to be mainly gaseous, and its temperature must begin to
fall. Newcomb’s conclusion, therefore, is that it is not likely that
the sun can continue to give sufficient heat to support such life on
the earth as we are now acquainted with, for 10,000000 years from
the present time.

359. Age of the Sun.—As to the past of the solar history on
this hypothesis, we can be a little more definite. It is only necessary
to know the present amount of radiation, and the mass of the sun,
to compute how long the solar fire can have been maintained at its
present intensity by the processes of condensation. No conclusion
of geometry is more certain than this,—that the contraction of the
sun to its present size, from a diameter even many times greater
than Neptune’s orbit, would have furnished about 18,000000 times
as much heat as the sun now supplies in a year, and therefore that
the sun cannot have been emitting heat at the present rate for more
than 18,000000 years, if its heat has really been generated in this
manner.

But of course this conclusion as to the possible past duration of the
solar system rests upon the assumption that the sun has derived its heat
solely in this way; and moreover, that it radiates heat equally in all
directions in space,—assumptions which possibly further investigations
may not confirm.

360. Constitution of the Sun.—(a) As to the nature of the
main body or nucleus of the sun, we cannot be said to have cer-
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tain knowledge. It is probably gaseous, this being indicated by its
low mean density and its high temperature—enormously high even
at the surface, where it is coolest. At the same time the gaseous
matter at the nucleus must be in a very different state from gases
as we commonly know them in our laboratories, on account of the
intense heat and the extreme condensation by the enormous force of
solar gravity. The central mass, while still strictly gaseous, because
observing the three physical laws of Boyle, Dalton, and Gay Lussac,
which characterize gases, would be denser than water, and viscous;
probably something like tar or pitch in consistency.

While this doctrine of the gaseous constitution of the sun is gen-
erally assented to, there are still some who are disposed to consider
the great mass of the sun as liquid.

361. (b) The photosphere is probably a shell of incandescent
clouds, formed by the condensation of the vapors which are exposed
to the cold of space.

362. (c) The photospheric clouds float in an atmosphere con-
taining, still uncondensed, a considerable quantity of the same va-
pors out of which they themselves have been formed, just as in our
own atmosphere the air around a cloud is still saturated with water
vapor. This vapor-laden atmosphere, probably comparatively shal-
low, constitutes the reversing layer, and by its selective absorption
produces the dark lines of the solar spectrum, while by its general
absorption it probably produces the darkening at the limb of the
sun.

But it will be remembered that Mr. Lockyer and others are disposed
to question the existence of any such shallow absorbing stratum, consid-
ering that the absorption takes place in all regions of the solar atmosphere
even to a great elevation.

!The law of Dalton (Physics, p. 181) is, that any number of different gases
and vapors tend to distribute themselves throughout the space which they occupy
in common, each as if the others were absent. The law of Boyle or Mariotte
(Physics, p. 110) is, that at any given temperature the volume of any given
amount of gas varies inversely with the pressure: i.e., pv = p’v’. The law of Gay
Lussac (Physics, p. 185) is, that a gas under constant pressure expands in volume
uniformly under uniform increment of temperature, so that Vi = V(1 + at).
This is not true of vapors in presence of the liquids from which they have been
evaporated; for instance, of steam in a boiler.
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363. (d) The chromosphere and prominences are composed of
the permanent gases, mainly hydrogen and helium, which are min-
gled with the vapors of the reversing stratum in the region near
the photosphere, but usually rise to far greater elevations than do
the vapors. The appearances are for the most part as if the chro-
mosphere was formed of jets of heated hydrogen ascending through
the interspaces between the photospheric clouds, like flames playing
over a coal fire.

364. (e) The corona also rests on the photosphere, and the
peculiar green line of its spectrum is brightest just at
the surface of the photosphere, in the reversing stratum and in the
chromosphere itself; but the corona extends to a far greater elevation
than even the prominences ever reach, and seems to be not wholly
gaseous, but to contain, besides the hydrogen and the mysterious
“coronium,” dust and fog of some sort, perhaps meteoric. Many
of its phenomena are as yet unexplained, and since it can only be
observed during the brief moments of total solar eclipses, progress
in its study is necessarily slow.

364*. Note to The total heat received by the earth
from the sun in any given time is that intercepted by its diametrical
cross-section, i.e., by the area of one of its great circles kept always
perpendicular to the sun’s rays. The quantity of ice which would be
melted annually on this circular plane by the solar rays would be a sheet
having a thickness of 166.5 metres or 546 feet (19™™ x 24 x 365% =
166.5met),

The thickness of the ice which could be melted in a year on a narrow
equatorial belt would be %6&, or 174" since such a belt intercepts the
rays that would otherwise fall on a diametrical strip of the same width
upon the circular plane.

If the sun’s heat were uniformly distributed over the earth’s whole
surface, which equals four great circles, (47R?), it could melt a shell
having a thickness of #, or 136% "

It is true that at the sea-level the solar-constant is much diminished
by atmospheric absorption; and probably does not exceed fifteen calories
per minute directly received from the sun’s rays. But a large part of
the solar heat absorbed by the atmosphere reaches the earth’s surface
indirectly, so that it must not be considered as lost to the earth, because
not directly measurable by the actinometer.
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CHAPTER X.

ECLIPSES: FORM AND DIMENSIONS OF SHADOWS.—LUNAR
ECLIPSES.—SOLAR ECLIPSES.—TOTAL, ANNULAR, AND
PARTIAL.—ECLIPTIC LIMITS AND NUMBER OF ECLIPSES
IN A YEAR.—THE SAROS.—OCCULTATIONS.

365. THE word eclipse (Greek &cdeufic) is strictly a medical
term, meaning a faint or swoon. Astronomically it is applied to
the darkening of a heavenly body, especially of the sun or moon,
though some of the satellites of other planets besides the earth are
also “eclipsed” from time to time. An eclipse of the moon is caused
by its passage through the shadow of the earth; an eclipse of the sun,
by the interposition of the moon between the sun and the observer,
or, what comes to the same thing, by the passage of the moon’s
shadow over the observer.

366. Shadows.—If interplanetary space were slightly dusty,
we should see, accompanying the earth and moon and each of the
planets, a long black shadow projecting behind it and travelling
with it. Geometrically speaking, this shadow of a body, the earth
for instance, is a solid—not a surface. It is the space from which
sunlight is excluded. If we regard the sun and other heavenly bodies
as truly spherical, these shadows are cones with their axes in the
line joining the centres of the sun and the shadow-casting body, the
point being always directed away from the sun, because the sun is
always the larger of the two.

367. Dimensions of the Earth’s Shadow.—The length of
the shadow is easily found. In we have from the similar
triangles OED and ECa, OD : Ea :: OF : EC or l. OD is the
difference between the radii of the sun and the earth, = R — r.
Ea =r, and OF is the distance of the earth from the sun = A.

T 1
H = —
ence [l =A X (R—r) 108.5A
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(The fractional factor is constant, since the radii of the sun and
earth are fixed quantities. Substituting the values of the radii, we
find it to be Té.z)') This gives 857,200 miles for the length of the
earth’s shadow when A has its mean value of 93,000000 miles, re-
garding the earth as a perfect sphere and taking its mean radius.
This length varies about 14,000 miles on each side of the mean as

the earth changes its distance from the sun.
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F1c. 124.—Dimensions of the Earth’s Shadow.

The semi-angle of the cone (the angle ECb, or ECB in the [figure)) is
found as follows. Since OEB is exterior to the triangle BEC),

OEB = EBC + BCE,
or BCE = OEB — EBC.

Now, OEB is the sun’s apparent semi-diameter as seen from the earth,
and EBC(C is the earth’s semi-diameter as seen from the sun, which is the

same thing as the sun’s horizontal parallax (Art. 83)).

Putting S for the sun’s semi-diameter, and p for its parallax, we
have—
Semi-angle at C' = S — p.!

From the cone aCb all sunlight is excluded, or would be were it
not for the fact that the atmosphere of the earth by its refraction
bends some of the rays into this shadow. The effect is to make the
shadow a little larger in diameter, but less perfectly dark.

368. Penumbra.—If we draw the lines Ba and Ab, crossing at
C' between the earth and the sun, they will bound the penumbra.
Within this space a part, but not the whole, of the sunlight is cut
off: an observer outside of the shadow, but within this cone-frustum,

.
sin (S —p)’

one given above.

'Also, I = an expression sometimes more convenient than the
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which tapers towards the sun, would see the earth as a black body
encroaching on the sun’s disc. The semi-angle of the penumbra
EC"a is easily shown to be S + p.

369. Although geometrically the boundaries of the shadow and
penumbra are perfectly definite, they are not so optically. If a screen
were placed at M perpendicular to the axis of the shadow,
no sharply defined lines would mark the boundaries of either shadow
or penumbra; near the edge of the shadow, the penumbra would be
very nearly as dark as the shadow itself, only a mere speck of the
sun being visible there; and at the outer limit of the penumbra the
shading would be still more gradual.

370. Eclipses of the Moon.—The axis of the earth’s shadow
is always directed to a point exactly opposite the sun. If, then, at
the time of full moon, the moon happens to be near the ecliptic
(that is, not far from one of the nodes of her orbit), she will pass
into the shadow and be eclipsed. Since, however, the moon’s orbit
is inclined about five and one-fourth degrees to the plane of the
ecliptic, this does not happen very often (seldom more than twice
a year). Ordinarily the moon passes north or south of the shadow
without touching it.

Lunar eclipses are of two kinds,—partial and total: total when
she passes into the shadow completely; partial when she only partly
enters it, going so far to the north or south of the centre of the
shadow that only a portion of her disc is obscured.

We may also have a “penumbral eclipse” when she passes merely
through the penumbra, without touching the shadow. In this case, how-
ever, the loss of light is so gradual and so slight, unless she almost grazes
the shadow, that an observer would notice nothing unusual.

371. Size of the Earth’s Shadow at the Point where the
Moon crosses it.—Since £C' in is 857,000 miles, and the
distance of the moon from the earth is on the average about 239,000
miles, C'M must be 618,000 miles, and M N, the semi-diameter of
the shadow at this point, will be % of the earth’s radius. This gives
MN = 2854 miles, and makes the whole diameter of the shadow a
little over 5700 miles, about two and two-thirds times the diameter
of the moon. But this quantity varies considerably. The shadow is
sometimes more than three times as large as the moon, sometimes

hardly more than twice its size.
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372. We may reach the same result in another way. Considering
the triangle ECN, we have the angular semi-diameter of the
cross-section of the shadow where the moon passes through it, as seen
from the earth, represented by M EN.

But ENa=MEN + ECN;
whence MEN = ENa — ECN.

Now ENa is the semi-diameter of the earth as seen from the moon;
that is; it is the moon’s horizontal parallaz, for which we write P. Hence,
substituting for EC'N its value S — p, we get

MEN=P+p—8.

MEN is called “the radius of the shadow.” The mean value of P is 57’ 2";
of p, 8”.8; and of S, 16’2”, which makes the mean value of MEN =
41'9”. The mean value of the moon’s apparent semi-diameter is 15" 40",
the ratio between the semi-diameter of the moon and the radius of the
shadow being about 22, as before.

F1c. 125.—Diameter of Earth’s Shadow where the Moon crosses it.

In computing a lunar eclipse, this angular value for the “radius of the
shadow,” as it is called, is more convenient than its value in miles. It is
customary to increase it by about & part in order to allow for the effect
of the earth’s atmosphere, the value ordinarily used being %(P +p-—29).
Some computers, however, use %, and others %. On account of the
indistinctness of the edge of the shadow it is not easy to determine what

precise value ought to be employed.

373. Duration of a Lunar Eclipse.—When central, a total
eclipse of the moon may, all things favoring, continue total for about
two hours, the interval from the first contact to the last being about
two hours more. This depends upon the fact that the moon’s hourly
motion is nearly equal to its own diameter. The whole interval from
first contact to last is the time occupied by the moon in moving from
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a to d (Fig. 126)). The totality lasts while it moves from b to c. The
duration of a non-central eclipse varies, of course, according to the
part of the shadow through which the moon passes.

Fi1G. 126.—Duration of a Lunar Eclipse.

374. Lunar Ecliptic Limit.—The lunar ecliptic limit is the
greatest distance from the node of the moon’s orbit at which the
sun can be consistent with having an eclipse. This limit depends
upon the inclination of the moon’s orbit, which varies a little, and
also upon the radius of the shadow at the time of the eclipse and
the moon’s apparent semi-diameter, which quantities are still more
variable. Hence we recognize two limits, the major and minor. If the
distance of the sun from the node at the time of full moon exceeds
the major limit, an eclipse is impossible; if it is less than the minor,
an eclipse is inevitable. The major limit is found to be 12°5'; the
minor, 9°30’. Since the sun passes over an arc of 12°5’ in less than
thirteen days, it follows that an eclipse of the moon cannot possibly
take place more than thirteen days before or after the time when
the sun crosses the node.

Fia. 127.—Lunar Ecliptic Limit.

375. In let NE be the ecliptic, and NM the orbit of the
moon, the point N being the node, and the angle at N the inclination
of the moon’s orbit. FE is the centre of the earth’s shadow. The sun,
of course, is directly opposite, and its distance from the opposite node
is equal to EN. M is the centre of the moon. Call the semi-diameter
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of the moon S’; then EM (the greatest possible distance between FE
and M which permits an eclipse) equals the sum of the semi-diameters
of the moon and shadow, or S’ 4+ (P + p — S), and the corresponding
ecliptic limit £ N is found by solving the spherical triangle M N E, having
given M E and the angle at N, which is about 5%0. We must also know
one other angle, and with sufficient approximation for such purposes we
may regard the angle at M as a right angle. The solution will give the
value of the ecliptic limit by assigning the proper values to the quantities
involved. The limit is always very nearly eleven times E M, because the
inclination of the moon’s orbit is nearly ﬁ of a “radian.”

376. Phenomena of a Total Lunar Eclipse.—Half an hour
or so before the moon reaches the shadow its eastern limb begins
to be sensibly darkened, and the edge of the shadow itself, when
it is first reached, looks nearly black by contrast with the bright
parts of the moon’s surface. To the naked eye the outline of the
shadow appears reasonably sharp; but with even a small telescope
it is found to be indefinite and hazy, and with a large instrument
and high magnifying power it becomes entirely indistinguishable.
It is impossible to determine the exact moment when the edge of
the shadow reaches any particular point on the moon within half a
minute or so.

Fic. 128.—Light bent into Earth’s Shadow by Refraction.

After the moon has wholly entered the shadow her disc is usually
still distinctly visible, illuminated with a dull, copper-colored light,
which is sunlight, deflected around the earth into the shadow by
the refraction of our own atmosphere, or rather by that portion of
our atmosphere which lies within ten or fifteen miles of the earth’s
surface. Since the ordinary horizontal refraction is 34’, it follows
that light which just grazes the earth’s surface will be bent inwards
by twice that amount, or 1°8. Now, the maximum “radius of the
shadow” is only 1°2’. In an extreme case, therefore, even when the
moon is exactly central in the largest possible shadow, it receives
some sunlight coming around the edge of the earth, as shown by
Fig. 128. To an observer stationed on the moon, the disc of the
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earth would appear to be surrounded by a narrow ring of brilliant
sunshine, colored with sunset hues by the same vapors which tinge
terrestrial sunsets, but acting with double power because the light
has traversed a double thickness of our air. If the weather happens
to be clear at this portion of the earth (upon its rim as seen from the
moon), the quantity of light transmitted through the atmosphere
is very considerable, and the moon is strongly illuminated. If, on
the other hand, the weather happens to be stormy in this region,
the clouds cut off nearly all the light. In the lunar eclipse of 1886
the moon was absolutely invisible to the naked eye, a very unusual
circumstance on such an occasion. At the eclipse of Jan. 28, 1888,
Pickering found that the photographic power of the centrally eclipsed

1 .
moon was about ;55555 that of the moon when uneclipsed.

377. Uses made of Lunar Eclipses.—In astronomical impor-
tance a lunar eclipse cannot be at all compared with a solar eclipse. It
has its uses, however. a. Many dates in chronology are fixed by reference
to certain lunar eclipses. For instance, the date of the Christian era is
determined by a lunar eclipse which happened upon the night that Herod
died. b. Before better methods were devised, lunar eclipses were made
use of to some extent in determining the longitude. Unfortunately, as
has been said , it is impossible to note the critical instants with
any degree of accuracy, on account of the indefiniteness of the moon’s
shadow. c¢. The study of the spectrum of the eclipsed moon gives us
some data as to the constitution of our own atmosphere. We are thus
enabled to examine light which has passed through a greater thickness
of air than is obtainable in any other way. d. The study of the heat radi-
ated by the moon during the different phases of an eclipse gives us some
important information as to the absorbing power and temperature of its
surface. Observations have been made at Lord Rosse’s observatory of all
the recent lunar eclipses, with this end in view. e. Finally, at the time
when the moon is eclipsed, it is possible to observe its passage over small
stars which cannot be seen at all when near the moon except at such a
time. Observations of these star occultations made at different parts of
the earth, furnish the best possible data for computing the dimensions
of the moon, its parallax, and for determining its precise position in its
orbit at the time of observation. The eclipses of the last few years have
been very carefully observed in this way by concert between the different
leading observatories.

378. Computation of a Lunar Eclipse.—Since all the
phases of a lunar eclipse are seen everywhere at the same abso-
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lute instant wherever the moon is above the horizon, it follows that
a single computation giving the Greenwich times of the different
phenomena is all that is needed, and can be made and published
once for all. Each observer has merely to correct the predicted time
by simply adding or subtracting his longitude from Greenwich in
order to get the true local time. The computation is very simple,
but lies rather beyond the scope of this work.

ECLIPSES OF THE SUN.

379. Dimensions of the Moon’s Shadow.—By the same
method as used for the shadow of the earth (merely substituting in
the formulee the radius of the moon for that of the earth), we find
that the length of the moon’s shadow at any time is m of its
distance from the sun, and at new moon averages 232,150 miles. It
varies not quite 4000 miles each way, and so ranges from 236,050 to
228.300. The semi-angle of the moon’s shadow is practically equal
to the semi-diameter of the sun at the earth, or very nearly 16'.

B
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F1c. 129.—The Moon’s Shadow on the Earth.
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380. The Moon’s Shadow on the Earth’s Surface.—Since
the mean length of the shadow is less than the mean distance of
the moon from the earth (which is 238,800 miles), it is obvious
that on the average it will not reach the earth. On account of the
eccentricity of the moon’s orbit however, our satellite is much of the
time considerably nearer than this mean distance, and may come
within 221,600 miles from the earth’s centre, or about 217,650 miles
from its surface. The shadow, also, under favorable circumstances,
may have a length of 236,050 miles. Its point may therefore at
times extend nearly 18,400 miles beyond the earth’s surface. The
cross-section of the shadow where the earth’s surface cuts it (at o in
Fig. 129)) will then be 167 miles. This is the largest value possible.

Of course, if the shadow strikes obliquely on the surface of the earth,
as it must except when the moon is in the zenith, the shadow spot will
be owval instead of circular, and the length of the oval along the earth’s
surface may much exceed the true cross-section of the shadow.
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381. The “Negative” Shadow.—Since the distance of the
moon may be as great as 252,970 miles from the earth’s centre, or
nearly 249,000 miles from its surface, while the shadow may be as
short as 228,300 miles, we may have the state of things indicated by
placing the earth at B in the [figurel The vertex of the shadow, V,
will then fall 21,700 miles short of the surface, and the cross-section
of the “shadow produced” will have a diameter of 206 miles where
the earth’s surface cuts it. When the shadow falls near the edge
of the earth, this cross-section may be as great as 230 miles. The
shadow-spot which is formed by the intersection of the produced
shadow-cone with the earth’s surface is sometimes called the nega-
tive shadow, because in calculating an eclipse its radius comes out
from the formulae as a minus quantity in case the shadow does not
reach the earth.

382. Total and Annular Eclipses.—To an observer within
the true shadow cone, that is, between V' and the moon in
the sun will be totally eclipsed; but an observer in the produced
cone beyond V' will see the moon projected on the sun, leaving an
uneclipsed ring around it. He will have what is called an annular
eclipse. These annular eclipses are considerably more frequent than
total eclipses—nearly in the ratio of three to two.
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F1G. 130.—Width of the Penumbra of the Moon’s Shadow.

383. The Penumbra and Partial Eclipses.—The penumbra
can easily be shown to have a diameter on the line C'D of
very nearly twice the moon’s diameter. We may take it as having
an average diameter at this point of 4400 miles; but as the earth is
often beyond V, its cross-section at the earth is sometimes as much
as 4800 miles. An observer situated within the penumbra observes
a partial eclipse: if he is near the shadow cone, the sun will be
mostly covered by the moon; but if near the outer limit of the
penumbra, the moon will only slightly encroach on the sun’s disc.
While, therefore, total and annular eclipses are visible as such only
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by an observer within the narrow path traversed by the shadow-
spot, the same eclipse will be visible as a partial one everywhere
within 2000 miles on either side of the shadow path; and the 2000
miles is to be reckoned perpendicularly to the axis of the shadow.
When, for instance, the penumbra falls, as shown in the
distance BC measured along the earth’s surface will be over 3000
miles, although BF is only 2000.

384. Velocity of the Shadow and Duration of Eclipses.
—The moon advances along its orbit very nearly 2100 miles an
hour, and were it not for the earth’s rotation this is the rate at
which the shadow would pass the observer. The earth, however,
is rotating towards the east in the same general direction as that
in which the shadow moves, and its surface moves at the rate of
about 1040 miles an hour at the equator. An observer, therefore,
on the earth’s equator, with the moon near the zenith, would be
passed by the shadow with a speed of about 1060 miles per hour
(2100 — 1040); and this is its slowest velocity, which is about equal
to that of a cannon-ball.

-
-
-

Fia. 131.—Track of the Moon’s Shadow, Eclipse of July, 1878.

In higher latitudes, where the velocity of the earth’s rotation
is less, the relative speed of the shadow is higher; and where the
shadow falls very obliquely, as it does when an eclipse occurs near
sunrise or sunset, the advance of the shadow along the earth’s sur-
face may become exceedingly swift,—as great as 4000 or 5000 miles
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per hour. |Fig. 131} which we owe to the courtesy of the publish-
ers of Langley’s “New Astronomy,” shows the track of the moon’s
shadow during the eclipse of July 29, 1878.

385. Duration of an Eclipse.—A total eclipse of the sun
observed at a station near the equator under the most favorable
conditions possible (the shadow-spot having its maximum diameter
of 167 miles), may continue total for seven minutes and fifty-eight
seconds. In latitude 40° the duration of totality can barely equal six
and one-quarter minutes. The greatest possible excess of the radius
of the moon over that of the sun is only 1'19”.

An annular eclipse may last for 12™24°% at the equator. The
maximum width of the ring of the sun visible around the moon is
137",

In the observation of an eclipse four “contacts” are noted: the
first when the edge of the moon first touches the edge of the sun;
the second, when the eclipse becomes total or annular; the third,
at the cessation of the total or annular phase; and the fourth, when
the moon finally leaves the disc of the sun. From the first contact
to the fourth the duration may be a little over two hours.

Fia. 132.—Solar Ecliptic Limits.

386. The Solar Ecliptic Limits.—It is necessary, in order
to have an eclipse of the sun, that the moon should encroach on
the cone ACBD , which envelops earth and sun. In this
case the “true” angular distance between the centres of the sun and
moon—that is, their distance as seen from the centre of the earth—
would be the angle M ES in the [figure, This is made up of three
angles: M EF, which equals the moon’s semi-diameter, S’; AES,
the sun’s semi-diameter; S; and FFEA. This latter angle is equal
to the difference between CFE and FAE. CFE is the moon’s
horizontal parallax (the semi-diameter of the earth seen from the
moon), and FFAE or CAE is the sun’s parallax. FEA, therefore,
equals P — p; and the whole angle M ES equals S + S+ P — p.



ECLIPSES. 244

This angle may range from 1°34' 13" to 1°24' 19", according to the
changing distances! of the sun and moon from the earth.

The corresponding distances of the sun from the node, calculated
in the same way as the lunar ecliptic limits (taking the maximum
inclination of the moon’s orbit as 5° 19" and the minimum as 4° 57,
according to Neison), give 18°31" and 15°21’ for the major and
minor ecliptic limits.

In order that an eclipse may be central (total or annular) at any
part of the earth, it is necessary that the moon should lie wholly
inside the cone ACBD, as at M’. In this case the angle M'ES will
be S — S’ + P — p, and the corresponding major and minor central
ecliptic limits come out 11°50" and 9° 55'.

387. Phenomena of a Solar Eclipse.—There is nothing of
special interest until the sun is mostly covered, though before that
time the shadows cast by foliage begin to look peculiar. The light
shining through every small interstice among the leaves, instead
of forming a little circle on the earth, makes a little crescent—an
image of the partly covered sun.

Some ten minutes before totality the darkness begins to be felt,
and the remaining light, coming as it does from the edge of the sun
only, is much altered in quality, producing an effect very like that
of a calcium light rather than sunshine. Animals are perplexed,
and birds go to roost. The temperature falls a few degrees, and
sometimes dew appears.

In a few moments, if the observer is so situated that his view
commands a distant western horizon, the moon’s shadow is seen
coming much like a heavy thunder-storm. It advances with almost

"'We give herewith in a table the different quantities which determine the
dimensions of the shadows of the earth and moon, as well as the ecliptic limits
and the duration of eclipses.

Greatest. Least. Mean.
Apparent semi-diameter of sun 16’ 18" 15’ 45" 16’ 02"
Apparent semi-diameter of moon 16’ 46" 14’ 44" 157 45"
Horizontal parallax of the sun 9”.05 8".55 8".80
Horizontal parallax of the moon 61’ 18" 53’ 58" 57 38"
Inclination of moon’s orbit 5° 19 4° 57 5° 840"

Sun’s radius, 433,200 miles; earth’s (mean), 3956; moon’s, 1081.5.
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terrifying swiftness until it envelops him.

For a moment the air appears to quiver, and on every white
surface bands or “fringes,” alternately light and dark, appear. They
are a few inches wide and from a foot to three feet apart, and on
the whole seem to be parallel to the edge of the shadow. Probably
they travel with the wind; but observations on this point are as
yet hardly decisive. The phenomenon is not fully explained, but is
probably due to irregular atmospheric refraction of the light coming
from the indefinitely narrow strip of the sun’s limb on the point of
disappearing.

388. Appearance of the Corona and Prominences.—As
soon as the shadow arrives, and sometimes a little before it, the
corona and prominences become visible. The stars of the first three
magnitudes make their appearance at the same time.

The suddenness with which the darkness descends upon the ob-
server is exceedingly striking; the sun is so brilliant that even the
small portion which remains visible up to within a very few seconds
of the time of totality so dazzles the eye that it is not prepared
for the sudden transition. In a few moments, however, the vision
becomes accustomed to the changed circumstances, and it is then
found that the darkness is not really very intense. If the totality
is of short duration,—that is, if the diameter of the moon exceeds
that of the sun by less than a minute of arc,—the lower parts of the
corona and chromosphere, which are very brilliant, give a light at
least three or four times as great as that of the full moon. Since the
shadow also in such a case is of small diameter, a large quantity of
light is sent in from the surrounding air, where thirty or forty miles
away the sun is still shining; and what may seem remarkable, this
intrusion of outside light is greatest when the sky is clouded. In
such an eclipse there is not much difficulty in reading an ordinary
watch-face. In an eclipse of long duration (say five or six minutes)
it is much darker, and lanterns are necessary.

389. Observations of an Eclipse.—A total solar eclipse offers
an opportunity of making an immense number of observations of great
importance which are possible at no other time, besides certain others
which can also be made during a partial eclipse. We mention (a) Times
of the four contacts, and direction of the line joining the cusps during
the partial phases. These observations determine accurately the relative
position of the sun and moon at the time, and so furnish the means for
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correcting the tables of their motion. (b) The search for intra-mercurial
planets. It has been thought likely that there may be one or more plan-
ets between the orbit of Mercury and the sun, and during a total eclipse
they would become visible, if ever. On the whole, however, the observa-
tions, so far made, negative the existence of any body of considerable size
in this region, though in 1878, Professor Watson and Mr. Swift, it was
thought, had discovered one, if not two, such planets. (c¢) Observations
on the fringes, which have been described as showing themselves at the
commencement of totality. Probably the phenomenon is merely atmo-
spheric and of little importance, but it is not yet sufficiently understood.
(d) Photometric measurements of the intensity of the light at different
stages of the eclipse and during totality. (e) Telescopic observations of
the details of the prominences and of the corona. (f) Spectroscopic ob-
servations, both visual and photographic, upon the spectra of the lower
atmosphere of the sun, the prominences, and the corona. (g) Obser-
vations with the polariscope upon the polarization of the light of the
corona, for the purpose of determining the relation between the reflected
and intrinsic light, and perhaps the size of the reflecting particles which
are distributed through the corona. (h) Photography, both of the partial
phases and of the corona.

390. Calculation of a Solar Eclipse.—The calculation of a
solar eclipse cannot be dealt with in any such summary way as that of
a lunar eclipse, owing to the moon’s parallax, which makes the times of
contact and other phenomena different at every different station. The
moon’s apparent path in the sky, relative to the centre of the sun, is
not even a portion of a great circle, nor is it described with a uniform
velocity. Moreover, since the phenomena of a solar eclipse admit of very
accurate observations, it is necessary to take account of numerous little
details which are of no importance in a lunar eclipse.

Certain data for each solar eclipse hold good wherever the observer
may be. These are calculated beforehand and published in the nautical
almanacs; and from them, with the knowledge of his geographical posi-
tion, the observer can work out the results for his own station. But the
calculations are somewhat complicated and lie beyond our scope. The
reader is referred to any work on practical astronomy; Chauvenet and
Loomis treat the matter very fully.

391. Number of Eclipses in a Year.—The least possible
number is two, both central eclipses of the sun. The largest possible
number is seven, five of the sun and two of the moon. The eclipses
each year happen at two seasons (which may be called the “eclipse
months”), half a year apart—about the times, of course, at which
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the sun in its annual path crosses the two nodes of the moon’s orbit.
If these nodes were stationary, the eclipse months would be always
the same; but because the nodes retrograde around the ecliptic
once in about nineteen years, the eclipse months are continually
changing. The time required by the sun in passing around from a
node to the same node again is 346.62 days, which is sometimes
called the “eclipse year.”

392. Number of Lunar
Eclipses.—Representing the ecliptic
by a circle with the two
opposite nodes A and a, it is easy to
see first, that there can he but two
lunar eclipses in a year (omitting for
a moment one exceptional case). The
major lunar ecliptic limit is 12°15;
hence there is only a space of twice
that amount, or 24°30’, between L
and L', at each “node month,” within 1. 133 Number of Eclipses
which the occurrence of a full moon Annually.
might give a lunar eclipse. Now, in a
synodic month the sun moves along the ecliptic 29° 6’, while the
node moves in the opposite direction 1°31’, giving the relative
motion of the sun referred to the node equal to 30°37'; i.e., the
full-moon points on the circle would fall at a distance of 30° 37
from each other. Only one full moon, therefore, can possibly occur
within the lunar ecliptic limits each time that the sun passes the
node.

Since the minor ecliptic limit for the moon is only 9° 30’, it may
easily happen that neither of the full moons which occur nearest
to the time when the sun is at the node will fall within the limit.
There are accordingly many years which have no lunar eclipses.

Three lunar eclipses, however, may possibly happen in one cal-
endar year in the following way. Suppose the first eclipse occurs
about Jan. 1, the sun passing the node about that time; the sec-
ond may then happen about June 25 at the other node, a. The
first node, A, will run back during the year, so that the sun will
encounter it again about Dec. 13 at A’, and thus a third eclipse
may occur in December of the same year. This actually occurred
in 1787, the dates of the three lunar eclipses being Jan. 3, June 30,
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and Dec. 24.

393. Number of Solar Eclipses.—Considering now solar
eclipses, we find that there must inevitably be two. Twice the minor
limit of a solar eclipse (15°21’) is 30° 42’, which, is more
than the sun’s whole motion in a month. One new moon, at least,
therefore, must fall within the limiting distance of the node, and
two may do so, since in the [figure] S5’ is always greater than the
distance between the points occupied by two successive new moons.

If the two new moons in the two eclipse months happen to fall
very near a node, the two full moons, a fortnight earlier and later,
will both be very likely to fall outside the lunar limit. In that case
the year will have only two eclipses, both solar and both central,
i.e., either total or annular. This was the case in 1886.

Again, if in any year two full moons occur when the sun is very
near the node, then since the major solar limit is 18°31’, it may
happen, and often does, that there will be two partial solar eclipses,
one a fortnight before, the other a fortnight after, each of the lunar
eclipses, and so the year will have three eclipses in each eclipse
month—six eclipses in all, two lunar and four solar. A fifth solar
eclipse may also come in near the end of the year, if the node was
passed about Jan. 15, in the same way that sometimes happens with
a lunar eclipse: the year will then have seven eclipses. This was the
case in 1823. The most usual number of eclipses is four or five.

394. Relative Frequency of Solar and Lunar Eclipses.
—Although, taking the whole earth into account, the solar eclipses
are the most numerous, about in the proportion of four to three,
it is not so with the eclipses wvisible at any given place. A solar
eclipse can be seen only from a limited portion of the globe, while a
lunar eclipse is visible over considerably more than half the earth,
either at the beginning or end, if not throughout its whole duration;
and this more than reverses the proportion between lunar and solar
eclipses for any given station.

395. Recurrence of Eclipses, and the Saros.—It is not
known how early it was discovered that eclipses recur at a regular
interval of eighteen years and eleven and one-third days (ten and
one-third days, if there happen to be five leap years in the interval);
but the Chaldeans knew the period very well, and called it the
Saros (which means “restitution” or “repetition”), and used it in
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predicting the recurrence of these phenomena. It is a period of 223
synodic months, which is almost exactly equal to nineteen eclipse
years. The eclipse year is 3464.6201, and nineteen of them equal

65859.78, while 223 months equal 65859.32.

The difference is only % of a day (about 11 hours) in which time

the sun moves 28'. If, therefore, an eclipse should occur to-day at
new moon, with the sun exactly at the node, then after 223 months
(18 years 11 days) a new moon will occur again with the sun only
28" west of the node; so that the circumstances of the first eclipse
will be pretty nearly repeated. It would however occur about eight
hours of longitude further west on the earth’s surface, since the 223

months exceed the even 6585 days by % of a day, or 7" 42™.

396. Number of Recurrences of a Given Eclipse.—1It is
usual to speak of eclipses recurring at this regular interval as “repeti-
tions” of one and the same eclipse. A lunar eclipse is usually thus “re-
peated” 48 or 49 times. Beginning as a very small partial eclipse, with
the sun about 12° east of the node, it will be a little larger at its next
occurrence eighteen years later; and after 13 or 14 repetitions the sun
will have come so near the node that the eclipse will have become total.
It will then be repeated as a total eclipse 22 or 23 times, after which
it will become partial again with the sun west of the node, and after
13 more returns as a partial eclipse will finally dwindle away and disap-
pear, having thus recurred regularly once in every 223 months during an
interval of 865% years.

The same thing happens with the solar eclipses, only since the solar
ecliptic limit is larger than the lunar, a solar eclipse has from 65 to 70
returns, occupying some 1200 years. Of these about 25 are only partial
eclipses, the sun being so near the ecliptic limit that the azis of the
shadow does not reach the earth at all. The 45 eclipses in the middle
of the period are central somewhere or other on the earth, about 18 of
them being total, and about 27 annular. These numbers vary somewhat,
however, in different cases.

397. It is to be noticed that the Saros exhibits not only a close
commensurability of the synodic months with the eclipse years, but
also with the nodical' and anomalistic months: 242 nodical months

'The nodical month is the time of the moon’s revolution from one of its
nodes to the same node again, and is equal to 279.21222; the anomalistic month
is the time of revolution from perigee to perigee again, and equals 279.55460.

See Arts.
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equal 6585.357 days; 239 anomalistic months equal 6585.549 days.
This last coincidence is important. The moon at the end of the
Saros of 223 months not only returns very closely to its original
position with respect to the sun and the node, but also with respect
to the line of apsides of its orbit. If it was at perigee originally, it
will again be within five hours of perigee at the end of the Saros. If
this were not so, the time of the eclipse might be displaced several
hours by the perturbations of the moon’s motion, to be considered

later, in [Chap. XII.

398. Number of Eclipses in a Single Saros.—The total
number is usually about seventy, varying two or three one way or
the other, as new eclipses come in at the eastern limit and go out
at the western. Of the 70, 29 are usually lunar and 41 solar; and
of the solar, 27 are central, 17 being annular and 10 total. (These
numbers are necessarily only approximate.) It appears, therefore,
that total solar eclipses, somewhere or other on the earth, are not
very rare, there being about ten in eighteen years. Since, however,
the shadow track averages less than 100 miles in width, each total
eclipse is visible, as total, over only a very small fraction of the
earth’s whole surface—about 2—(1)0 in the mean. This gives about one
total eclipse in 360 years, in the long run, at any given station.

The total solar eclipses visible in the United States during the present
century are the following:—

June 10, 1806, in New York and New England, duration 4% minutes;
Nov. 30, 1834, in Arkansas, Missouri, Alabama, and Georgia, duration
2 minutes; July 18, 1860, in Washington Territory and Labrador, 3 min-
utes; Aug. 7, 1869, in Iowa, Illinois, Kentucky, North Carolina, 2% min-
utes; July 29, 1878, in Wyoming, Colorado, Texas, 2% minutes; Jan. 11,
1880, in California, duration 32 seconds; Jan. 1, 1889, in California and
Montana, 2% minutes; May 27, 1900, from Louisiana to Virginia, 2 min-
utes.

399. Occultations of Stars.—In theory, and in the method
of computation, the occultation of a star is precisely like a solar
eclipse, except that the shadow of the moon projected by a star
is a cylinder instead of a cone, since, compared with the distance
of the sun, that of a star is infinite: moreover, the star is a mere
point, so that there is no sensible penumbra. In other words, a star
has neither parallax nor semi-diameter, and these circumstances
somewhat simplify the formulae.
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As the moon moves always towards the east, the disappearance
of the star always takes place at the eastern limb, and the reap-
pearance at the western. In the first half of the lunation the eastern
limb is dark and invisible, and the star vanishes without warning.
The suddenness with which it vanishes and reappears has already
been referred to (Art. 255) as proof of the non-existence of a lunar
atmosphere. Observations of this sort determine the moon’s plane
with great accuracy, and when corresponding observations are made
at different places, they supply one of the best possible means of
determining their difference of longitude.

In some cases observers have reported that a star, instead of disap-
pearing instantaneously when struck by the moon’s limb (faintly visible
by earth-shine), has appeared to cling to the limb for a second or two
before vanishing, and in a few instances they have even reported it as
having reappeared and disappeared a second time, as if it had been for a
moment visible through a rift in the moon’s crust. Some of these anoma-
lous phenomena have been explained by the subsequent discovery that
the star was double, or had a faint companion.
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CHAPTER XL

CENTRAL FORCES: EQUABLE DESCRIPTION OF AREAS.—
AREAL, LINEAR, AND ANGULAR VELOCITIES.—KEPLER’S
LAWS AND INFERENCES FROM THEM.—GRAVITATION
DEMONSTRATED BY THE MOON’S MOTION.—CONIC SEC-
TIONS AS ORBITS.—THE PROBLEM OF TWO BODIES.—
THE “VELOCITY FROM INFINITY,” AND ITS RELATION
TO THE SPECIES OF ORBIT DESCRIBED BY A BODY
MOVING UNDER GRAVITATION.—THE INTENSITY OF
GRAVITATION.

400. A MOVING body left to itself, according to Newton’s first
law of motion (Physics, p. 27), moves on forever in a straight line
with a uniform velocity. If we find a body so moving, we may,
therefore, infer that it is either acted on by no force whatever, or,
if forces are acting upon it, that they exactly balance each other.

It has been customary with some writers to speak of a body thus
moving “uniformly in a straight line” as actuated by a “projectile force,”
a very unfortunate expression, which is a survival of the Aristotelian idea
that rest is more “natural” to matter than motion, and that when a body
moves, some force must operate to keep it moving. The mere uniform
rectilinear motion of a material mass in empty space implies no physical
cause, and demands no explanation. Change of motion, either in speed
or in direction—this alone implies force in operation.

401. If a body moves in a straight line,
with swiftness either increasing or decreas-
ing, we infer a force acting exactly in the
line of motion, and accelerating or retard-
ing it. If it moves in a curve, we know that
some force is acting athwart the line of mo-
tion. If the velocity in the curve increases,
we know that the direction of the force that

acts is forward, like ab (Fig. 134]), making an angle of less than 90°
with the “line of motion” at (the tangent to the path of the body);

Fi1c. 134.—Curvature of
an Orbit.
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and wice versa, if the motion of the body is retarded. If the speed
does not alter at all, we know that the force must act along the line
ac, exactly perpendicular to the line of motion.

Here, also, we find many writers, the older ones especially, bringing
in the “projectile force,” and saying that when a body moves in a curve it
does so under the action of two forces, one a force that draws it sideways,
the other the “projectile force” directed along its path. We repeat; this
“projectile force” has no present existence or meaning in the problem.
Such a force may have put the body in motion long ago, but its function
has ceased, and now we have only to do with the action of one single
force,—the deflecting force, which alters the direction of the body’s mo-
tion. Of course it is not intended to deny that the deflecting force may
itself be the resultant of any number of forces all acting together; but a
single force acting athwart a body’s line of motion is sufficient to cause
it to describe a curvilinear orbit, and from such an orbit we can only
infer the necessary existence of one such force.

402. Description of Areas.—
(a) If a body is moving uniformly on
a straight line, and if we connect the
points A, B, C, etc., [Fig. 135 which
it occupies at the end of successive
units of time with any point what-
ever, as O, we shall have a series of
triangles, AOB, etc., which will all be F1G. 135.
equal; since their bases AB, BC, etc., Description of Areas in Uniform
are equal and on the same straight Motion.
line, and they have a common vertex at O. Calling the line from A
to O its radius vector, and O the “centre,” we may say, therefore,
that when a body is moving undisturbed by any force whatever,
its radius vector, from any centre arbitrarily chosen, describes equal
areas in equal times around that centre. The area enclosed in the
triangle described by the radius vector in a unit of time is called the
body’s “areal (or “areolar”) velocity,” and in this case is constant.

403. (b) Moreover, any impulse in the line of the radius vector,
either towards or from the centre, leaves unchanged both the plane
of the body’s motion and its areal velocity.

Suppose a body moving uniformly on the line AC with
such a velocity that it describes AB, BC, etc., in successive units
of time; then, by the preceding section, the areal velocity will be
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constant, and measured by the area of any one of the equal triangles
AOB, BOC, or COL. Suppose, now, that at C' the body receives
an “impulse” directed along the radius vector towards O—a blow,
for instance, which by itself would make the body describe C'K in a
unit of time. The body will now take a new path, which will carry
it to the point D, determined by constructing the “parallelogram
of motions” CK DL, and thus combining the new motion C'K with
the former motion C'L, according to Newton’s second law (Physics,
p. 27). The new areal velocity, measured by the triangle OC' D, will
be the same as before, as is easily shown.

F1G. 136.—Description of Areas under an Impulse directed towards a Centre.

Triangle BOC' = triangle COL, because BC = C'L, and O is
their common vertex.

Also, triangle COL = triangle COD, because they have the
common base OC, and their summits L and D are on a line which
was drawn parallel to this base in constructing the parallelogram
of motions. Hence triangle BOC' = triangle COD, and the areal
velocity remains unchanged.

Also, as may be seen by following out the same reasoning with
CK' and CD’, the same result would hold true if the impulse had
been directed away from O instead of towards it.

404. This result depends entirely on the fact that the impulse CK
or CK' was exactly along the radius vector CO. If it has not been so,
then in constructing the parallelogram of motions to find the points D
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and D', we should have had to draw LD or LD’ not parallel to CO, and
the two triangles BOC' and COD would necessarily have been unequal.
COD would be greater than BOC if CK were directed ahead of the
radius vector, and less if behind it.

As regards the plane of motion, the point D is on the plane
OC'L, because LD was drawn through L parallel to OC. OCL is a
part of the plane which contains the triangles BOC and AOB, and
hence OC'D also lies in the same plane.

405. (c¢) From this obviously follows the important general
proposition that when a body is moving under the action of a force
always directed towards or from a fived centre, the radius vector will
describe equal areas in equal times; and the path of the body will all
lve in one plane.

Such a force constantly acting is simply equivalent to an indef-
inite number of separate impulses. Now if no single impulse di-
rected along the radius vector can alter the areal velocity or plane
of motion, neither can a succession of them. Hence the proposition
follows.

In case of a continuously acting force the orbit, however, will
become a curve instead of being a broken line.

Observe that this proposition remains true whether the force
is attractive or repulsive, and that it is independent of the law of
the force; that is, the force may vary directly with the distance, or
inversely as the square of the distance, or as the logarithm of it, or
in any conceivable way; it may even be discontinuous, acting only
at intervals and ceasing between times: and still the law holds good.

406. Conversely, if a body moves in this way, describing equal
areas in equal times around a point, it is easily shown that all the
forces acting upon the body must be directed toward that point.

We, however, leave the demonstration to the student.

Since the earth moves very nearly in this way in its orbit around
the sun, we conclude that the only force of any consequence acting
upon the earth is directed towards the sun. We say, “of any con-
sequence,” because there are other small forces which do slightly
modify the earth’s motion, and prevent it from exactly fulfilling the
law of areas.

As a direct consequence of the law of equal areas we have certain
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laws with respect to the linear and angular velocities of a body
moving under the action of a central force.

407. Law of Linear Velocity.—
Suppose a body moving under the action of

a force always directed towards S ([Fig. 137)),

and let AB be a portion of its path which
it describes in a second. Draw the tangent
Bb. Regarding the sector ASB as a tri-
angle (which it will be, sensibly, since the

curvature of the path in one second will be Fic. 137.
very small) the area of this triangle will be  Linear and Angular
$(AB x Sb). Now AB, the distance trav- Velocities.

elled in a second, is the linear velocity of the

body (called linear because it is measured with the same units as
any other line; i.e., in miles or in feet per second), and Sb is the
distance from the centre of force to the “line of motion,” as the tan-
gent Bb is called. For Sb, p is usually written; hence in every part

of the same orbit, V' (the velocity in miles per second) = —, and
p

is inversely proportional to p. If p were to become zero, V' would
become infinite, unless A were zero also.

408. Law of Angular Velocity.—Referring again to the same
, the area of ASB is equal to 1(AS x BS x sin ASB), or
A= %rlrg sinw. If we draw r to the middle point of AB, then
rirs = 2, nearly, since in a second of time the distance would not
change perceptibly as compared with its whole length. w will also
be a small angle, so that its sine will equal the angle itself expressed
in radians;

2A
hence 120 =A, andw = —
r

2
Now w is the angular velocity of the body; that is, the number of
“radians” which it describes in a second of time, as seen from S,
while r is the radius vector.

409. In every case, therefore, of motion under a central force,
I. The Areal velocity (acres per second) is constant; 1. The Linear
velocity (miles per second) varies inversely as the distance from the
centre of force to the body’s line of motion at the moment, which
line of motion is the tangent to the orbit at the point where the
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body happens to be; I11. The Angular velocity (radians, or degrees,
per second) varies inversely as the square of the distance of the body
from the centre of force.

410. The student will remember that it was found by obser-
vation that the sun’s angular velocity varies as the square of its
apparent diameter, and from this the law of equal areas
was inferred as a fact with respect to the earth’s motion. Newton
was the first to point out that a body moving under the action of
a central force must necessarily observe this law of areas, and, con-
versely, that a body thus observing the law of areas must necessarily
be under the control of a central force.

411. Circular Motion.—In the case of a body moving in a
circle under the action of a central force, the force must be constant,
and (Physics, p. 62) is given by the formula

V2
f - 77 (CL)
in which r is the radius of the circle and V' the velocity, while f is the
central force measured by the “acceleration” of the body towards
the centre; that is, by the number of units of velocity which the
force would generate in the body in a second of time; just as the
force of gravity is expressed by writing, g = 9.81 metres.

For many purposes it is desirable to have an expression which
shall substitute for V' (a quantity not given directly by observation)
the time of revolution, ¢, which is so given. Since V equals the

mr
circumference of the circle divided by ¢, or 5 we have at once,
by substituting this value for V' in equation (a),
o (T
f=dn (t—2> . (b)
This, of course, is merely the equivalent of equation (a), but is
often more convenient.

KEPLER’S LAWS.

412. In 1607-1620 Kepler discovered as facts, without an expla-
nation, three laws which govern the motions of the planets,—laws
which still bear his name. He worked them out from a discussion
of the observations which Tycho Brahe had made through many
preceding years. The three laws are as follows:—
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I. The orbit of each planet is an ellipse, with the sun in one
of its foci.

I1. The radius vector of each planet describes equal areas in
equal times.

III. The “Harmonic law,” so-called. The squares of the periods
of the planets are proportional to the cubes of their mean distances
from the sun; i.e., t3:t3 = a3 : a.

413. To make sure that the student apprehends the meaning and
scope of this third law, we append a few simple examples of its applica-
tion.

(1) What would be the period of a planet having a mean distance
from the sun of 100 astronomical units; 4.e., a distance 100 times that of
the earth?

(Earth’s Dist.)> : (Planet’s Dist.)> = (Earth’s Period)? : (Planet’s Period)?;

ie., 13 :100% = 1%(year) : X?(years),
whence X = 1002 = 1000 years.

(2) What would be the distance of a planet having a period of 125
years?

(1)%:125% = 1% : X3,
whence X = 1253 = 25 (Astron. units).

(3) How long would a planet require to fall to the sun?

If the sun were collected in a single point at its centre, a body start-
ing from a point on the planet’s orbit with a slight side-motion, i.e.,
motion at right angles to the radius vector, would describe an extremely
narrow ellipse around the sun, with its perihelion just af the sun, and
the aphelion at the starting-point. Practically it would “fall to the sun,”
and return just as if it had rebounded from a perfectly elastic surface:
the time of “falling” would be just equal to that of returning—the two
making up the whole period of the body in the narrow ellipse. Now the
semi-major axis of this narrow ellipse is evidently one-half the radius of
the planet’s orbit. Hence to find the period in this ellipse which is 27 (7
being taken as the time of “falling”), we have

a®:(3a)* =t*:(27)% or 1: i = t2 472,

whence T=1t/-—==0.1768t, t being the planet’s period.

w
&l



CENTRAL FORCES. 259

In the case of the earth 7 = 365% x 0.1768 = 64.56 days.
(4) What would be the period of a satellite revolving close to the
earth’s surface?

(Moon’s Dist.)® : (Dist. of Satellite)® = (27.3 days)? : X2,

or 60° : 13 = (27.3)*: X2,
27.3d
whence X = Lsays =10 g™,
602

(5) How much would an increase of 10 per cent in the earth’s distance
from the sun increase the length of the year? ANs. 56.13 days.
(6) What is the distance from the sun of an asteroid which has a
period of 3% years? ANSs. 2.305 Astron. units.

414. Many surmises were made as to the physical meaning of
these laws. More than one astronomer guessed that a force directed
toward the sun, or emanating from it, might be the explanation.
Newton proved it. He demonstrated the law of equal areas and its
converse as necessary consequences of the laws of motion. He also
proved (Physics, pp. 64-66) that if a body move in an ellipse having
a centre of force at its focus, then the force at different points in the
orbit must vary inversely as the square of the distance from that
centre. And, finally, he showed that, granting the harmonic law, the
force from planet to planet must also vary according to the same
law of inverse squares.

415. The demonstration of this last proposition for circular orbits
is so simple that we give it, merely adding (without proof) that the
proposition is equally true for elliptical orbits, if for » we put a, the
semi-major axis of the orbit.

In a circular orbit, from equation (b), (Art. 411)), we have

T
f=17 ().
where r and t are the distance and period of a planet. In the same way
the force acting upon a second planet is found from the equation

_ a2 ("
f1_47T <7512>7

2
whence izix L
ho 8 T
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But by Kepler’s third law
2 t12 ard r13,

t2’l”13

r3

whence t2 =

Substitute this value of ¢;2 in the preceding equation; we have

f ro 2 g

L= X — =
fi 2 i r2’

; . — 2.2
i.e., fifi=nr°:.re
which is the law of inverse squares.

416. Conversely, the harmonic law is just as easily shown to be a
necessary consequence of the law of gravitation in the case of circular
orbits.

From [Art. 411} Eq. (b), we have

f=4n?

T .

t727
also, from the law of gravitation,

M

f = 5

5+ M being the mass of the sun.
r

Hence, equating the two values of f,

M r 472
= =4’ and 2= 3.
r2 12 M
Similarly for another planet,
472
t2 = —r3.
1 ak
Whence, 2t =03

The demonstration for elliptical orbits is a little more complicated,
involving the “law of areas.” It is given in all works on Theoretical
Astronomy, and may be found in Loomis’s “Elements of Astronomy,”
p. 134.
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417. Correction of Kepler’s Third Law.—The “harmonic
law” as it stands is not ezxactly true, though the difference is too small
to appear in the observations which Kepler made use of in its discovery.
It would be exactly true if the planets were mere particles of matter; but
as a planet’s mass is a sensible, though a very small fraction of the sun’s
mass, it comes into account. The planet Jupiter, for instance, attracts
the sun as well as is attracted by it. If at the distance r Jupiter is
drawn towards the sun by a force which would give it in a second an
acceleration expressed by TMQ (the sun’s mass being M), then the sun in
the same time is accelerated towards Jupiter by the quantity 5 (m being
the mass of Jupiter). The rate at which the two tend to approach each
other is therefore expressed by W Hence, in discussing the motions
of the planet Jupiter around the centre of the sun, instead of writing

M
f = 2 Slmp]ya
T

M +m
— 5

we must put f
"

but (in the case of entirely circular motion)

Hence, we find
t2(M 4 m) = 472r3;
or, as a proportion,
t2(M +m) : 12 (M +mq) =3 - 13,
which is strictly true as long as the planet’s motions are undisturbed.

418. Inferences from Kepler’s Laws.—From Kepler’s laws
we are entitled to infer—

First (from the second law), that the force which retains the
planets in their orbits is directed towards the sun.

Second (from the first law), that on any given planet the force
which acts varies inversely as the square of its distance from the
sun.

Third (from the harmonic law), that the force is the same for
one planet as it would be for another in the same place; or, in other
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words, the attracting force depends only on the mass and distance
of the bodies concerned, and is wholly independent of their physical
conditions, such as their temperature, chemical constitution, etc.
It makes no difference in the motion of a planet around the sun
whether it be made of hydrogen or iron, whether it be hot or cold.

419. Verification of “Gravita-
tion” by Means of the Moon’s Mo-
tion.—When the idea of gravitation
first occurred to Newton (the apple
story is probably apocryphal), he en-
deavored to verify it by comparing the
force which keeps the moon in her orbit
with the force of gravity at the earth’s
surface, reduced in the proper propor-
tion. For lack, however, of an accurate
knowledge of the earth’s dimensions, he
failed at first, there being a discrepancy FiG. 138.

of about sixteen per cent. He had as- Vemﬁcatl.o " (.)f the Hypothesis
of Gravitation by Means of

sumed a degree to be exactly sixty miles the Motion of the Moon.

in length. Some years afterward, when

Picard’s measure of the arc of a meridian in Northern France had
been made and reported to the Royal Society, making a degree
about sixty-nine miles long, he saw at once that the new value would
reconcile the discrepancy; and he resumed his unfinished work and
completed it.

420. At the earth’s surface a body falls about 193 inches in a
second. The distance of the moon being very nearly sixty times the
earth’s radius, if gravity really varies inversely as the square of the

distance, a stone at that distance from the earth should fall 602 or

193 inch
3600 as far; that is, it ought to fall % = 0.0535 inches,—a

little more than one-twentieth of an inch. Now the distance which
the moon actually does fall towards the earth in a second, i.e., the
deflection of its orbit from a straight line in a second of time, is
easily found; and if the force which keeps the moon in its orbit is
really the same as that which makes bodies fall towards the centre
of the earth, this deflection ought to come out equal to 0™.0535.
Let AE be the distance the moon travels in a second
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2mr
= i, where r is the radius of the moon’s orbit, and ¢t the number

of seconds in a month. Then, since AEF' is a right-angled triangle,
we have,
AB: AE :: AE : AF (or 2r);
AE?

2r
The calculation is easy enough, though the numbers are rather large.
As a result it gives us AB = 0.0534 inches, which is practically equal
to the thirty-six hundredth part of 193 inches.

If the quantities did not agree in amount, the discrepancy would
disprove the theory, and, as we have said, Newton loyally gave it
up until he was able to show that the apparent discordance was the
result of a mistake in the original data, and disappeared when the
data were corrected. The agreement, however, does not establish
the theory, but only renders it probable. It does not establish it
completely, because it is conceivable that the agreement might be
a case of accidental coincidence, while the forces might really differ
as much in their nature as an electrical attraction and a magnetic.

whence AB =

421. Newton was not satisfied with merely showing that the
principal motions of the planets and the moon could be explained
by the law of gravitation; but he went on to investigate the converse
problem, and to determine what must be the motions necessary
under that law. He found that the orbit of a body moving around
a central mass is not of necessity a circle, or even a nearly circular
ellipse like the planetary orbits, but that it may be a conic section
of any eccentricity whatever—a circle, ellipse, parabola, or even an
hyperbola; but it must be a conic.

422. For the benefit of those of our readers who are not ac-
quainted with conic sections we give the following brief account of
them (Fig. 139):

a. If a cone of any angle be cut perpendicularly to the axis, the
section will be a circle—M N in the [igured

b. If it be cut by a plane which makes with the axis an angle
greater than the semi-angle of the cone, so that the plane of section
cuts completely across the cone (as E'F'), the section, is an ellipse;
the circle being merely a special case of the ellipse. Ellipses, of
course, differ greatly in form, from these which are very narrow to
the perfect circle.
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c. The parabola is formed by cutting
the cone with a plane parallel to its side;
i.e., making with the axis an angle equal
to the semi-angle of the cone. RPO is
such a plane. As all circles are alike in
form, so are all parabolas, whatever the
angle of the cone at V' and wherever the
point P is taken. If the cutting plane is
thus situated, then, no matter what is
the angle of the cone or the place where
the cut is made, the curve will always be
the same in shape, though of course its
size will depend upon a variety of cir-
cumstances. We do not stop to prove
the statement, at first a little surprising;
but it is true.
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d. If the cutting plane makes an an-
gle with the axis of the cone less than
the semi-angle at V', so that the cutting
plane gets continually deeper and deeper
into the cone, then the curve is an hy-
perbola; so called, because the plane in
this case “shoots over” (Umép BdAAerv) and intersects the “cone pro-
duced,” cutting out of this second cone a curve precisely like the
curve cut from the original, as at H'G'K’ in the [igure, The axis of
the hyperbola lies outside of the curve itself, being the line HH' in
the and the “centre” of the curve is also outside of the curve
at the middle point of this axis.

=
=3

=

F1G. 139.—The Conics.

423. Philosophically speaking there are therefore but two
species of conic sections,—the ellipse and the hyperbola, with the
parabola for a partition between them. (The circle, as has been said
before, is merely a special case of the ellipse.) will give the
reader perhaps a better idea of the nature of the curves as drawn on
a plane. In the ellipse the sum of the distances from the two foci,
FN + F'N, equals the major axis of the curve; in the hyperbola it
is the difference of these two lines (F”N’' — F'N') that equals the
major axis; in the ellipse the eccentricity is less than unity (zero in
the circle); in the hyperbola it is greater than unity; in the parabola
exactly unity.
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F1G. 140.—The Relation of the Conics to Each Other.

The general equation of a conic in polar co-ordinates, applying alike

to both the species, is
p

"T1iecosV’

. . . . . . FC !

in which r is the distance F'n, or F'n’, e is the fraction 0 or ok the
angle V is the angle PFn, PFn/, or PFn”, and p is the line FY, FY’
or F'Y" called the “s