

TABLE OF CONTENTS

(O F-To 7<) ol I 11 o T« [Tt 4 [o TR N 1

Chapter 2. ApPliCation....ciceiiiiiiiiiiiiiiiiiieiiiieeieieneteeeetenenctcnensesnasesensssnnnsesnnsonnnsns 2

Chapter 3. ConfigUration.....cicieiiieiiieiiieiieeiieeiiereintesesosasosnsosnsosnsossssssssssssssssssssnsssnses 3

Chapter 4. Initial version of the kernel........cccciviiiiiiiiiiiniiiiiiiiieiiieiiieiineciecsnessnsonses 4

Chapter 5. Updated version of the Kernel........cceieeiiiiniiiiiiiiiiiiiiiiiiiiieiieeenneeeennerennnns 9

CRaPter 6. RESOUICES. . .iiiitiiiintiiiiniieietetiastesenseosestossnstossnsosssstossnssossnsessnssossnssannnse 11
www.nvidia.com

Uncoalesced Global Accesses Sample v2022.3.0 | ii

Chapter 1.
INTRODUCTION

This sample profiles a memory-bound CUDA kernel which does a simple computation
on an array of double3 data type in global memory using the Nsight Compute profiler.
The profiler is used to analyze and identify the memory accesses which are uncoalesced
and result in inefficient DRAM accesses.

Global memory accesses on a GPU

Global memory resides in device memory and device memory is accessed via 32, 64, or
128-byte memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the
memory accesses of the threads within the warp into one or more of these memory
transactions depending on the size of the data accessed by each thread and the
distribution of the memory addresses across the threads. If global memory accesses

of the threads within a warp cannot be combined into the same memory transaction
then we refer to these as uncoalesced global memory accesses. In general, the more
transactions are necessary, the more unused bytes are transferred in addition to the bytes
accessed by the threads, reducing the instruction throughput accordingly. For example,
if a 32-byte memory transaction is generated for each thread's 4-byte access, throughput
is divided by 8.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 1

Chapter 2.
APPLICATION

The sample CUDA application adds a floating point constant to an input array of
1,048,576 (1024*1024) double3 elements in global memory and generates an output array
of double3 in global memory of the same size. double3 is a 24-byte built-in vector type
which is a structure containing 3 double precision floating point values:

struct

double x, vy, z;
}i

The uncoalescedGobal Accesses sample is available with Nsight Compute under <nsight-
compute-install-directory>/extras/samples/uncoalescedGlobal Accesses.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 2

Chapter 3.
CONFIGURATION

The profiling results included in this document were collected on the following
configuration:

» Target system: Linux (x86_64) with a NVIDIA RTX A2000 (Ampere GA106) GPU
» Nsight Compute version: 2022.1.1

The Nsight Compute Ul screen shots in the document are taken by opening the profiling
reports on a Windows 10 system.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 3

Chapter 4.
INITIAL VERSION OF THE KERNEL

The initial version of the sample code provides a naive implementation for the kernel
which adds a floating point constant to an input array of double3.

__global void addConstDouble3 (int numElements, double3 *d in, double k,
double3 *d out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;

if (index < numElements)

{

double3 a = d in[index];

a.x += k;
a.y += k;
a.z += k;
d out[index] = a;

}

The instruction a = d_in[index] in the kernel code results in each thread in a warp
accessing global memory 24-bytes apart. In the first step all threads request a load

for d_in[index] .x as shown in the following diagram. In the second step a load for
d_in[index] .y and in the third step a load for d_in[index] . z is made by all threads.

double3 double3

[: | : | Global Memory

0 | 24 | 48 |
t0 t1 t2 Global Memory Loads

| | |

Profile the initial version of the kernel

There are multiple ways to profile kernels with Nsight Compute. For full details see the
Nsight Compute Documentation. One example workflow to follow for this sample:

» Refer to the README distributed with the sample on how to build the application

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 4

https://docs.nvidia.com/nsight-compute/index.html
https://docs.nvidia.com/nsight-compute/index.html

Initial version of the kernel

» Run ncu-ui on the host system
» Use alocal connection if the GPU is on the host system. If the GPU is on a remote
system, set up a remote connection to the target system

» Use the "Profile" activity to profile the sample application
» Choose the "full" section set
» Use defaults for all other options

Summary page

All kernels in the application are profiled and the summary page is displayed. The
kernel launch parameters, cycles, duration, compute and memory throughput for each
kernel are shown. In this sample we have only one kernel launch.

The duration for this initial version of the kernel is 294 micro seconds and this is used as
the baseline for further optimizations.

@ NVIDIA Nsight Compute —] X
File Connection Debug Profile Tools Window Help

3 Connect Baselines

h addConstDouble3.ncu-rep [RO] X

Page: Summary ~ Result: 0- 494-addConstDouble3 ¥ ¢ ~ | Add Baseline ~ Apply Rules [& Occupancy Calculator | Copy as Image |~

Result Time Cycles Regs GPU SM Frequency CC Process
Current 494 - addConst.. 294.34 usecond 164,711 16 0- NVIDIA RTX A2000 559.59 cyclefusecond 8.6 [2489696] uncoalescedGlobalAccesses

3 @ Doubleclick a result to see detailed metrics.

1] 0
Function Name addConstDouble3
Demangled Name addConstDouble3(int, double3 *, double, double3 *)
Process [2489696] uncoalescedGlobalAccesses
Device Name NVIDIA RTX A2000
Grid Size 4096, 1, 1
Block Size 256, 1, 1
Cycles [eycle] 164,711
Duration [usecond] 294 34
Compute Throughput [%] 36.73
Memory Throughput [%] 72.61

Registers [register/thread] 16

Details page - GPU Speed Of Light Throughput

The details page "GPU Speed Of Light Throughput" section provides a high-level
overview of the throughput for compute and memory resources of the GPU used by the
kernel.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 5

Initial version of the kernel

@ NVIDIA Nsight Compute — m] X
File Connection Debug Profile Tools Window Help

=) Connect Baselines

&h addConstDouble3.ncu-rep [RO] x

Page: Details ~ Result: 0- 494-addConstDouble3 % ~ | AddBaseline ~ Apply Rules [Occupancy Calculator Copy as Image ~

Result Time Cycles Regs GPU SM Frequency CC Process @000
Current 494 - addConstDouble.. 294.34 usecond 164711 16 0- NVIDIA RTX A2000 559.59 cycle/usecond 8.6 [2489696] uncoalescedGlobalAccesses

@ The report contains imported source files.
» GPU Speed Of Light Throughput ()

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput reports the achieved percentage of utilization with respect to
the theoretical maximum. Breakdowns show the throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview
of the 2Zi or compute and memory resources of the GPU presented as a roo

Compute (SM) Throughput [%] 36.73

Memory Throughput [%] 72.61

L1/TEX Cache Throughput [%]

L2 Cache Throughput [%]

DRAM Throughput [%] DRAM Frequency

Memory is more heavily utilized than Compute: Look at the section to identify the DRAM bottleneck.
A\ High Memory Throughput Check memory replay (coalescing) metrics to make sure you're efficiently utilizing the bytes transferred. Also consider whether it
is possible to do more work per memory access (kernel fusion) or whether there are values you can (re)Jcompute.

The ratio o o) to double (fp64) performance on this device is 64:1. The kernel achieved 0% of this device's fp32 peak
A\ FP64/32 Utilization performance and o p64 peak performance. If determines that this kernel is fp64 bound, consider using
32-bit precision floating point operations to improve its performance. See the for mode details on roofline analysis.

The achieved fp64 performance is 18% lower than the fp64 pipeline utilization. Check the section to see if using

e GEEER Ui = fused instructions can benefit this kernel.

For this kernel it shows a hint for High Memory Throughput and suggests looking at the
memory workload analysis section. Click on Memory Workload Analysis.

Details page - Memory Workload Analysis section

The Memory Workload Analysis shows hints for LITEX Global store and load access
patterns. The description and focus metrics of these performance issues describe how
more sectors than necessary are being accessed from memory. A sector is an aligned
32-byte chunk of memory in a cache line or device memory. These additional sector
accesses are caused by uncoalesced memory accesses and can negatively impact
performance. In this case, for the load or store instructions, each thread is accessing a
double (8 bytes) and there are 32 threads in a warp. Therefore, each memory request
from a warp should ideally access 256 bytes (8 x 32), which is 8 sectors. However, in
this unoptimized version, we see 24 sectors per request. It suggests checking the Source

Counters section for uncoalesced global stores and loads. Click on the Source Counters
link.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 6

Initial version of the kernel

@ NVIDIA Nsight Compute - [m} X
File Connection Debug Profle Tools Window Help

<) Connect Baselines

& addConstDouble3.ncu-rep [RO] X

Page: Details ¥ Result: 0- 494-addConstDoul v YW - AddBaseline ~ ApplyRules [& Occupancy Calculator Copy as Image ~

Result Cycles Regs GPU SM Frequency CC Process @000
Current 494 - addConstDouble3 (4096, 1, 1)x(25.. 294.34 usecond 164,711 16 0- NVIDIA RTX A2000 559.59 cycle/usecond 8.6 [2489696] uncoalescedGlobalAccesses

» Memory Workload Analysis o =

Detailed analysis of the memory resources of the GPU. Memory can become a limiting factor for the overall kemnel performance when fully q the involved hardware units (Mem Busy), exhausting
the available communication bandwidth between those units (Max Bandwidth), or by reaching the maximum throughput of issuing memory instructions (Mem Pipes Busy). Detailed chart of the memory
units. Detailed tables with data for each memory unit.

Memory Throughput [Gbyte/second] e 56.28
72
75 Mem Pipes Busy
0 L2 Compr n Ratio

The memory access pattern for global loads in L1TEX might not be optimal. On average, this kernel accesses 8.0 bytes per thread per [~)
memory request; but the address pattern, possibly caused by the stride between threads, results in 24.0 sec per request, or 24.0*32 =
A LITEX Global Load Access Pattern 768.0 bytes of cache data transfers per request. The optimal thread address pattern for 8.0 byte accesses would result in 8.0%32 = 256.0
bytes of cache data transfers per request, to maximize LTTEX cache performance. Check the section for uncoalesced
global loads.

Name Value Info
tors per LITEX Request 24 2,359,296 / 98,304 > 8

The memory access pattern for global stores in L1TEX might not be o al. On average, this kernel accesses 8.0 bytes per thread per
memory request; but the address pattern, possibly caused by the stride between threads, results in 24.0 sectors per request, or 24.0%32 =

A L1TEX Global Store Access Pattern 768.0 bytes of cache data transfers per request. The optimal thread address pattern for 8.0 byte accesses would result in 8.0%32 = 2
bytes of cache data transfers per request, to maxi e L1TEX cache performance. Check the section for uncoalesced
global stores.

Name Value Info
S per LITEX Request 24 2,359,296 / 98,304 > 8.0

Details page - Source Counters section

The Source Counters section shows a hint for "Uncoalesced Global Accesses". It explains
that the metric “L2 Theoretical Sectors Global Excessive” is the indicator for uncoalesced
accesses. The table for this metric lists the source lines with the highest value. Click on
one of the source lines to view the kernel source at which the bottleneck occurs.

Eile Connection Debug Profile Tools Window Help
) Connect Baselines

&h addConstDouble3.ncu-rep [RO] %

Page: Details ~ Result: 0- 494-addConstDouble3 ¥ ¥ ~ | AddBaseline ~ Apply Rules & Occupancy Caleulator Copy as Image ~

Result Time Cycles Regs GPU SM Frequency CC Process @000
Current 494 - addConstDouble.. 294.34 usecond 164,711 16 0- NVIDIA RTX A2000 559.59 cycle/usecond 8.6 [2489696] uncoalescedGlobalAccesses

~ Source Counters All * O

urce metrics, including branch efficiency and sampled warp stall reasons. Warp Stall Sampling metrics are periodically sampled over the kernel runtime. They indicate when
warps were stalled and couldn't be scheduled. See the documentation for a description of all stall reasons. Only focus on stalls if the schedulers fail to issue every cycle.

Branch Instru 65,536 Branch Effic

Branch Instru 0 0.10 Avg. Divergent Branches

This kernel has uncoalesced global accesses resulting in a total of 3145728 excessive sectors (67% of the total 4718592
A\ Uncoalesced Global Accesses sectors). Check the L2 Theoretical Sectors Global Excessive table for the primary source locations. The
onal information on reducing uncoalesced device memory accesses.

L2 Theoretical Sectors Global Excessive
Location Value
524,28
524,28
524,28
524,28
524,28

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 7

Initial version of the kernel

Source page

The CUDA source and SASS(GPU Assembly) for the kernel is shown side by side.
When opening the Source page from Source Counters section, the Navigation metric is
automatically filled in to match, in this case "L2 Theoretical Sectors Global Excessive".
You can see this by the bolding in the column header. The source line at which the
bottleneck occurs is highlighted.

It shows uncoalesced global memory load accesses at line #30:

double3 a = d in[index];

It shows uncoalesced global memory store accesses at line #34:

d out[index] = a;

@ NVIDIA Nsight Compute - o bs
File Connection Debug Profile Tools Window Help
<) Connect Baselines

i addConstDouble3.ncu-rep [RO] X

Page: | Source ~ Result 0- 494-addConstDouble3 ~ ¥ ~ AddBaseline ~ ApplyRules [g] Occupancy Calculator Copy asimage ~
Result Time Cycles Regs GPU SM Frequency CC Process
Current 494 - addConstDouble3 (4096, 1,1)x(256,1,1) 294.34 usecond 164711 16 0- NVIDIA RTX A2000 559.59 cycle/usecond 8.6 [2489696] uncoalescedGlobalAccesses

View: Sourceand SASS ~

Source: uncoalescedGlobalAccessescu » & Source: addConstDouble3 » [

Navigation: L2 Theoretical Sectors Global Excessive v A J 1218 Navigation: L2 Theoretical Sectors Global Excessive *y v A 312188

squests Theoretical Sectors = * Theoretical Sectors
Source Global ~ Global Excessive # Address Source Global Excessive

—global__ ¢ nunElements, double3 *d_in, 06807f3d 64fblbl6 S2R

d 64fb1028 S2R
index = blockIdx.x * blockDim.x + threadIdx.x; d 64fb1030 THAD
(index < numElements) o 64Fb1b40 ISETP. GE.
d 64Fb1bS0
double3 a = d_in[index]; 9824 (1572864 080887F3d 64b1b60 Hov
a.x 00887f3d 64fblb78 uLoc
8873d 64Fb1n80 IHAD.WIDE
8087f3d 647b1098 .E
39,824 (11 888873d 64fblbad
12 00887¢3d 64fb1bbE .E
008073d 64Fb1bed IMAD.WIDE

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 8

Chapter 5.
UPDATED VERSION OF THE KERNEL

Considering the uncoalesced accesses reported by the profiler we analyze the global
load access pattern. Each thread executes 3 reads for the three double values in double3.

We can treat the double3 array as a double array and each thread can process one double
instead of one double3. With this change threads in a warp access consecutive double
values and both loads and stores are coalesced.

double3 double3
[: | : | Global Memory
o o o
o8| e
t0 t1 t2 Global Memory Loads

Lol

__global void addConstDouble (int numElements, double *d in, double k, double
*d_out)
{

int index = blockIdx.x * blockDim.x + threadIdx.x;

if (index < numElements)

{

d out[index] = d in[index] + k;

}

1

Profile the updated kernel

The kernel duration has reduced from 294 microseconds to 239 microseconds. We can set
a baseline to the initial version of the kernel and compare the profiling results.

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 9

Updated version of the kernel

@ NVIDIA Nsight Compute

File Connection Debug Profile Iools Window Help

<) Connect Baselines “=

& addc 0] x @ addConstDouble.ncu-rep [RO] X

Page: | Details v Result: 0- 494-addConstDouble v ¥ ~ AddBaseline ~ ApplyRules [@ Occupancy Calculator

Report Result Time Cycles Regs GPU
Current addConstDouble 494 - addConstDouble (12288, 1, 1)x(256, 1,1) 239.01 usecond 129,977 16

Copy as Image |~
SM Frequency CC Process ® 00 e
0- NVIDIA RTX A2000 543.80 cycle/usecond 8.6 [2489747] uncoalescedGlobalAccesses
Baseline 1 addConstDouble3 494 - addConstDouble3 (4096, 1, 1)x(256,1,1) 294.34usecond 164711 16 0- NVIDIA RTX A2000 559.59 cycle/usecond 8.6 [2489696] uncoalescedGlobalAccesses
@ The report contains imported source files.

» GPU Speed OF Light Throughput

High-level overview of the throughput for compute and memory resources of the GPU. For each unit, the throughput r the achieved percentage of utilization with respect to the theoretical maximum. Breakdowns show the
throughput for each individual sub-metric of Compute and Memory to clearly identify the highest contributor. High-level overview of the utilization for compute and memory resources of the GPU presented as a roofline chart
Compute (SM) Throughpu : 0 239.01 (188
Memory Throughput [%] ¢ 129977 (21.0¢
L1/TEX Cache Throughput : 4 38 (-21.3
DRAM Throughpu

We can confirm that the global memory accesses are coalesced. In the L1/TEX Cache
metrics table under the Memory workload analysis section we see that the "Sectors/Req"
metric value is 8 for both global loads and global stores.

@ NVIDIA Nsight Compute

File Connection Debug Profile s Window Help

=) Connect Baselines "=

) b C th addConstDouble.ncu-rep [RO] X

Page: Details ~ Result 0- 494-addConstDouble * % ~ | Add Baseline ~ Apply Rules Occupancy Calculator Copy as Image ~

Report Result Time Cycles Regs GPU @000

Current ad..le 494-ad.. 239.01usecond 129977 16

SM Frequency CC Process

0- NVIDIA RTX A2000 543.80 cycle/usecond 8.6 [2489747] uncoalescedGlobalAccesses

Baseline 1 ad..e3 494-ad.. 294.34usecond 164711 16 0- NVIDIA RTX A2000 559.59 cycle/usecond 8.6 [2489696] uncoalescedGlobalAccesses
L1/TEX Cache

Instructions Requests Wavefronts

Local Load 0 .00%) 0 .00%) 0 (+0.0

Sectors Sectors/Req Hit Rate

0 (+0.00%) 0 (+0.0
Global Load 786,432 (-66 8 (-66.67"

0 (+0.00

0 (+0.00%)

0 (+0.00

0 (+0.00
98,304 (-50.0 8 (-66.

Global Load To Shared Store (access) (+0. (+0. 98,304 (-50.0
Global d To Shared Store (bypass)

Surface Load

Texture Load

Global Store

www.nvidia.com

Uncoalesced Global Accesses Sample v2022.3.0 | 10

Chapter 6.
RESOURCES

» GPU Technology Conference 2021 talk S32089: Requests, Wavefronts, Sectors
Metrics: Understanding and Optimizing Memory-Bound Kernels with Nsight
Compute

» Nsight Compute Documentation

www.nvidia.com
Uncoalesced Global Accesses Sample v2022.3.0 | 11

https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s32089/
https://docs.nvidia.com/nsight-compute/index.html

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2022-2022 NVIDIA Corporation and affiliates. All rights reserved.

This product includes software developed by the Syncro Soft SRL (http://
WWWw.sync.ro/).

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Introduction
	Application
	Configuration
	Initial version of the kernel
	Updated version of the kernel
	Resources

